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High multipole moments in nuclei
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Deformed Hartree-Fock calculations with the Skyrme interactions are carried out for various nu-

clei in the s da-nd f psh-ell regions to obtain EZ, E4, and E6 intrinsic multiple moments. It is

found that the higher moments have an increasing sensitivity to the size of the basis used in the cal-

culation and that the basis must span at least nine major shells to produce reliable results for E6
moments in this mass region. The results are sometimes not monotonic in the number of shells that

are included. The results differ greatly for the Skyrme SI and SII interactions used here. More in-

sight into these moments and a better understanding of the Hartree-Fock results is gained by using

deformed harmonic oscillator wave functions. The results are compared with shell model calcula-

tions. It is found that the collective model approach, when used sensibly, can be very useful in

understanding the experimental results. Much of the data can be explained, although some

discrepancies still remain. It is found that in open shell nuclei, the simple use of an effective charge
calculated for a closed shell plus one nucleon is inadequate. A necessary (but not sufficient) condi-

tion for obtaining sensible results for higher moments is that the lower moments come out correctly.

I. INTRODUCTION

The experimental and theoretical study of E4 and E6
transitions and moments in nuclei' ' is still in a state of
growth and development, in marked contrast to E2 tran-
sitions and moments, which have been studied extensive-
ly. ' ' There is no reason why these multipole moments
should not turn out to be as interesting as the quadrupole
moments, and results reported by several groups, see, e.g. ,
Refs. 3 and 12, already indicate that this is actually the
case. In the present work we attempt to study these
higher moments using deformed Hartree-Fock (HF) cal-
culations as well as simple estimates based on deformed
harmonic oscillator wave functions. We will try to exam-
ine how far the analogy between these higher multipole
moments and the quadrupole moment extends.

In theoretical studies of quadrupole moments, a simple
complementarity has been established between the shell
model and HF or deformed nucleus approach. For exam-
ple, in the s-d shell one can obtain good fits to E2 transi-
tions and quadrupole moments through the use of renor-
malized effective charges. ' Phenomenologically there
seems to be no need to make these effective charges state
dependent or nucleus dependent. Typical values for the
polarization charges in this shell are e„=0.5 and ep 0 2,
i.e., an isoscalar effective charge (1+e„+ev)=1.7. The
effective charges can be obtained by core polarization cal-
culations. For example, in ' 0 we can admix to the basis
single particle configuration (15~& neutron) a term in
which the ' 0 core has been excited to a 2+ state (the gi-
ant quadrupole state). ' Alternatively, one can carry out
calculations in the open shell nuclei of the s-d shell Ne,

Mg, etc. . . . In the unrestricted HF calculations, one
does not require an effective charge, and not only are the
valence nucleons allowed to deform, the ' 0 core is also. '

Thus by doing HF calculations one can understand the
origin of the effective charge that is required in shell

model calculations.
What happens when we consider higher multipoles such

as E4 and E6? For the E6 it is obvious that the simple
idea of using an effective charge in a shell model calcula-
tion will fail in the s-d shell. This is because all single
particle matrix elements (nlj

~

E6
~

n '1j'') vanish in this
shell. Gn the other hand, a HF approach, in which higher
shells are allowed, will give nonzero matrix elements. The
E4 case is in between these two extremes, so one might
expect that although one gets nonzero matrix elements in

the s-d shell, the idea of a simple nucleus independent and
state independent effective charge might be suspect. This
is the type of question we wish to address in the present
work. We should also note that the Nilsson model in its
simplest form with no 5%=2 mixing is completely inade-
quate for E4 and E6 transitions.

One of the reasons we are interested in this topic is the

experiments on E6 transitions in Fe by Black et al. ,

who found that the E6 transitions were retarded as com-
pared with single-particle estimates. Thus unlike E2
transitions, which require positive polarization charges,
the E6 transitions apparently require negative ones.
These results stimulated calculations of E6 core polariza-
tion in which a closed shell plus one nucleon were con-
sidered. However, since the transition takes place in an

open shell nucleus and the transition is of high multipo-
larity, it is clearly of importance to consider open shell ef-
fects. This was done by Castel et al. ' utilizing a de-

formed oscillator approach. Indeed, the open shell effects
were found to be very important. In this work we shall
confirm these findings in restricted HF calculations, but
we will show that if higher shells are allowed to admix,
then quite different results can be obtained.

A very useful guide in carrying out the present work
has been the shell model calculations of hexadecapole ma-
trix elements by Brown et al. ' These authors find that
the concept of an effective charge can be used for E4
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transitions in the s-d shell nuclei with an isoscalar effec-
tive charge having the magnitude 2.0e. They, however,
find an exception in the E4 transition from the ground
state to the first 4+ state in Mg. This state is weakly ex-
cited, as compared with the second 4+ state, in inelastic
electron scattering, and they are unable to obtain a reason-
able fit to the inelastic form factor for this transition. We
shall see that the collective model approach can cast some
light on this problem. Also for several nuclei in the s-d
shell, i.e., S and Ar, the data are sparse and not
without controversy.

Thus one of our objectives in this work is to try to
understand when and why the truncated shell model ap-
proach succeeds and when it fails. In the latter case, the
collective approach is the only method that will supply an
answer. However, as we will see, even the collective
model cannot be used in a casual way. There will be re-
gions where there is enormous sensitivity to the parame-
ters that are chosen, and we must try to find ways of sen-
sibly choosing these parameters.

II. DEFINITION OF THE ELECTRIC
MULTIPOLE MOMENTS

' 1/2

..//(EA. ,p)=r Yiz(0, p)=
16~ Q~i (2.1)

The Ei,,p multipole moment is usually defined by the
operator' 16m

9
r Y42(8,y)

sv3
2

[6z x —6z y —x +y

mass density distribution functions of the nucleus in the
intrinsic coordinate system. The factor of 2 that appears
in (2.2) is introduced so that the intrinsic charge quadru-
pole moment as calculated by (2.4a) agrees with the usual
definition. The reader must be cautioned, however, that
slightly different definitions for the various multipole mo-
ments can be found in the literature and so it is important
to check the definitions before making any comparisons.

In the present work we will try to evaluate the intrinsic
multipole moments for A. =2, 4, and 6 for various nuclei
in the mass range 20(A (53. The nuclear densities that
go into the equations (2.4) are obtained from a Hartree-
Fock calculation. Alternatively, in an attempt to have a
feeling for the Hartree-Fock results, Cartesian oscillator
wave functions and Nilsson model wave functions will be
used to calculate p(r) and hence the intrinsic multipole
moments.

For triaxial systems, the @&0components of the intrin-
sic multipole moments will not all vanish. (For axial sys-
tems, the p, &0 components will clearly vanish for a K =0
intraband transition but not for a K =p interband transi-
tion. ) One such moment that will be of interest in the
present work is the p=2 component of the hexadecapole
moment,

' 1/2

where Y~& is a spherical harmonic and where we have in-

troduced the operator Q~& for convenience. For axially

symmetric systems, only the JM =0 rnornent does not van-

ish, and then we have

+i(12xyz —2x y —2xy )] . (2.5)

Qgo ——2r Pg(cos8), (2.2}

where the P~ is a Legendre polynomial. In particular, the
first three moments correspond to

Qzo=2z p—2 2

Q40 ———,(Bz —24z p +3p ),

Q60 ———,(16z —120z p ~90z p —5p ),

(2.3a}

(2.3b)

(2.3c}

where p =x +y .
These Q~o are then used to calculate intrinsic charge

multipole moments

The imaginary part will give a vanishing contribution to
the intrinsic moments if the density distributions have in-
version syrnrnetry about the three principal axes. There-
fore for triaxial systems, the Q4q operator reduces to

Q4z —— (6z x —6z y —x +y ) .
2

(2.6)

These Q~& operators can be used to calculate intrinsic
multipole moments by a generalization of Eqs. (2.4) to the
case JM&0.

It is also possible for even-even nuclei to connect these
intrinsic multipole moments to the reduced transition
probabilities B(EiL) defined by

Qxo(charge)= fp, (r)Quadr (2.4a) (2.7)

and intrinsic mass (or isoscalar) multipole moments

Qio(mass)= fp (r)Quadr, (2.4b)

where p, (r) and p (r) are, respectively, the charge and
I

where we have used the convention of Bohr and Mottel-
son' for the reduced matrix elements. If the initial state
belongs to a rotational band with K~ ——0, and the final
state belongs to a band K2, then'

B(«)=
I

&I «&2
I iyrt2)

I
'1«211~(«,v=ti:2)

I
i@i =o)

I

'I 2 —M„0I .

If the initial state has I; =0, then

(2.8)
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Hence for transitions from the ground state of even-even
nuclei (which have I; =0, K& ——0) we have

B(EA,) =
~
Q~o(charge)

~

~21+ 1

16m
(2.10a)

for transitions that stay in the same band, and

B(EA, ) = 2(2A, + I)
16m. ~ Q~tt (charge)

~2

for transitions to a state in another band @2&0.

(2.10b)

III. AXIALLY-SYMMETRIC DEFORMED
HF CALCULATIONS

WITH THE SKYRME INTERACTION

The calculations were carried out using a program orig-
inally written by Vautherin' and modified by Sprung and
Vallieres' that employs the density-dependent Skyrme in-
teraction. Such a program was shown to provide a very
good description of binding energies, radii, and quadru-
pole moments of various deformed nuclei with the
Skyrme I and II interactions (SI and SII). The Skyrme
interaction has the form

v&2
——to(1+xoP )5(r~ —rq)

+ —,t([5(r) —r2)k +k' 5(r) —r2)]

+t2k ' 5(r~ —r2)k

+i@'o(o ~+oz) k'X5(r~ —rz)k

I r&+r2
+ 6 t3(1+8 )5(r& —r2)p (3.14

The program allows for axially symmetric deformations
by expanding the single particle wave functions in a basis
consisting of the eigenfunctions of an axially deformed
harmonic oscillator potentia1. These basis states are of the

OHl1

(3.2)
p z

where p =x +y and b& and b, are harmonic oscillator
length parameters. The quantum numbers n& and n, are
the number of nodes in the p and z directions and A and
X are the projections of the orbital and spin angular mo-
menta on the z axis. We also define

bo blab„q=b, /——bp, Po ——

0
(3.3)

The size of the basis is controlled by including all eigen-
functions for which the total number of quanta is less
than or equal to a certain fixed number No, i.e.,

2np+n, +A (No ~ (3.4)

The choice of a certain value for No implies that the basis
spans (No+ 1) major shells, and the expansion coefficients
are obtained by diagonalizing the Hamiltonian in this
basis. The Hamiltonian matrix splits into diagonal blocks

characterized by parity and A=A+X, the third com-
ponent of the total angular momentum. The program as-
sumes that the subspace of occupied states is invariant
under time reversal (which implies an even-even nucleus)
so that only blocks with positive values of 0 need to be
diagonalized. The program allows for the inclusion of up
to 15 major shells, i.e., No ( 14. In practice, smaller bases
are used (see the following).

The input parameters that have to be specified at the
beginning of each calculation are No, Po, and q. In the
limit of an infinite base (No~ oo ), the results should be
independent of Po and q. However, for finite No the re-
sults will depend on our choice of Po and q, and hence one
must optimize Po and q by minimizing the total energy of
the nucleus. This point has been emphasized by Tuerpe,
Bassichis, and Kerman ' since it has a direct bearing on
the reliability of the results obtained. We shall return to
this point later on when we discuss the results of the
present calculations.

The calculation consists of diagonalizing the HF Ham-
iltonian matrix in the chosen basis, calculating the single
particle wave functions with the resulting expansion coef-
ficients, and then using these to calculate the one-body
HF potential. This is then used to get a new HF Harnil-
tonian and the process is repeated. Usually 30—40 itera-
tions are required for the systems considered here (which
fall in the range 20&2 &53) to achieve convergence. In
general, the larger the nucleus the larger the number of
iterations required for convergence. The version of the
program employed in the present calculations is the one
modified by Sprung and Vallieres, ' and it has an option
by which one can accelerate the convergence by an extra-
polation procedure that cuts down the number of neces-
sary iterations quoted above by about one third. This op-
tion has been employed in most of the present calcula-
tions.

IV. OPTIMIZATION OF q AND po

In Fig. 1 we plot the binding energy per nucleon as ob-
tained from various HF calculations for the Fe nucleus.
The calculations differ in the values of q, Po, and No
chosen at the beginning of each calculation. For each No
the parameters q and Po are varied until the maximum
binding energy is obtained. First we note the gain in bind-
ing energy (-0.25 MeV/nucleon) that takes place when

No is varied from No=3 (the smallest possible basis) to
No ——8. More importantly, we note that the energies for
the No ——8 cases are almost independent of the chosen
values for q and Po. This implies that with large bases
(No ) 8) there is no need to carry out an extensive search
in the q or Po plane to minimize the total energy. In fact,
starting with any reasonable values for q and Po, a calcu-
lation with No) 8 will, for the systems considered in the
present work, give an energy very close to the rninirnurn

energy. In contrast, for smaller No, a small deviation
from the optional q and Po produces a big change in the
energy.

The same picture emerges when one examines other
quantities such as the electric multipole rnornents that are
obtained from the HF density distributions. In Fig. 2, we
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FIG. 2. Variation of the intrinsic HF charge quadrupole mo-

ment of 'Fe with q, Pp, and Np The po. ints shown here corre-

spond to the same points that appear in Fig. 1 and the same no-

tation is used. Note that for clarity the Np=6 points have been

shifted to the left. For each No the point corresponding to the

minimum total energy is denoted by a triangle.

FIG. l. Variation of (Eq/A)(HF) with q, pp, and Xp for the
case of "Fe using the Skyrrne II interaction. The value of q is

given by the horizontal axis while the numbers that appear on
the graph give the values of Pp in fm '. For each Np, the points
corresponding to the same Pp (but different q's) are connected

by continuous straight lines, while points having the same q (but
different Pp's) are connected by dashed straight lines. Note that
for No ——8 the scale has been magnified by a factor of 2 for
clarity.

mandatory when one is interested in calculating higher
multipole moments.

To illustrate these points further, we show in Table I
the results obtained for Cr with the use of bases of vari-
ous sizes. First, we note the monotonic convergent in-
crease of the binding energy as No is increased, and the
ability of all calculations to predict the quadrupole mo-
ment. Reliable results for the hexadecapole moment can
be obtained for No )6, while the Q6p moment starts to be

show the dependence of the charge quadrupole moment of
Fe on the inPut values of q and Po for Np =4, 6, and 8.

In the three cases the values of Q2p corresponding to the
optimal q and po are within 5% of each other. However,
a slight deviation from the optimal q and pp produces
large errors in the resulting Q2p for Np=4 (and, to a
somewhat lesser extent, for Np ——6). This again indicates
that for No ——4 or 6 one has to carefully survey the q-pp
plane. In contrast, the No ——8 results show very little
dependence on q and pp. The results for Np ——3 are not
shown because they require a scale for Q2p with a much
larger range than that shown in Fig. 2.

These observations are further supported by the values
of the isoscalar Q6p in Fig. 3. Here, not only are the
values obtained for the No ——4 and 6 cases very sensitive
to deviations from the optimal q and po, but the results
corresPonding to the oPtimal q and Pp are comPletely un-
reliable. This is not just a computational problem as it
has a physical origin in that the Q6p operator connects
states that have angular momenta differing by up to 6A.
The use of a small basis will then not allow the admixture
of the higher shell components into the wave function,
and it is these components that give the major contribu-
tion to Q6p. The use of a large basis Np) 8 is therefore
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FIG. 3. Variation of the intrinsic isoscalar E6 moment of
~Fe with q, Pp, and Np The points sh.own here correspond to

the points that appear in Figs. l and 2, and the same notation is
used. Note that for clarity the No ——4 points have been shifted
to the right.
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TABLE I. Results of HF calculations for the Cr nucleus with the Skyrme II interaction using bases
of various sizes. Note that the last three rows are for calculations that do not correspond to the optimal

q and Po.

Np

3
4
6
8
9

12
8

Optimal Po
(fm-')

0.50
0.51
0.56
0.56
0.54
0.54
0.54

Optimal q

1.23
1.30
1.30
1.45
1.45
1.45
1.25

Eb /A
(MeV)

8.261
8.319
8.469
8.482
8.488
8.519
8.478

Q,o (mass)
(fm )

216
235
223
222
223
221
222

Q40 (massj
(fm4)

1100
1500
1200
1300
1300
1300
1300

Q60 (mass)
(frn )

5900
11 200

5600
7000
8400
7200
6600

reliable for Nc) 8. For smaller bases the Q60 moment
fluctuates wildly with No and the values obtained are not
reliable. Calculations for No ——9 and No 12 d——o not cor-
respond to the optimal q and po, since these calculations
are so time consuming that it is not worthwhile to search
for the optimal q and po, especially for such large bases
where any reasonable values for q and po are expected to
yield results very close to the optimal case. Finally, in the
last row of Table I we give the results of a calculation
with No ——8 but not the optimal q and po (shown in the
fourth row). We note that the two sets of results are very
close.

In conclusion, deformed HF calculations can be per-
forrned without a search for the optimal q and po if one
uses a large basis. Moreover, if one is interested in calcu-
lating high multipole moments then one must use a large
basis. Although a single calculation with a large basis re-
quires much more computer time than one with a small
basis, the fact that one does not have to search for the op-
timal q and po makes the overall computation times corn-
parable. For example, for No ——4 a typical calculation
with 30 iterations takes about 12 min on a PDP-10 com-
puter and the search in the q-po plane requires five or six
such calculations for an overall time of 60—70 min. On
the other hand, a calculation with No ——8 requires about
60 min for the same number of iterations.

V. INTRINSIC MULTIPOLE MOMENTS
WITH HARMONIC OSCILLATOR WAVE FUNCTIONS

We will choose the values of b„, by, and b, using a modi-
fied form of the Mottelson conditions (Eqs. 4—115 in Ref.
16),

pX pX X

where X =X„X~X, and bo ——b„blab, . The parameter p is
such that (5.2) reduces to the usual Mottelson conditions
when p =1 which, however, leads to deformations that are
too large in the s-d shell. We therefore consider values of
p close to but less than one. This has the effect in the
prolate case of decreasing the deformation and eventually
leads to oblate shapes for smaller p.

The ' 0 core corresponds to filling the orbits

F
000),

~

100), i010), and
i
001) .

For Ne we add four nucleons in the
i
002) orbit so that

X„=X„=14and X, =22. For Mg we put four addition-
al nucleons in the

i
101) orbit. This means that Mg is

not axially symmetric but rather triaxial. The axially
symmetric state would be

[ i
101)+ i

i
011 )],1

2

but there is reason to believe that "Mg is triaxial, ' '

and so the use of the
i
101) orbit is superior. Also, this

choice enables us to obtain both a Q40 and a Q42 moment
for Mg. We thus get X„=20,Xy=16, and X, =28. For

Si we put four nucleons in the

Q20 2X b X b Xyby (5.1)

Before giving the results obtained with Hartree-Fock
calculations, it is useful to gain insight into the higher
multipole moments by using oscillator wave functions.
We begin by examining quadrupole and hexadecapole in-
trinsic matrix elements in the s-d shell with the use of
Cartesian oscillator wave functions. The orbits are
characterized by

~
N„N~N, ), where Ni is the number of

quanta in the j direction. We also define X~, Xy, and X,
by XJ ——sum(Ni+ —,

'
) aver accupied orbits. We will deal

here with mass (or isoscalar) multipole moments. The ex-
pression for the intrinsic quadrupole moment with de-
formed Cartesian oscillators is

[ i
101 ) +i

i
011 ) ]

2

orbit and four nucleons in the
~

110) orbit so that the axi-
al symmetry is restored and we have X„=Xy=24 and
X, =30. For S we fill all the orbits up to

i
110) so that

Xz Xy 28 and X,=36, while for Ar we put four nu-
cleons in

[ i
200) + i

~

020) ]
1

2

so that Xx ——Xy =34 and Xz=
The contribution of the four nucleons in the

~
N„,1V„,N, ) orbit to Q40 is given by
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Q4o(N Ny N ) 6b (2N +2N»+1)+ 4 b»(2N +2N +1)+—,by(2Ny+2Ny+1)

24b b»(N»+ 2 )(N + 2 ) 24b» by (N + 2 )(Ny + ~ )+6b»by (N + 2 )(Ny + 2 )

while the contribution of the same four nucleons to the Q4z moment is

(5.3)

Q~2(N Ny N ) 10W3[6b b (N + )(N + ) 6b by(N + )(N + ):b (N +N + 2 )+ by(Ny+Ny+ 2 )]

(5.4)

Using these expressions we find that for Ne (with
b» =by)

Q4o ——126b, +54b„—156b, b„, (5.5)

while for the triaxial Mg nucleus,

Q4o 156b +31 5b +22 5by 132b b

96' by + 1 8bz by

Qgp
—— (132b,b„96b,by

—42b„+—30by ) . (5.6b)

(5.6a)

For Si (with b„=by),

Q4o
—162b, + 108b» —264b, b„.

For S (with b„=by),

Q4o
——192b, +126b„336b»—b» .

For ' Ar (with b„=by),

Q4o ——198b» + 165b„—372b, b„.

(5.7)

(5.8)

(5.9)

Let us first consider what happens in the isotropic limit
where b„=by =b, =bo:

Ne: Qpo ——16bo, Q4o =24bo ,
'

Mg, Q2o —20bo Q4o =0 Q42 = 103.92b o

"Si: Q„=12b'„Q =6b'. ;

Q2o = 16b o, Q4o
———18b o

(5.10)

36 2 4«: Q2o=gbo, Q4o= —9bo.
The fact that Q4o vanishes for Mg in the isotropic

limit implies that the first 4+ state should be weakly ex-
cited and the 42 state strongly excited. This is in accord
with experiment and with the calculations of Brown
et al. ' Note that the 4~ state in Mg is the only state
which these authors have difficulty fitting with a constant
E4 effective charge. The oscillator model shows clearly
why this is the case. Since in the limit b„=by ——b, the
hexadecapole moment Q4o vanishes, it is clearly sensitive
to small effects.

The results for b„, by, and b, given by the modified
Mottelson conditions are given as a function of p in Table
II. All results correspond to bo ——1.8 frn. Looking at the
results for Ne we note that the Mottelson conditions
(p=l) give a quadrupole moment that is slightly more
than twice the "spherical value. " This is consistent with
the fact that with these conditions, in the linearized ap-
proximation, the quadrupole moment of the core is equal
to that of the valence particles. In other words, the iso-

Ne: Q6o
——15(35b, —1 lb„69b,b„+45—b, b„"),

Mg: Q6o
——15(42b, 15b„—99b, b»+72b—,b„) .

(5.1 1)

Note that in the isotropic limit (b„=b, ) Q6o vanishes for
both Ne and Mg. For axial deformations, however,
the Q6o moment can be quite large. For example, for a
typical deformation of b, ib„=1.3, the Q6o moments of

Ne and Mg are

Ne: Q6o ——89.83bo ——3055 fm

Mg: Q6o =41.12b o = 1399 fm
(5.12)

where the final values correspond to bo ——1.8 fm.
To develop a better feeling for these numbers and to set

a scale for the results that are obtained in the HF calcula-
tions, we evaluate the Q6o matrix elements with f7&2 wave
functions. We use the f7/2 Nilsson model in the zero de-
formation limit. We maintain in this limit the idea of an
intrinsic state with wave functions denoted by f7&7 z with

I 3 5 7E= —,, —, , —, , and —,. Thus the intrinsic state of the neu-
trons in Cr is

scalar effective charge is two. As we decrease p, the de-
formation decreases as expected. A point previously made
by one of the present authors concerned the large differ-
ence in Q4o between the isotropic case (b„=by =b, ) and
the case where b„, by, and b, are allowed to vary. The
isotropic value of 251.94 is increased to 521.93 for
p =0.93. 'This is mainly a valence polarization effect, per-
taining to the orbit

~
002), and follows from the fact that

a quadrupole distortion induces a hexadecapole moment.
In Mg we see that allowing b„, by, and b, to be dif-

ferent causes Q4o to change from zero to some finite
value. However, for all the cases considered, Q42 is still
larger than Q4o. Since Si is oblate we need much small-
er values for p (-0.8) than the previous two nuclei to pro-
duce the necessary deformation. Note that in the neigh-
borhood of this deformation the hexadecapole moment is
very sensitive to the particular value of the deformation.
This observation will also apply to the results of HF cal-
culations for Si as will be seen in Sec. VI. For S we
notice that the Q4o rnornent changes sign as we decrease p
and it is smaller in magnitude than the hexadecapole mo-
ment in the isotropic limit.

We can also gain insight into the Q6o moments with the
same Cartesian harmonic oscillator wave functions. Be-
cause the expressions are rather lengthy we wi11 just
present the results for Ne and Mg, allowing for axial
deformations only and dealing with mass (or isoscalar)
moments:
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TABLE II. Intrinsic quadrupole and hexadecapole isoscalar moments for some nuclei in the s-d shell
calculated with Cartesian harmonic oscillator wave functions with a length parameter bo ——1 ~ 8 fm for
various deformations determined by the modified Mottelson conditions [Eq. (5.2)].

Nucleus

"Ne

Mg

28S

1

0.95
0.93
0.90

1

0.95
0.93
0.90

1

0.9
0.8
0.7

b2

b2

1.5714
1.3473
1.2640
1.1456
1

1.4000
1.2003
1.1261
1.0206
1

1.2500
0.9113
0.6400
0.4288
1

b2

b

1.5714
1.3473
1.2640
1.1456
1

1.7S00
1.5004
1.4076
1.2758
1

1.2500
0.9113
0.6400
0.4288
1

Qpp (mass)

(fm )

114.66
91.76
82.75
69.38
51.84

142.27
113.03
101.52
84.42
64.80

81.21
22.31

—36.09
—95.71

38.88

Q40 (mass)

(fm4)

931.98
624.24
521.93
389.72
251.94

717.76
371.38
2S8.80
116.47

0

281.57
21.79
76.26

453.99
62.99

Q42 (mass)

(fm4)

2296.23
2029.56
1918.12
1745.10
1090.94

32S 1

0.97
0.95
0.93
0.90

1.2857
1.1734
1.1023
1.0342
0.9373
1

1.2857
1.1734
1.1023
1.0342
0.9373
1

108.96
87.51
73.29
59.15
38.02
51.84

101.10
—36.80

—-108.97
—165.63
—222.01
—188.96

'Isotropic limit bz by bz.

(f7/2 K
l Q6p l f7/2~K ~ = —3.75C(K )b p (5.14)

~[f7/2, i/z( )f7/2, —i/2(2)f7/2, 3/2(3)f7/2, —3/2(4)) &

with a similar expression for the protons. Using harmon-
ic oscillator wave functions we find that the matrix ele-
ment

Ti: Q6p
——4800 fm

Cr: Q6p = —3840 fm6,

Cr: Q6p = —1440 fm

Fe: Q6p ——+960 fm

(5.17)

where

C(-,' ) = —5, C(-', )=9,

C( —,
'

) = —5, C(-,' ) = 1 .
(5.15)

Relative to these values, the Q6p moment of 2pNe: 3055
is large (by a factor of more than 20 when compared

with the single particle f7/2Q6p static moment) in spite of
the fact that the s-d shell model would yield a vanishing
result.

Note that the sum gz C(K)=0. In deriving (5.14) we

have used the result

(f ~

r6~ f ) = —", —", , bp ——160.875b—p .

The Q6p static moment of

"sc: (f7/27/2 I Q6p lf7/27/&~

(5.16)

would in this model be —240 fm if we use bp ——2 fm.
The value of the mass Q6p intrinsic moment in the f7/2
Nilsson model is readily obtained, using the above expres-
sion, for some benchmark nuclei (with bp ——2 fm)

VI. INTRINSIC MULTIPOLE MOMENTS
FROM HF CALCULATIONS

The results obtained from Hartree-Fock calculations
for various nuclei in the range 20(A &53 are shown in
Table III. The calculations were carried out with the
Skyrme interactions SI and SII. For each nucleus we give
the input parameters q and Pp [Eq. (3.3)], the binding en-
ergy, the root-mean-square charge radius, and the charge
and mass multipole moments Qqp, Q4p, and Q6p. The
binding energy includes the Coulomb exchange terms
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TABLE III. Binding energies per particle, root-mean-square charge radii, and charge and mass multipole moments calculated with
the interactions SI and SII. Input values for the parameters Po and q are also indicated.

Nucleus
Eb /A
gvreV)

R,
(fm)

Qzo (fm')
Charge Mass

Q4o (fm )

Charge Mass
Q6o (fm6)

Charge Mass

ONe

SI
SII

0.66
0.625

1.25
1.40

8.28
7.71

2.85
2.99

34
46

68
91

170
360

330
700

760
2600

1500
5000

24M

SI
SII

0.67
0.612

1.35
1.35

8.64
7.89

2.98
3.12

50
61

98
121

100
160

200
320

220
400

420
770

28$)

SI
SII

0.67
0.65

0.85
0.85

8.91
8.06

3.02
3 ~ 23

—25
—60

—50
—119

40
310

80
600

—70
—1600

—150
—3200

32$

SI
SII

0.64
0.62

1.00
1 ~ 30

8,83
8 ~ 12

3.14
3.30

—10
106

—1 ~ 5
—67

—2.9
—130

0.1

—720
0.4

—1400

Ar
SI
SII

0.64
0.62

0.82
0.80

8.73
8.32

3.28
3.40

—37
—49

—73
—97

—13
—73

—27
—140

430
1100

810
2100

48C

SII 0.54 1.25 8.38 3.71 118 233 1100 2200 6400

' Cr
SII 0.56 1.45 8.48 3.71 109 222 750 1300 3400

52Cr

SII 0.58 1.30 8.51 3.70 78 148 590 1100 1700 4300

S2Fe

SII 0.61 1.20 8.36 3.76 107 211 165 320 1400

53pe

SII 0.61 1.225 8.40 3.76 170 90 540 1100

(which have been neglected in previous calculations)' as
well as the direct term of the center of mass correction.
The charge radii given are corrected for the finite size of
the proton and the center of mass motion. All the results
presented correspond to calculations with a basis spanning
nine major shells (Xo ——8). Except for Cr and Fe, no
search was carried out for the optimal q and po since, as
already mentioned in Sec. IV, such a search will not have
a significant effect on the results. However, for nuclei
with A & 40 the values of q and po were chosen to be close
to optimal values determined by Vautherin' (for %o =4).

For systems with A &40 where both interactions SI and
SII have been used, it is found that SI tends to give higher
binding energies and smaller radii and multipole moments
than SII, which agrees with previous results. ' The quad-
rupole moments predicted by SI are generally 20—50%
less than those predicted by SII, with the latter being
closer to the experimental results (see the following and
Table V). The difference between the SI and SII quadru-
pole moments can be easily understood in terms of the
different. equilibrium deformations determined by each in-

teraction. Moreover, the quadrupole moments are in fair
agreement with the values expected on the basis of de-
formed oscillator wave functions (Table II) for s-d shell
nuclei. For nuclei with A & 40, we have only used the SII
interaction, since we feel it gives superior results.

For the Q4o and Qso moments the differences between
SI and SII results tend to become more dramatic, with the
largest discrepancies occurring for Si and S. Part of
this discrepancy is due to the fact that these rnornents are
due to quadrupole deformation, so that roughly one ex-
pects

Q4o(SII) Q2o(SII) Qso(SII) Q2o(SII)
(6. l)

Q~(SI)
=

g', ,(SI)
' g„(SI) g,', (SI)

Again these hexadecapole moments agree in sign and
magnitude with the values obtained from deformed har-
monic oscillator wave functions (see Table II) for the s-d
shell nuclei. The situation is similar for the F6 moments
where the values of Qso for Ne and Mg in Table III
are in rough agreement with those obtained with de-
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TABLE IV. The change of the Q6p moment with the deformation (q) of the oscillator basis. The Np=3 results simulate shell
model and other calculations that are limited to the first four major shells. The calculations for ' Cr were carried out with Pp ——0.54
and for Fe with Pp=0. 50.

1.05
1 ~ 15
1.20
1.25
1.35
1.45

Cr, Np ——3

Q6p (charge)
(fm6)

—910
—170

480
4100
6900
9400

Q6p (mass)
(fm )

—680
+440
1500
8100

13 000
18 000

1

1.25
1.35
1.45

Cr, Np ——8

Q6p (mass)
(fm6)

6500
6600
6600
6600

1

1.1

1.2
1.3
1.4

Fe, Np ——3

Q6p (mass)
(fm6)

900
940

3700
8000

14000

formed oscillator wave functions [Eq. (5.12)].
For the nuclei with A ~ 40, we note the dramatic drop

in the magnitudes of both Q4p and Q6p in going from
Cr to Fe. This drop becomes all the more dramatic

when these moments are squared to obtain transition
rates. The Q6o moments of Cr and Cr are larger in
magnitude, by about a factor of 3, than those obtained in
the "spherical" f7/2 Nilsson model [Eq. (5.17)] and they
have the opposite sign. This change of sign with defor-
mation has been discussed by Castel et al. ,

' who suggest-
ed it as an explanation for the significantly retarded E6
transitions in Cr and Cr if the equilibrium deforma-
tion is very close to the value at which Q6p changes sign.
Actually, the occurrence of a negative Q6p for small de-
formations in Ref. 10 and in Eq. (5.17) is due to the very
small shell-model bases used in these calculations which
do not allow for the full admixture of higher shells into
the f7/2 single particle wave functions. This can be simu-
lated by carrying out HF calculations with the smallest
possible number of shells (Np ——3 for A =50). The results
are shown for various values of the deformation parame-
ter q in Table IV. We note that with Np=3 the Q6p mo-
ment of Cr does undergo a change of sign as q is in-
creased and grows very rapidly for q&1.20. However,

the results with a large basis do not exhibit such a sign
change and are almost independent of q. Moreover, the
results for Fe with No ——3 all have the same sign so that
a sign change cannot be invoked as the reason for a small
Q6p inoment. Finally, we note that in the isotropic limit
(q =1) the HF results with Np ——3 agree with the esti-
mates given in Eq. (5.17) for Cr and Fe.

We now turn to a comparison of the HF moments with
experimental results (where available) and with shell
model calculations (if experimental data are unavailable).
This is done in Table V, where we display the square roots
of the reduced transition probabilities B(E2) and B(E4)
from the 0+ ground states of the nuclei considered to the
first 2+ and 4+ states. The theoretical probabilities are
calculated using Eq. (2.10a) under the assumption that the
states involved are pure K=0. By examining the data
available for B(E2) it is obvious that the SII interaction is
much more successful in reproducing the experimental re-
sults. This conclusion is further reinforced when the
B(E4) data are examined. This seems to suggest that an
interaction that is not successful in reproducing a low
multipole moment will not be able to correctly predict the
higher moments. For zoNe, Mg, Si, and s2Cr there js
good agreement between the experimental data and the

TABZ.E g. Comparison of experimental and theoretical values for B(E2) and BE(4) for the 0~ ~2~ and 0~ ~4~ transitions in

even-even nuclei in the s-d and f pshells. -

Nucleus

V'8 (E2)
SII

(efm )

Expt. SI
t/B (E4)

SII
(e fm')
Expt. Shell model

"Ne
Mg

28Si

32S

Ar
48Cr
50Cr
s2C

52F

10.7
15.8
7.9
1.6

1 1.7

14.5
19.2
18.9
17.0
15.5
37.2
34.4
24.6
33.7

17.094 1.07'
20.7140.21'
18.09+0.26'
17.33%0.32'
17.28+0.75'

34.6g 1.2b

25.9+ 1.4

72
42
17
0.63
5.5

150
68

130
28
31

470
320
250

70

195 +21'
44.7+3.4"

164 +15.
465

235 %24'
269 +24

230
190

'Reference 13.
Reference 15.

'Reference 7.
Reference 24. [However, from the results of Ref. 27 we estimate v 8(E4)=145 e fm".]

'Reference 12 [uncertainties are due to different theoretical models used in calculating B (E4)].
Reference 26.
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HF results with the SII interaction. For S, there are ex-
perirnental data available from proton scattering, but the
extraction of a 8(E4) from this data is more difficult
than is the case with Coulomb excitation or electron
scattering. In any case, the 8(E4) obtained in Ref. 24 is
reported in Table V and is found to be much larger than
the HF results [more recent experimental results indicate
that the &B(E4) can be smaller by a factor of 3.] This
discrepancy can be traced back to the values of the hexa-
decapole deformation parameter P4 as extracted from the
data and as obtained from HF calculations. In Ref. 24 we
find for S

p2 =0.235, pg ———0.24,

while the HF calculations yield

p2 ——0.256, p4 ———0.069,

where in (6.3) the Pz has been extracted using'
' 1/2

Q4o = 7 4 9 1

4a
Ze(r ) P4+ —

P27 77

(6.2)

(6.3)

' 1/2

Qzo=
16~ 5

5 4n.
Ze(r )P, .

(6.4)

Whereas the pz's in (6.2) and (6.3) are comparable, we find
that the Pz resulting from the HF calculation is much
smaller than that required by the experimental data. Ac-
tually, a check of our HF results revealed that for all the
nuclei considered in the present work the P4 obtained is
always small and comparable in magnitude to the va1ue
reported in (6.3). It is not clear whether this is a feature
of all HF calculations or is related to the use of the
Skyrme interaction, and the answer must await a future
investigation. Unlike S, the other nuclei (except, prob-
ably, for Ar} do not require a large P&. For comparison,
we also show in Table V the theoretical values of v'8(E4)
obtained in a shell-model calculation. ' We also show the
corresponding values for Ar, although there are no ex-
perimental data in this case. For the heavier nuclei exper-
imental data are available for Cr and Cr.

For the E6 transitions there are experimental results
19 7for the —, ~—, transition in Fe. This transition is

found to be retarded by a factor of 4.3 with respect to
single-particle estimates. The &B(E6) extracted from
the experimental data (see Ref. 4) is 524 efm. On the
other hand, using the value of Q6o listed in Table III for

Fe and assuming that the two levels involved in the
transition belong to the same (K =—,

'
) band, we find

1/2

Cr: U'B(E6)=2100 e fm

Cr: U'8(E6) =3800 e fm
{6.6)

whereas the Hartree-Fock Q6o moments would give

oCr &8(E6)=1730 e fm

Cr: v'8(E6)=865 e fm
(6.7)

We observe that there is fair agreement between experi-
ment and theory for Cr, which is a rotational nucleus,
but not for Cr, which does not have a rotational spec-
trum.

VII. QUADRUPOLE MOMENTS OF 2(+ STATES

TABLE VI. The quadrupole moments of 2& states in units of
e fm; comparison of Hartree-Fock calculations (SI and SIIj,
shell model calculations, and adopted values from experiment.

The experimental values of &8(E2}in Table V do not
provide us with the signs of the intrinsic quadrupole mo-
ments. This is especially pertinent to the case of S,
where the interaction SI yields a spherical solution as the
lowest (with oblate and prolate solutions essentially degen-
erate) while SII yields a prolate solution.

In an extensive review, Spear has furnished "adopted
values" of Q, +. These were obtained by a critical evalua-

l

tion of the data that had accumulated on the various nu-
clei in the s-d shell. The references are contained in his
article.

In Table VI, we list the adopted values from his article
and compare them with the values from SI and SII. In
making this comparison, we use the rotational formula
Q +

————', Q2o(charge), with Q2o obtained from our
2 ]

Hartree-Fock calculations (Table III). Also given in Table
VI are the results of a shell model calculation of Wil-
dentha1, McGrory, and Glaudemans.

We note that with both SI and SII the signs of the mo-
ments are correct for all these nuclei. The values for SII
seem somewhat better than those for SI. However, the ex-
periments are extremely difficult so it is not easy to assess
the precision with which we can trust the adopted values.
At any rate, for the "difficult" nucleus S the results tend
to favor a prolate deformation.

We also note that the results of SII are remarkably
close to the shell model values. However, Spear also
lists the values of Q2+ obtained in Hartree-Fock calcula-

l

tions by several different groups using a variety of interac-
tions {see his Table 5.3). For S about half the results are
positive (oblate) and the other half negative (prolate).

&8(E6)= ( ——,60
i

—, —) Q6o ——32 e fm, (6.5)
Nucleus SI SIr Shell model'

which implies that the simple collective model predicts
that this E6 transition should be even more retarded than
it actually is. It is expected, however, that the inclusion
of band mixing would bring the theoretical transition rate
into closer agreement with experiment. More data on E6
transitions are also available for the 0+&~6~+ transitions
in the nuclei Cr and Cr from Ref. 12:

Ne

Mg
28Si

32$

Ar

—9.7
—14.3

7.1

1.4
10.6

—13.1

—17.4
17.1

—15.4
+14

—14.3
—15.0

14.3
—13.6
+14.3

'Wildenthal, McCxrory, and Glaudemans, Ref. 29.
Adopted values by Spear, Ref. 28.

—-23+3
—18+2

16+3
—15.4+ 2 ~ 0

11+6
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VIII. CONCLUSION AND SUMMARY

We have carried out deformed Hartree-Fock calcula-
tions of intrinsic E2, E4, and E6 moments for selected
nuclei in the s-d shell and f pshe-ll regions. Before com-
menting on specific results, we should say that, in general,
this has been a very useful program. Even though in
several instances the calculations do not agree with experi-
ments, they are very useful in exhibiting some general
trends and even surprising results.

In one sense, the Hartree-Fock calculations are very ex-
tensive in that a great number of shells are included and
all the nucleons contribute to the deforrnations. In anoth-
er sense, though the calculations are at a primitive stage,
there is the age old problem that all the Hartree-Fock pro-
vides you with is an intrinsic state, but it does not quite
tell you what to do with it. We have here taken the sim-
plest route of using the Bohr-Mottelson formulas for get-
ting from the body fixed axes to the laboratory. More
ambitious projects would involve projecting out states of
good angular momentum. The Hartree-Fock program we
have used has good axial symmetry. We have made devi-
ations to triaxiality in a harmonic oscillator model, but it
would be nice to have a HF program without axial sym-
metry. Also, in some instances, the mixing of different K
shells might be important.

We should also comment on the sometimes surprising
sporadicity of experimental results. For example, to the
best of our knowledge, there are no electron scattering ex-
periments for the 0+&~4~ transition in S, or for the
0+i~6& in Ne. The upper half of the s-d shell has been
poorly explored. We hope this work will stimulate some
further experimental work with medium energy probes—
protons, pions, electrons, etc.

In this work we have pointed out that many shells have
to be taken into account, and that sometimes the depen-
dence on the number of shells is complicated, i.e., non-
monotonic. The more shells that are taken into account
the less sensitive is the program to the input parameters.
This point was illustrated most dra'matically for the E6
moment of Fe. With five major shells (No ——4), a small
change in the radial input parameter, Po, from 0.49 to
0.51 fm ' caused a change in Q6O from —500 to + 7000
fm . With nine major shells, the problem went away, and
the value of Q6O was about 1400 fm .

In this work we also pointed out that the higher mul-
tipole transitions can be extremely sensitive to the nuclear
interaction that is used. For example, as shown in Table
V, the result for &B(E4) in Si is 17 e fm for the SI in-
teraction, but is 130 e fm for SII. One advantage of us-

ing the Skyrme interactions is that it is very easy to
change the parameters. With other interactions this
might not be the case. At any rate, the above results sug-
gest that when one finds that there is a large discrepancy
between theory and experiment for high multipole transi-
tions, the first thing to do is check if there is sensitivity to
small changes in parameters. If this turns out indeed to
be the case, then the initial discrepancies are not so worry-
some. If this is not the case then more profound reasons
must be sought for the discrepancies.

We now comment on specific results. In the s-d shell

we predict large E6 transitions, especially in Ne. If one
limits oneself to the s-d shell, the E6 rates will vanish
even if we allow for effective changes. We hope that ex-
perimental studies of E6 rates will be undertaken. [We
here note a communication by Brown concerning inelastic
electron scattering data from the MIT-Bates group Willi-
amson et al. The data are not for Ne, but rather for
the neighboring nucleus ' F. The transitions are

and —,', ~—, , The B(E6) are comparable
to what we obtain from HF calculations that yield
Q6O(charge)=910 fm for '9F with the SII interaction.
HF calculations for Ne indicate that the E6 transition
would be an order of magnitude stronger than in ' F.]

We have made comparisons with shell model calcula-
tions of E4 transitions in the s-d shell. Rougly speaking,
there is good agreement in the lower half of the s-d shell
and complete disagreement in the upper half. Concerning
the latter, we predict with SII that the value of &B(E4)
is 28 efm for S and 31 e fm for Ar. The corre-
sponding numbers in the shell model are 230 and 190
e fm . The data support a large value for S, either 465
e fm by one determination with 20 MeV protons or 145
e fm with 60 MeV protons. One would hope that higher
energy experiments with protons and electrons would be
carried out for ' S as well as Ar.

The difference between the shell model and rotational
model will have to be ironed out, and hopefully some
good physics will result. There are several comments that
can be made. First, one basic difference in the two ap-
proaches is that in the shell model a constant rather large
isoscalar E4 effective charge I+5e„+5e~=2 is used. In
th= collective model, because E4 transitions depend on
E2 deformations in a quadratic manner, we would expect
the effective charge not to be constant.

Second, in the context of the deformed oscillator model,
it is not easy even allowing for the freedom of adjusting
the deformation parameter b, lb„ to generate a large E4
matrix element for S. This can be seen from Table II.

Third, S is a difficult nucleus to deal with, both
theoretically and experimentally. As noted by Spear,
there is a large spread in the experimental results of Q +
for S as measured by different groups. Also, of the32

many Hartree-Fock calculations that were performed,
some yielded prolate and some oblate intrinsic states. In
this work we obtained different behaviors for SI and SII.
For SII we obtained a prolate minimum, which is in
agreement with the adopted value of Spear. For SI the
spherical solution yielded the lowest energy, with the ob-
late and prolate solutions nearly degenerate. (We note in
passing that this disagrees with Vautherin s original re-
sults where SI gives a prolate minimum for S.)

One possibility is that S is a very soft nucleus with
large amplitude vibrations between prolate and oblate.
This wi11 be considered in the future. But the fact
remains that at present we agree very well with the shell
model as far as E2 properties of S are concerned, but
not as far as the E4 properties are concerned.

In the f pshell, the magnitudes of -the E6 transitions
are roughly correct, but the trend in the chromium iso-
topes is difficult to reproduce. Possibly this is due to the
fact that 52Cr is singly magic and therefore not ainenable



1730 H. R. JAQAMAN AND L. ZAMICK 30

to a deformed Hartree-Fock calculation. Still the results
are, on the whole, encouraging.

For the —, ~—, E6 transition in Fe the shell
model results are too large, but our results are too small
relative to experiment. We assumed a pure transition.
The possibility of K mixing, e.g., that the —"

, state might
have dominant E = —, components, should be considered.

Perhaps the main point of this work is that one cannot
use fixed polarization charges to describe high multipole
transitions. The high multipole transitions depend in a
nonlinear way on the lower transitions. We believe we
have made a convincing theoretical case for this conten-
tion. Whether or not we have established this at the

phenomenological level is still open to question. More ex-
perimental data on E4 and E6 transitions will be helpful,
especially with medium-high energy probes. On our part,
an examination of a larger number of nuclei, and intro-
ducing previously discussed improvements would be in or-
der.
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