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We formulate a microscopic relativistic treatment of nucleon-nucleus inelastic scattering. Both
the continuum and bound state single nucleon wave functions are obtained by solving the Dirac
equation with scalar and timelike vector potentials. The interaction which drives the transition is

expressed in terms of invariant combinations of Dirac matrices. The structure of the resulting am-

plitudes is presented, and certain of their features, such as selection rules, are discussed.

I. INTRODUCTION

Recent years have seen the development of relativistic
models of the nucleon-nucleus interaction. These provide
descriptions of infinite nuclear matter' and ground state
structure of finite nuclei' which are appealing im many
ways. In addition, phenomenological relativistic descrip-
tions of proton-nucleus elastic scattering are qualitatively
consistent with the relativistic models and have been
shown ' to be superior in many ways to the standard non-
relativistic phenomenology. More recently, it has been
demonstrated ' that an essentially parameter-free model
of proton-nucleus elastic scattering based on the relativis-
tic impulse approximation' is in excellent agreement with
data and is superior to comparable nonrelativistic results
at all bombarding energies above =100 MeV. "

These successes suggest extensions of the relativistic ap-
proaches to include other processes which might provide
more stringent tests of the models. For example, Miller'
and Serot' have examined the influence of relativistic nu-
clear dynamics on electron-nucleus elastic scattering.
Shepard et a1'. ' have formulated a relativistic microscopic
treatment of electron inelastic scattering. Several work-
ers' have looked at the implications of relativistic nuclear
dynamics for (e,e'p) processes. There has also been a pre-
liminary attempt' to assess the influence of nuclear rela-
tivity on weak interaction amplitudes. None of these
models has yet confronted experiment in such a way that
firm conclusions about the appropriateness of the relativ-
istic description of the nucleon-nucleus interactions can be
drawn.

Intermediate energy nuclear physics facilities, over the
past several years, have generated a great deal of high
quality nucleon-nucleus inelastic scattering data. At
present, an impressive capability for the measurement of
exotic spin observables is being developed. In intermedi-
ate energy elastic scattering, the spin dependent observ-
ables provided the clearest signature of nuclear relativity
to date. This strongly suggests that inelastic scattering,
where the selectivity of various nuclear transitions can be
exploited to emphasize specific elements of the effective

NN interaction (many of which cannot participate in elas-
tic scattering), will provide crucial tests of relativistic
models of nuclear structure and scattering.

Macroscopic (or collective) relativistic models of
nucleon-nucleus inelastic scattering have already been
developed. ' '' While such models have many important
applications, their utility is severely limited in that they
contain only the dynamics already present in elastic
scattering. In the present paper, we present a fully micro-
scopic formulation of nucleon-nucleus inelastic scattering
which apart from the explicit treatment of exchange, en-
compasses the full range of dynamics for single-step in-
elastic processes.

II. THE TRANSITION AMPLITUDE

We wish to calculate the transition amplitude for
nucleon-nucleus inelastic scattering in the framework of a
relativistic distorted wave impulse approximation
(DWIA). We note that in the present work we do not in-
clude explicit treatment of exchange processes. However,
there are exchangelike effects which are implicit in a rela-
tivistic treatment. We consider a process in which a nu-
cleus is excited from an initial state, +J M, to a final state

4J M ~ We then take the transition amplitude to bef f

where integration over the A target nucleons and the pro-
jectile (0) is implied. The projectile wave functions,
gk, (+), have boundary conditions specified by ( —) or
(+ ) and asymptotic momentum and spin projection indi-
cated by k and s, respectively; the nuclear wave functions
O'JM are functions of the coordinates of all A constituent
nucleons. In Eq. (I), y is the usual timelike vector Dirac
matrix and t is the relativistic nucleon-nucleon interaction
which drives the transition. We assume that the relativis-
tic wave functions are solutions to a fixed energy Dirac
equation containing as yet unspecified relativistic poten-
tials, i.e.,
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(a p+pm+ Vo)it =Eke (2a)

for the projectile (0) and

A

g (~..p, +P.m)+&, +JM E'IIJM
n=1

(2b)

for the target (t }. In specific applications, these potentials
will usually consist of strong scalar and timelike vector in-

teractions which characterize current relativistic models
of nuclear dynamics. The detailed nature of these poten-
tials, as well as the techniques used to solve Eq. (2}, will
be presented in a future publication in which quantitative
results using the formulation presented in this paper will
be compared with data and with comparable nonrelativis-
tic calculations.

We now introduce a complete set of momentum eigen-
states, Fourier transform the configuration space projec-
tile and target wave functions, and write

d 'd d 'd
Tf;= g f ", "

d x'd y'd xd yitik', '(x')
(2n ) (2m) (2m ) (2m )

Xq'J M (yi, . . . , y.', . . . , y~}}'(0}r'(n}e " e '"
(PoP.

'
ltlPOP. &

Xe e "
Qk, (x)qIg M (y.i, . ,y„,yg) (3)

We make the impulse approximation and assume that the (off-shell) NN interaction, t, is given by the form of the free
(on-shell) NN amplitude, t . In analogy with Eq. (l), we can write the elementary free NN amplitude as

f Pk' ' 4k' '' Y l NN4i ifk2 2

dp)dp2d p)d p2 4 ~ 4 4
4d xi d x2 d xi d x2gk, , (x'i )

(2m. ) (2') (2') (2m. )

~ I I ~ I I

X'P„, «2}7'(l}r'(2}e ' 'e ' '&pip2 ltNN lpip2. &e
' 'e ' 'ek, s, «l}ek,s,(x2} ~ (4)

The nucleon spinors now satisfy the free Dirac equation, i.e.,

gk, (x)=e '" "u(k, s),

(k )
E+m

2pl

1/2

+S
O. .k

E+m

where X, is the Pauli spinor for spin projection s. The integrations indicated in Eq. (4) can now be performed trivially
giving

tg~i
——u(k'i, s i )u(kp, sp )tNNu(ki, si)u(k2, s2)

—8&lp NN
u( k»s' )iu(k2, s2)FNNu(k»si)u(kz, s2),

EzN

(6a)

(6b)

where FNN are the familiar set of relativistic invariants used to describe the NN amplitudes and where pNN and ENN
are the nucleon momentum and total energy, respectively, in the NN center-of-momentum frame. In the present context,
the impulse approximation consists specifically of making the following "operator" identification for the nucleon-
nucleon interaction t in Eqs. (1) and (3):

—8''lp NN
FNN ~

ENN
(7)

where the caret on FNN now indicates that it is an operator in the space of four-component spinors of two nucleons.
Note that this implies a specific off-shell extrapolation ' since off-shell ( and negative energy) spinors are impII&I'tly
present in the Fourier transforms of Eq. (3}. In contrast, those of Eq. (4) which define tNN contain contributions from
on-shell, positive-energy spinors only.

We now exploit the harmonic time dependence of solutions of fixed energy Dirac equations to perform the indicated
time and energy integrations. Then, explicitly imposing conservation of three-momentum, we have
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PNN—8@i ~ d d
, d 'd „'d d

ENN „) (2m') (2m') (2m )

t( —) - ~ t - - - '~ &o—q] "' '~p+q] &.'X1(-, ,( x')4 J~ (y~, . . . , y „, . . . , y„)e e " "FNN(po u' po p. )

Xe e ((' (x)+J,M;(Yl yn ' ' ' yA } (8)

where po —[p(p ), po], p„=[po(n ), p ] po: [E (p ), p o], p„' = [E'(n ), p „' ], with F (E') being the total energy of the in-
dicated particle in the initial (final) state.

We know that FN& must be a function only of the relativistic kinematic invariants

s =(k, +kz)'=(k', +k2 }'

and

t=(k) —k', ) =(k2 —k2)

In order to simplify Eq. (8), we assume that the explicit dependence of FNN on s can be ignored and take FNN at a fixed
value, s0, evaluated from the asymptotic four-momentum in some appropriate frame such as the nucleon-nucleus
center-of-momentum frame or the Breit frame. We also make the approximation that t =—q q, where q is the local
three-momentum transfer in our chosen reference frame. These assumptions result in a local form for FNN and we per-
form several of the remaining integrations in Eq. (8), obtaining

—8mi NN
Tfi = g I d x dy. 4-', ,

'( x)+I M (y i. . y~ }r'(o}r'(n )FNN(so
I

x —y I

)4'-+'( x) PJM( y 1
. . . y4 )

n=1

(9)

where

2
FNN(so~

~

x —y ~
}=, dq e ' ' ' " " FNN(so, q )

(2m }

This is the specific form of transition amplitude which we employ throughout the remainder of the present work.

III. EVALUATION OF
THE TRANSITION AMPLITUDE

components of the relativistic wave functions. We can
write

In order to make progress in evaluating the amplitude
of Eq. (9), it is useful to examine the specific structure of
F&N. As already stated, this object has a well known-'

(but not unique ') structure, namely,

FNN Fs+r(1) r(2)Fv+r ——( 1 )r (2)FP

+r'( l)r'(2)r(1) r(2)F4+o"'(1)o.„„(2)FT

r(1).r(2)= I (1)I (2)—I (1)1 (2)cr(1) o.(2),

r'(l lr'(2)=1 (I II (2),

r'(l)r'(2)r(1} r(2}=I (I)1 (2)

—I 2(1)rp(2} (1) (2),

M (1)o„„(2)=2[I,(1)I,(2)+I (1)I (2)]cr(1) o (2),
where the structure matrices, r„, are defined by

where 5, V, P, A, and T refer to scalar, vector, pseudo-
scalar, axial vector, and antisymmetric tensor, respective-
ly, with complex amplitudes F. We use the Bjorken and
Drell convention for the form of the Dirac matrices.
Note that throughout this work, and in Eq. (10) in partic-
ular, isospin indices are suppressed for clarity. In order to
calculate amplitudes for transitions between discrete nu-
clear levels, it is convenient' to rewrite the expression in
Eq. (10) in a form which explicitly shows the spin depen-
dence and the implied combinations of upper and lower

1 0 1 0
ri =1=

p 1
r2=r'=

p

(12)

5r, =y = 0 1

1 0 r4 0 5
0 1

—1 0

It should be noted that these I matrices have no other
content than the specification of the particular combina-
tions of upper and lower components. The interactions of
Eq. (10) then take the compact form
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4

(1)Y (2)FNN(
l

x —y l
)= & [f"(

I
x —y I

)+g"(
I

x —y I

)o'(1) o(2)]I „(1)I„(2),
v=1

(13)

where we have defined

f'=Fv f =Fs f =F~ f =Fp

g'= —Fg, g =2FT, g = —FV, g =2FT .
(14)

Note that, apart from the I" 's, the form of the interac-
tion in Eq. (13) is much simpler than for the correspond-
ing "nonrelativistic" (e.g. , Wolfenstein ) form of the NN
interaction. Specifically, it is entirely local and contains
only "central" and "spin-spin" pieces. The additional
complexity of the amplitude (such as nonlocalities and

spin-orbit or tensor terms) is contained implicitly in the
I „matrices.

From Eqs. (13) and (14) we observe that, for the spin-
independent terms, the scalar and vector amplitudes in-
volve only upper-upper and lower-lower coupling while
the pseudoscalar and axial vector amplitudes involve only
upper-lower combinations. For the spin-dependent terms,
the roles of vector and axial vector amplitudes are re-
versed while the antisymmetric tensor amplitude contri-
butes to both types of coupling.

To proceed further in the calculation we perform a
multipole expansion of the invariant interaction operator:

4

) "(0)Y (n)FNN(
l

x —y„ l

)= g g ( —1) + +
hL s(x,y)[YLos(0)]JM[Y&(y"„)os(n)]J~I „(0)r„(n),

v=1 LSJM
(15)

where

h j.,s =fL for S=0,

=gL for S=1,
and where oo ——1. This technique enables us to factorize the calculation into target and projectile parts which will now
be treated in turn.

A. Target space evaluation

We expand the operators in the target space using second quantization and replace the operator

hL, s(x y )[Yj.(y" )os(n )]ivr (n )

n=1

with the equivalent operator

(hajj j(jj) l
hLs(x 3 )[YL(y)os]j~r

l Qj, , &~jj j&j,
jfmf j,m,.

1/2

1) (&,,llhL's(x, 3')[Yi(J )os]ir„Ill, &[&j,oj, ]JM,
j;jj

ai =( —1)j a (17)

where the "bra" is defined by (1(i
l

=gt=1(yo. Here, a
and aj are the single nucleon creation and annihilation
operators, respectively, in the target space and the Pj are
single particle orbitals to which the creation and annihila-
tion operators refer. For our purposes they are four-
component eigenfunctions of a Dirac equation like Eq.
(2a). The hole creation operator is related to the particle
annihilation operator by

Since [aj oj. ]JM is now the only operator active in theJf Jg

target space, we can take matrix elements between the ini-
tial and final nuclear states obtaining

( +JjMj l [ojj+j;]JM I +JM; & (J Jul™
I 'jfMf )~j(jjj t

(18)
in terms of conventional nuclear structure amplitudes

The reduced matrix elements follow the convention
of Brink and Satchler.

We are now able to write the transition form factor (an
operator in the projectile space) as

JfMj I Y FNN'" I ~(W &
= g GLsJv(x)(Ji~W™I JfMj)f Yj.(x)os]JMr" '

vLSJ
(19)



1608 J. R. SHEPARD, E. ROST, AND J. PIEKAREWICZ 30

where
' 1/2

GLSJv(x )
JfJ,. J+L+S jf+

2J+ 1

JfJ,.'+J~ Jjj, ~ & t J,(» I I

h 1 s (x y )[ YL (y )o s ]J 1, I I
tI', ,

( y ) & (20)

The angular momentum selection rules are determined by the reduced matrix element in Eq. (20) which is

&z/iz II
. .

IIlIJ. &=[2(2L+1)(2S+1)(2J+1)(2A.;+1)(2j;+1)]'~-'

X(4vr) ' (L A,; 00
I Af 0) —, Af jf X radial integral.

S L J
The single particle bound state wave functions are written as' '

(21)

Agm(y ) =
u~, (y)&i, (y")

(22)

where I' is the "other" I giving the same j and uIJ and wIJ are real. The A. values appearing in Eq. (21) are either I or I'
as determined by the component combinations implied by I . The specific selection rules are fixed by the parity
Clebsch-Gordan coefficient and the 9-j symbol in Eq. (21).

In order to make Eq. (20) more explicit, we consider the specific case of a 0 initial target state. Then, for a final state
with spin-parity J, we have

' I/2

(x)= g( —1)
2j +l

LSJv X 2J+1 "+Jlj j; )HLSJ(x )
, JO v

where

HLsJ(x) = y dy(uJhr. su;BI i +wfhl. .sw;B, , ),2 1 LSJ 1 LSJ
0 l f I lf lg

HLsJ(x) = y dy(ufhLsu Bt I. wfhL—sw B2
"

2 2 LSJ 2 LSJ
0 lf lj

Hlsj(x)=i y dy(u~hLsw;B&, wfhLsu;B&—, I ),3 ~
"

2 3 LSJ 3 LSJ
0 lf1; f i

Hlsj(x) =i y dy(ufhLswiBI +wfhLsurBI
4 ~ 2 4 LSJ 4 LSJ

0 lfl;

and where

& [~f 2 ]jf I I[YL~s]JIIP( 2 ]1',. & .

We complete the evaluation of the full transition amplitude by combining Eqs. (19) and (9), obtaining, in general,

—8' NN g (J; JM~M
I JfMf) f dx Q-„', ,'(x)GLsJ'„(x)[YL(x) s]JMl „g'-„+'(x) .

ENN LSJv

(23)

(24)

(25)

The remaining integration may be evaluated by two methods, one involving a partial-wave expansion of the distorted
wave and the other a simpler eikonal semianalytical treatment.

B. Projectile space evaluation: partial waves

In partial wave expansion, the distorted waves can be written as'

q(+ )( )ks

1/2
E+m

2m

' 1/2 gJ (x )3't J,(x )

g i 'e ' '+2L, +1(L, —, Os
I
J s)

i J (x)3', (x)
a a a as

(26)

1/2
, g( ), , 4m E'+m

k's' k~ 2m

ISC

i e "(Lb —, Ms s'
I
Jb s'+M~)

JbLbMb

X[gJ,(x)PL,J,, +~ (x), Ifj (x)3' . , (x—)]Yg,M, (k ), (27)
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where 5 are Coulomb phase shifts and gJ(x) and fz(x } are the upper and lower component radial solutions to the Dirac
equation which are specified in detail in Ref. 18.

Substitution of Eqs. (26} and (27) into Eq. (25) allows us to evaluate the angular and radial integrals and to obtain,
after some manipulation, for a definite J transfer,

where

S~~p NN 4'
NN Lb

i '
( —1) + [2(2J+1)(2L+1)(2S+1)(2L,+1)(2Jb+1)(2lb+1)]'~

LSJ L Jbv

(28)

~b T Jb

X(kb L00l A,, 0)(Jb Js —MM
l
Jas) L S

J,

X(L, —,
' Os

l
J, s)(Ls —, s s' M—s'

l
J—b s M)IJ ~

—J,gb (29)

and 8 is the scattering angle. In Eq. (29), A=L (L') .for an upper (lower) component and the radial integrals are

LSJv L J ~bJb
i(s~ +ac

v Jf vI~ ~ J x„——e ' ' f dx hJ ~ (x)GLsg (x)hJ ~ (x), (30)

where h J~(x ) denotes gz~(x ) or +ifq~(x ) according to how the upper-lower component combinations are specified by the
index v. The +i factor for fj~ is used for initial projectile states with i used for fin—al projectile states as required by
the Hermitian conjugation operation in Eq. (25).

C. Projectile space evaluation: Eikonal approximation

An alternative approach for calculating the relativistic distorted waves which is suitable at medium energies uses the
Dirac eikonal approximation. ' In this framework the distorted waves have a simple analytic form given by

tP'='(x)= E+m
2m

' 1/2

1

E+m+ Vs —Vv
0''p

ik ~ x iS' —'(x)~
JL g (31)

where Vs and Vv are the Dirac scalar and vector potentials and where the eikonal phase S( x) is written in terms of the
effective central and spin-orbit distortions [functions of Vs and V~, see Ref. (19)] as

S' +—'(x)= ——f dz'[ Vc(b,z')+ Vso(b, z')[o"(b X k) ikz']
I .—

T- a)
(32)

and x =(b,z). Note that S( x ) is still an operator in spin space.
The transition amplitude is evaluated by substituting Eq. (31) into Eq. (25) to obtain

ENN 2m LSJ
T

e e ' " 1,f —i k f x iSt( —)(~x) 0 'p JfJ,.
GLSJv(x }E+m+ Vs —Vv

X[&L,(x) s]J~l „ 1
cT '

pE+m+ Vs —Vv

i k, ~ x iS(+),~,
e e (xj. (33)

Working to leading order in the eikonal expansion, we can evaluate the above expression as
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8~WNN E+m+ Vs —Vv
Ty;= g (J;JM~MIJJMI) f dxe'q

ENN LSJ& 2m

o'k
x U'(4) 1, E+m+ Vs —Vv

J~J.
)«LsJ.( )[I'L(") s]J~I'.

1
U(4),

0 k;E+I + Vs —V,,

(34)

where U( 4 ) =e ' '/ ' '
is a spin rotation operator by

an angle

2mb Vs& b,z' dz' b Xk

and the phase X(b) is given by

X(b)= ——I dz'[Vc+ Vsoo" (b Xk)] . (35)

We note that the presence of distortion will favor small
values of z in which case the rotation angle takes the sim-

pie form 4== —Xso( b )k X b and Xso( b ) involves only
the spin-orbit (SO) part of Eq. (35).

IV. DISCUSSION

The general structure of the various terms comprising
the full transition amplitude, T~, is indicated schemati-
cally along with the related selection rules in Table I.
Note that in the table, the operations implied by the I „
matrices in Eq. (20) and (25) (i.e., the connection of upper
and lower components in various combinations) have been
explicitly carried out.

The origin and meaning of the selection rules are most
easily understood by consideration of specific examples.
Let us consider idealized transitions in ' C. We assume
the 0+ ground state to consist of a closed p3/2 shell and
all transitions to consist of the promotion of a p3/2 nu-
cleon to the p&/2 shell. Thus we have

I0s+.g. &= Io& I J+&=[pt/2P3/2]J Io&

Consider the excitation of a natural parity 2+ level via the
scalar interaction, which clearly involves

r

1 0

L

in Eqs. (20) (for target) and Eq. (25) (for projectile). In
this case, only upper-to-upper and lower-to-lower com-
ponent combinations are possible and no explicit spin-spin
operators are present. These facts are reflected by the
form of the amplitudes containing the scalar interaction
in Table I. The selection rules come from the angular
momentum and parity restrictions associated with the nu-
clear matrix elements of Eq. (20). In the present case, we

TABLE I. Relativistic (p, p ) amplitudes and selection rules.
Interactions: S (scalar), V (vector), P (pseudoscalar), A (axial
vector), and T (antisymmetric tensor). Spinors:

V ) =
I

t )projectile &&
I J ) target r

I
1)~ upper component,

I
2) ~ lower component .

Amplitudes

(11 I(V+S) f11)
(12

I
( V—S)

I
12)

(21
I
(V—S)

I
21)

(22
I

( V+S)
I
22)

(11
I
(A+P)

I
22)

(12
I
(A —P)

I
21)

(21
I
(A —P)

I
12)

(22
I
(A+P)

I
11)

(11
I
(2T —A )cr cr,

I
11)

(12
f

( 2T rt )crp o,
f

12)— —
(21

I
( 2T A)op cr,

I
21). — —

(22
I
(2T —A )op crt

I
22)

(11
f

(2T —V)op. o,
f
22)

(12
f

( 2T V)crp o,
f
21)— —

(21
f

( —2T—V)op cr,
I

12)
(22

I
(2T V)op o,

I
11)—

Natural
parity

L=J
L=J
L=J
L=J

forbidden
forbidden
forbidden
forbidden

L=J
L=J
L=J
L=J

L =J+1
L =J+1
L =J+1
L=J+1

Unnatural
parity

forbidden
forbidden
forbidden
forbidden

L=J
L=J
L=J
L=J

L=J+1
L=J+1
L =J+1
L =J+1
L=J
L=J
L=J
L=J

can only connect upper-to-upper and lower-to-lower corn-
ponents of p3/2 and pt/2 wave functions. The upper-to-
upper connection is identical to that encountered in the
normal nonrelativistic treatment where the parity
Clebsch-Gordan coefficients [Eq. (21)] ensure that only
even L transfers (L =2 in this case) contribute. In exam-
ining the lower-to-lower combination, however, we must
recall that the lower component of the bound nucleon
wave function [Eq. (22)] has the same j as but opposite
parity from the upper component. We therefore observe
that the lower component of the p3/2 wave function looks
like a d3/2 wave function while the lower component of
the pt/2 wave function looks like an s»2 wave function.
Consequently, in the lower-to-1ower amplitude, only an
L =2 transfer is allowed, as before. Quite generally, the
selection rules for all component combinations associated
with a given operator [Eq. (20)]
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[ YL(y }os]JMI „ (36)

ENNPNA
fNA = fNN =DNA

P NN 4~P NN

where pNN is the projectile momentum in the nucleon-
nucleus frame. We can then write the nucleon-nucleus
frame NN elastic cross section as

are identical.
We now consider our unnatural parity example, the l+

excitation. For amplitudes involving the scalar interac-
tion, the preceding discussion showed that only even-L
transfers are possible. Since no spin operator is present,
we have L =J and such an unnatural parity transition is
forbidden as indicated in Table I. However, for ampli-
tudes involving the pseudoscalar interaction, the operator
r, is present in Eqs. (20) and (25) and upper-lower and
lower-upper combinations are implied. We therefore con-
nect p3/2 to s]/2 and d3/2 to p~/2 with the spin-angle
function [YL os]Jilt. The parity Clebsch-Gordan coeffi-
cient then requires odd-L transfers (L =1 in this case} im-

plying that this transition is allowed. Note that there is
no overall parity change in the transition because upper
and lower components themselves have opposite parity
and are connected by an odd-L transfer. All of the selec-
tion rules in Table I follow from similar considerations.

The transition amplitude Tf; forms a matrix in the spin
spaces of the projectile and target and all observables are
constructed from it by taking the usual traces. The
overall normalization of the cross section is straightfor-
wardly determined by kinematical considerations. Wal-
lace, for example, defines an invariant nucleon-nucleon
amplitude as (2ip) 'f~~. Then the elastic NN amplitude
in the nucleon-nucleus center-of-momentum frame is
given by

'2
PNA+NN

2P NN N2
~ g lfx~ l'=

~4 2m.

spins

We then have, for nucleon-nucleus

2 lt~xl
all

spins

inelastic scattering,

do
d& (P~P }

I wa

'2
I

ri(Et, M) y l Tf;
' l, (37)

2 2J;+1) 2rr

where

)
INA NN

2P NN01

'2
[(Et +m )/(2m )]

(38)
1+2EL /M+(m/M)
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In Eq. (38), EL is the total energy of the projectile in the
laboratory frame and I and M are the projectile and tar-
get rest masses, respectively. This normalization is con-
sistent with that implied by Eq. (I.25) of the original Ker-
man, McManus, and Thaler (KMT) paper.

The primary difference between our work and standard
nonrelativistic treatments is that several nonlocalities are
included via the lower component wave functions which
have no direct counterparts in the nonrelativistic theories.
In the latter approaches, these kinds of nonlocalities enter
in practice only through the explicit treatment of the
knock-on exchange process. Detailed comparison of the
present formulation with nonrelativistic treatments and
with experimental data will be made in future publica-
tions. Preliminary comparisons with data are highly en-
couraging.
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