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A variety of nuclear structure and proton-nucleus dynamical effects are shown to significantly in-
fluence the behavior of the large angle 800 MeV p+' 'Pb elastic angular distribution. While cou-
pled channels effects are found to be important, they are significantly smaller than recently suggest-
ed.

Recently Amado and Sparrow (AS) (Ref. 1) stated that
the large momentum transfer (q(5.3 fm ') 800 MeV
proton + Pb elastic differential cross section data can
be reasonably explained by accounting for multistep pro-
cesses which proceed through the strong, low-lying nu-

clear collective states, such as the 2.61 MeV 3 . Previous
theoretical calculations which used nonrelativistic optical
models or multiple scattering approaches did not ac-
count for the details of the large angle data. The AS cal-
culations consisted of approximate solutions of the eikon-
al equations for the proton-nucleus (pA) scattering am-

plitude. Simple optical potential geometries were used,
and spin dependence was neglected.

In this paper we make the following observations: (1)
accurate numerical evaluation of the coupled-channels
Schrodinger equations with phenornenological optical po-
tentials yields multistep contributions which are similar in
trend but considerably smaller in magnitude than the re-
sults shown in Fig. I of Ref. 1; (2) improved descriptions
of the large angle data relative to those obtained from
nonrelativistic, spin-dependent, Woods-Saxon optical
models are obtained when more realistic densities and ef-
fective interaction forms are employed and also when rel-
ativistic effects are included; and (3) other contributions,
such as correlations and off-shell behavior, are also signi-
ficant at large momentum transfer. A proper description
of high momentum transfer data will therefore demand an
exhaustive treatment of many important effects.

To begin with let us consider the influence of inter-
mediate scattering states involving the strong, low-lying
collective levels of the target nucleus. Within the context
of nonrelativistic multiple scattering theory it is well
known that the contributions of intermediate nuclear exci-
tations to proton-nucleus elastic scattering are formally
included in the definitions of the optical potentials given
by Kerman, McManus, and Thaler (KMT) (Ref. 5) or
Watson. For instance, in the Watson approach, the pA
elastic scattering t matrix is obtained from the integral
equation

and G =(E ho Hz—+i e—) '. In these equations it is as-
sumed that all projectile-target nucleon interactions U are
the same; E is the p A energy; ho is the p 3 kinetic energy
operator, ' Hz is the nuclear Hamiltonian; P is the elastic
channel projection operator, given by

~
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where
~ 4s, ) denotes the antisymmetric nuclear ground

state; and Q=A Pa—nd A=+
~
&0;)(tp; ~, where the

~
4; ) represent all antisymmetric (physical) target nucleus

states. Intermediate nuclear excitations appear in both the
effective interaction operator z, and in the second and
higher order terms of the optical potential.

In actual calculations ~ is replaced by either the free
proton-nucleon (pN) t matrix or by a density dependent
effective interaction which includes effects due to Pauli
blocking in an infinite nuclear medium. This procedure
thus replaces the nuclear spectrum

~
4;) with that of the

free two-body system or with a single particle infinite nu-
clear rnatter spectrum. The second order correlation
terms as included in numerical calculations mainly ac-
count for target particle identity, short-range nuclear
repulsion, center-of-mass constraints, and intrinsic defor-
mation effects. ' Thus an explicit accounting of strong
vibrational nuclear collectivity has been omitted in most
multiple scattering calculations. One exception is the
work of Chaumeaux, Layly, and Schaeffer, in which long
range correlation terms are considered in order to account
for nuclear vibrational collectivity. In their work, and in
other second order multiple scat tering calculations, a
number of simplifying assumptions are made for numeri-
cal convenience which invalidate the calculation of corre-
lation effects at high momentum transfer. Thus, to ac-
count for nuclear collectivity, it is best to retain the origi-
nal coupled-channels structure of the pA Hamiltonian
and absorb only the noncollective channels into the defini-
tion of the optical potential.

Reexpressing the target nucleus projection operator A
as (P+Q, +Q'), where

PTP =—Too ——Uop, + Uopt GPTOO,

where
i =collective

/4, )(tp,
/

U,p, APrP+A (A —1)P——rGQrP+

r=V+VGQT,

(2)

(3)

projects out the dominant collective vibrational states, and
Q' =Q —Q„ the p A scattering operator with explicit
channel coupling, can be expressed as
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and

T= U+ UG(P+Q, )T,
U =A7+ A (A —1)rGQ' r+

(4)

(5)

r=v +vGQ'r, (6)

Too = Uoo+ Uoo GPToo+ Uo GQ T o

T~o = Uco+ Ue oGPToo+ Uce GQe Tao ~

(7a)

(7b)

where U and 7. represent the optical potential and effec-
tive interaction in the explicit coupled-channels represen-
tation. The coupled operator equations for pA elastic and
collective inelastic channels, corresponding to Eq. (4), are
given by
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where Tpp=PTP T&p=Q TP Upp=—PUP U p=Q UP,
etc.

It should be emphasized that the pA elastic scattering t
matrix in Eq. (7) is equivalent to that in Eq. (1). Differ-
ences arise, however, when numerical approximations are
made. As already discussed, in practical calculations ex-
plicit treatment of nuclear collectivity is lost when
evaluating Tpp via Eqs. (1)—(3); it can be retained by way
of Eqs. (5)—(7). Notice that the elastic channel diagonal
projection of U differs from U,&, of Eq. (2) by the omis-
sion of the intermediate nuclear collective channels which
are explicitly contained in the coupled equations. Thus in
a rigorous microscopic calculation which includes explicit
channel coupling, the elastic channel optical potential is

Uoo, not U,z, . In the present work such differences will
be absorbed in the optical model phenomenology.

To investigate the effect of explicit channel coupling to
nuclear vibrational collective states, several calculations
were performed in which phenomenological models for U
were assumed. To begin we used a standard twelve-
parameter Woods-Saxon optical potential model to fit the
forward angle ((22' c.m. ) p+ Pb angular distribution
data; the following optical potential parameters were ob-

~so ~so I" a ~ a Iso and aso.13

are —4.63, 53.9, 0.51, and 0.95 MeV, and 1.075, 0.753,
1.123, 0.615, 1.111, and 0.671 fm, respectively. The fit
(solid curve in Fig. 1) to the forward angle data (as well as
the elastic analyzing power data') is good. Next, a
coupled-channels calculation was done in which the 0+
ground state, and the 2.61 MeV 3 and 4. 1 MeV 2+ states
were coupled using the Woods-Saxon optical potential for
the diagonal terms and derivative forms for the coupling
potentials. ' Channel coupling via the spin-orbit force
was omitted. The coupling strengths for the 3 and 2+
excitations were artificially increased to mock up further
collective state coupling as in Ref. 1. Based on the
analysis of Gazzaly et al. ' of 800 MeV p+ Pb collec-
tive excitations we set

J~=3 2+

and let 6 =6 +, the macroscopic deformation lengths,

6, are defined in Refs. 1 and 15. The 2.61 MeV 3 de-

formation length obtained in Ref. 15 is denoted by 6*,

The calculations were performed using the coupled chan-
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FIG. 1. Angular distributions for 800 MeV p+ 'Pb elastic
scattering. Data are from Ref. 2. The Woods-Saxon optical
model result (no coupling) is indicated by the solid curve, the
coupled channels calculation by the dashed line, the KMT result
(no coupling) by the dash-dot curve, and the RIA result by the
dotted line. In all cases the fits to the forward angle data were

optimized.

nels code JUPITER, modified to include relativistic
kinematics and an extended number of partial waves and
mesh points needed for accuracy. The elastic channel di-
agonal potential assumed is the same as already given, ex-
cept that (r„,a ) were slightly adjusted to (1.136,0.598)
fm in order to recover the fit to the forward angle data.

The results, indicated by the dashed curve in Fig. 1,
demonstrate that the net effect, at large angles, of explicit
coupling to nuclear collective levels is to reduce in magni-
tude and shift to slightly larger angles the maxima and
minima of the predicted differential cross section. As
found by AS, the coupled channels effects begin to be ap-
parent at angles for which the elastic and collective inelas-
tic cross sections are comparable in magnitude. The
separate effects of coupling to the 2+ and 3 are merely
additive in their impact on the large angle elastic cross
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section so that constructive rather than destructive in-
terference between the two multistep processes occurs.
Furthermore, very little j-transfer dependence is noted in
the multistep contributions to the elastic channel.

Although the trends of these channel coupling effects
are in agreement with AS, important differences exist.
For example, the calculations reported here indicate cross
section reductions varying from 10% at 27' to 30% at 37',
whereas AS report reductions varying from 50% to 80%
at these same angles. We therefore disagree with AS, who
find that coupling to nuclear collective states is almost
sufficient to resolve the discrepancies between simple opti-
cal model calculations and the large angle data.

First order microscopic optical model calculations were
also done using the KMT potential generated from realis-
tic densities and pN effective interactions, but with no ex-
plicit channel coupling. The first order, spin dependent
KMT optical potential (see Ref. 8) was obtained using the
proton densities determined from analysis of electron
scattering measurements, ' the Pb neutron density
predicted by Decharge and Gogny, ' and the pN scatter-
ing amplitudes of Amdt et al. ' The optimally factorized
local optical potential prescription of Ref. 20 utilizing
Breit frame kinematics was employed. Nucleon-nucleon
(NN) phase shifts from 800 to 1000 MeV were used in
calculating the optical potential form factor out to the
large momentum transfers required (6 fm '). The for-
ward angle data were fit by adjusting the surface
geometry of the neutron density. The assumed neutron
distribution was taken as

p„(r) =p„,„„(r)+WS(r)—WS»D(«), (8)

Pscalar( ) =Pvector( ) + [Pscalar( ) Pvector( «)]Serot ~ (9)

where the densities in the square brackets are the theoreti-
cal Dirac-Hartree densities. The relativistic invariant
pN amplitudes were obtained as discussed in Refs. 20 and
21 to 6 fm ' using the same Amdt phase shifts that were
used for the KMT calculation. Solution of the Dirac
equation with complex scalar and timelike vector com-
ponent optical potentials (tensor contributions are negligi-

where p„,h„(r) is the theoretical neutron density distribu-
tion of Decharge and Gogny, ' WS(r) is a Woods-Saxon
function normalized to 126 neutrons whose radius and
diffuseness were varied in the fitting process, and
WSsTD(r) is a fixed Woods-Saxon form also normalized to
126 neutrons with radius and diffuseness chosen to repro-
duce the surface region of p„,h„(r). The resulting fit to
the forward angle data and subsequent large angle predic-
tions are shown by the dash-dot curve in Fig. 1. Consid-
erable improvement over the Woods-Saxon optical model
result is obtained simply by using more realistic optical
potential geometries.

Next, a relativistic impulse approximation (RIA)-Dirac
equation calculation ' ' was done. No explicit channel
coupling was included. The proton and neutron vector
densities ' were set equal to those used in the nonrelativis-
tic KMT calculation. The scalar densities were obtained
from the Dirac-Hartree model of Serot according to the
prescription '

ble; see Ref. 23) yields the elastic scattering observables;
the differential cross section is shown in Fig. 1 by the dot-
ted curve. The neutron vector density was varied accord-
ing to Eq. (8) to fit the forward angle (&25 c.m. ) dif-
ferential cross section data. The neutron scalar density
was recomputed at each step of the search procedure ac-
cording to Eq. (9).

The principal differences in physical content between
the relativistic and nonrelativistic calculations are (1) in-
clusion of intermediate negative energy states of the pro-
jectile (i.e., virtual pair processes), and (2) relativistic nu-
clear structure effects (i.e., lower components for target
wave functions) represented by the scalar-vector density
difference. A relativistic impulse calculation was also
made with

Pscalar( ) Pvector( «)

separately for protons and neutrons, in which the forward
angle data were fit by varying the neutron vector density
as in Eq. (8). From this it is observed that including the
virtual pair processes brings about the shift (compared to
the KMT result) in the angular distribution to larger an-

gles, while permitting lower components in the target
wave functions suppresses the magnitude of the back an-

gle cross section prediction.
Many other effects are likely to be important at high

momentum transfer, but as yet, reliable calculations
remain to be made. The effects of fully folding the first
order optical potential and off-shell NN t-matrix contri-
butions have been considered for pA scattering at lower
energies. " Calculations indicate that these effects might
be fairly large at high momentum transfer. Medium ef-
fects in the pN effective interaction have only been realis-
tically calculated at energies below pion production
threshold. Preliminary results indicate a diminution in
Pauli blocking effects above 500 MeV, but complete cal-
culations remain to be made. Nonrelativistic second order
optical potential contributions (i.e., those due to correla-
tions) have been estimated, ' but none of these are reli-
able at large momentum transfer. Most calculations that
include correlations show an enhancement of the large an-

gle differential cross sections. This can be seen by com-
paring the first order KMT (dash-dot curve) result in Fig.
1 with the second order KMT calculation shown in Fig. 5
of Ref. 3. Correlation effects computed by Varma and
co-workers' for this case indicate both an enhancement
and angle shift.

In conclusion, it has been shown that coupled channels
effects for 800 MeV p+ Pb, due to intermediate excita-
tion and deexcitation of strong nuclear collective states
(via phenomenological Woods-Saxon potentials), become
noticeable at angles where the magnitudes of the elastic
and inelastic cross sections are comparable, in agreement
with AS. The effect on the elastic differential cross sec-
tion at high momentum transfer is to reduce in magnitude
and shift to larger angles the angular distribution, al-
though by an amount much less than reported by AS.
More realistic optical potentials (of the KMT variety) and
relativistic effects (RIA-Dirac calculations) also produce
considerable improvement in the description of the large
angle data compared to that of nonrelativistic Woods-
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Saxon optical models. Coupled-channels relativistic cal-
culations have not been carried out, but will be considered
in future analyses of these data. The results in Fig. 1 sug-
gest that such calculations might be quite successful. We
caution, however, that other theoretical corrections (e.g.,
correlations, full folding, off-shell dependences, medium
modifications, etc.i will undoubtedly play a significant

role at the large momentum transfers under consideration,
so that a satisfactory theoretical understanding of large
angle pA phenomena must await further theoretical and
numerical work.
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