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Elastic and inelastic electron-scattering cross sections of an Os-Pt transition region nucleus, ' Os,
have been measured in a momentum transfer range from 0.6 to 2.9 fm '. The data for the ground
and the J =2+, 2+', 4+, and 3 states were analyzed model independently with a Fourier-Bessel
parametrization of the ground state and transition charge densities. The normalization of the (e,e )

cross sections was obtained from a combined analysis with muonic-atom data for the ground and
first 2+ states. The densities and their radial moments are compared with theoretical predictions of
the Davydov model and with axially symmetric deformed density-matrix-expansion Hartree-Fock
calculations (including the Legendre expansion and the small-amplitude vibration model extensions).

I. INTRODUCTION

The osmium and platinum nuclei, lying in a region
where the nuclear shape changes from prolate to oblate,
provide a crucial testing ground for nuclear structure
models that attempt to describe collective degrees of free-
dom. This shape transition, which is manifest experimen-
tally by, for example, a change in sign of the quadrupole
moment of the first 2+ state, was predicted more than a
decade ago by the pairing-plus-quadrupole (PPQ) model
of Kumar and Baranger. ' Over the years, the shape transi-
tion and the prospect of y instability in the transitional
nuclei have motivated much experimental and theoretical
work. Of particular current interest are the boson cal-
culational methods: the interacting boson approximation
(IBA) of Aritna and Iachello and the boson expansion
theory (BET) of Kishimoto and Tamura, which are quite
successful at describing energy spectra and y-ray branch-
ing ratios in the osmium and platinum nuclei.

The Hartree-Fock method is a well-established tech-
nique for describing ground states of nuclei, but its appli-
cation to the transitional nuclei has not so far been
thoroughly explored. For example, recently developed
Hartree-Fock codes, ' based on the density matrix ex-
pansion (DME) effective Hamiltonian, have been shown

!

to accurately describe the charge radii of well-deformed
nuclei. However, the extension of these calculations to
transitional nuclei has not yet been attempted.

Experimentally, transition nuclei have been explored
primarily in terms of integral quantities such as transition
rates, electric and magnetic moments, reaction cross sec-
tions, and energy level spectra. Geometric information,
such as the shape or radial behavior of the nuclear densi-

ty, is blurred or entirely missing in these observables.
However, advances in the technology of high-resolution
electron scattering now make it possible to determine, ac-
curately and model independently, the spatial distribution
of electromagnetic densities in heavy deformed and transi-
tional nuclei.

The present work, together with our Letter (Ref. 11), is
the first report of an electron-scattering experiment on a
nucleus in the osmium-platinum transition region. ' Os
was chosen for this study because it lies at the prolate-
oblate transition that seems to occur between ' Os and

Pt, and may thus most strongly show features charac-
teristic of transitional nuclei.

IE. ELECTRON SCATTERING ANALYSIS

In the plane-wave Born approximation, the electron-
scattering cross section is given by

where o.M, the Mott cross section, is given by

oM ——(Za/2E) cos (0/2)/[g sin (8/2)],
and g, the recoil factor, by

q=[1+(2E/M)sin (8/2)]

(2)

(3)

I

In Eq. (1), Z is the atomic number of the target nucleus, a
is the fine-structure constant, E is the incident electron
energy, 0 is the scattering angle, and M is the mass of the
target nucleus. The momentum transfer q is approximat-
ed by
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q -2Eri'~ ( I —co/Eo)'~ sin(8/2), (4)

where co is the energy to which the nucleus is excited.
Only the longitudinal and the transverse electric form

factors contribute to the excitation of the natural parity
states studied in this work. These form factors are related
to the nuclear one-body transition densities via a Fourier-
Bessel transformation' that yields for the longitudinal
form factor

Ze"
q,g ——q 1+—,+(3/5) «.-') "-' (6)

where (r ) 'r is the rms radius of the nuclear charge dis-
tribution.

In this experiment, all of the analysis was carried out
with the DWBA method.

III. EXPERIMENTAL DETAILS

The experiment was performed at the electron-
scattering facility of the MIT-Bates Accelerator Laborato-
ry. The accelerator and the high-resolution energy-loss
spectrometer system have been described elsewhere. ' '
However, the detector system has been improved recently
and a short description of the modification is in order. As
originally constructed, the detector system consisted of a
single vertical drift chamber (VDC), positioned close to
the focal plane of the spectrometer, and two multiwire
proportional counters (transverse arrays}, located behind
the VDC. The sense wires of the VDC and of the trans-
verse arrays are parallel and perpendicular, respectively,
to the lines of constant momentum on the spectrometer

Fx(q)= p~(rj)x(qr)r dr .c ~ 2

J;
The nuclear current densities J~ ~+ ~

and J~ ~ &
are relat-

ed to the transverse electric form factor via Eq. (6} in Ref.
13. Since the dynamics of collective motion behave like
irrotational and incompressible flow, ' the divergenceless
current J~ ~+& can be neglected. Therefore, the remaining
current term J~ ~ &, which is called the irrotational and

incompressible current, is uniquely tied to the transition
charge density p~(r) through the continuity equation.
Since we discuss only collective states, this method is suit-
able for extracting the transition charge densities.

The description of electron scattering based on the
plane-wave Born approximation does not include the dis-
tortion of the electron waves by the Coulomb field of the
nucleus. In contrast, a description based on the
distorted-wave Born approximation (DWBA}, which
treats the electron-nucleus interaction in lowest order per-
turbation theory, yields electron waves that are solutions
of the Dirac equation in the presence of the spherically
symmetric part of the ground-state charge distribution.
To first order, distortion of the electron waves increases
the momentum transfer that characterizes the scattering
event. The relation between the momentum transfer q, as
calculated from the kinematics of the scattering process,
and the effective momentum transfer q,~f, which charac-
terizes the wavelength of the probe in the vicinity of the
nucleus, is given by

focal plane. Two Cerenkov counters (located behind the
wire chambers) provide an event trigger and a fiducial
starting time for the delay-line readout of the chamber.
This detector system has been modified by adding a
second VDC (located 6 cm behind the first VDC) that
provides a second position measurement for the electron
track and thus allows a much more accurate deterrnina-
tion of the vertical angle of the incoming electron. This
greater accuracy eliminates certain types of spectrum
nonuniformities. ' Information from the second VDC
also improves the system resolution and peak line shape
through more precise aberration corrections.

Two ' Os targets with osmium thicknesses of 8.9 and
22.3 mg/cm were fabricated for use in the experiment.
These targets, enriched to 99.07%%uo, consisted of a centrifu-
gally deposited and sintered osmium layer sandwiched be-
tween two 12.6 rng/cm carbon foils. ' Because the fabri-
cation procedure involved the use of an organic binder
[polyvinyl alcohol, (CHzCHOH)„], the targets contained
an oxygen impurity to the extent of about 0.1 mg/cm .
Impurities in the carbon foils were also detected in the
scattering spectra and consisted of about 0.08 rng/cm

Si and smaller amounts of ' N and S. The target
thicknesses were determined by normalizing the elastic
cross sections with muonic-atom data according to the
procedure discussed in Sec. IV A.

The spectrometer was operated in the dispersed beam
(energy-loss} mode to achieve high resolution and simul-
taneously high beam intensity on the target (in this experi-
ment, up to 30@A). We used incident electron energies of
150, 250, 355, and 364 MeV; at each energy the scattering
angle was varied between 42' and 98' in increments of
5'—8'. This method of changing the rnornentum transfer
was preferable to constantly changing the incident energy
(which requires retuning the dispersion matching magnets
to optimize the spectrometer resolution), since a sliding-
seal target chamber arrangement made it possible to
change the spectrometer angle in less than 30 min. The
scattering angles were chosen at each energy so that in
most cases the impurity peaks were kinematically separat-
ed from the ' Os levels. This procedure provides, at the
different incident energies, data points that overlap in q
space, and thus a check of systematic uncertainties in
scattering angle and incident energy. In total, a momen-
tum transfer region of 0.6(q(2.9 frn ' was covered.
The spectrum resolution, although dominated by the
thickness of our targets (34 and 48 mg/cm, including the
carbon foil), was less than 60 keV even at the highest in-
cident beam energy. This resolution was sufficient to
separate the 2+ and 4+ levels in ' Os, which differ in en-
ergy by 91 keV.

The incident electron energies and the linear and quad-
ratic dispersion parameters of the spectrometer were ob-
tained by measuring the focal plane positions of the elas-
tic and inelastic peaks of Be, ' 0, and Al. The incident
electron energy was computed, with an uncertainty always
less than 0.2%, by comparing the recoil energies of the
lighter isotopes with the well-known excitation energies of
the heavier isotopes.

A total of 28 spectra were taken to determine the angu-
lar distributions of the (e,e') cross sections for the ground
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FIG. 1. Spectrum of scattered electrons with incident energy
355 MeV and scattering angle 45' from ' Os.

and low-lying inelastic states of ' Os. The ratio of the
thicknesses of the two targets was determined from the
ratio of the elastic cross sections measured at the same
scattering angle. Separate normalization runs were also
made at each energy and angle using a standard carbon-
foil target of known thickness. Figure 1 is a typical osmi-
um spectrum, measured at 355 MeV and a scattering an-
gle of 45'. The clear separation of the 2+ and 4+ states
of ' Os is even more pronounced at lower incident ener-
gies.

IV. DATA REDUCTION AND ERROR ANALYSIS

We extracted the elastic and inelastic electron-scattering
cross sections by using the MIT line-shape fitting pro-
gram ALLFIT, in which an asymmetric hyper-Gaussian
shape is folded with the spectral components produced by
Landau straggling, bremsstrahlung, and Schwinger radia-
tion. ' With the exception of the width parameters, the
same line-shape parameters were used for osmium, car-
bon, and the impurity lines. A different width parameter
was fitted for the lighter elements to account for the dif-
ferent kinematic broadening effect caused by the finite
solid angle. In general, the excitation energies of the fit-
ted inelastic levels or the centroids of the impurities (all
elastic) were allowed to vary only when the peaks were
well defined and resolved. Otherwise, they were locked to
the known excitation energies or fixed according to
kinematics relative to the elastic osmium peak. For the
spectra at low momentum transfer, it was sufficient to ad-
just a constant background. In the higher-q range the
spectra contained a background that increased slowly with
increasing excitation energy, and subtraction of a linear
(or mildly quadratic) background was required.

The carbon elastic peak from the carbon foils of our
sandwich target provided a very useful internal cross-
section normalization for each spectrum. Since this nor-
malization was independent of spectrometer solid angle,
chamber dead-time corrections, and charge normalization
of the incoming beam, it was used in preference to the
separate standard carbon foil normalization. The elastic

carbon cross sections used in the normalization were taken
from a recent electron-scattering experiment at Mainz.
This method of extracting relative cross sections relies, of
course, on the constancy of the detector efficiency across
the focal plane, since the carbon peak changes location by
an amount that depends upon the difference in recoil en-
ergies between carbon and osmium at each energy and an-
gle. The variation in focal plane efficiency was checked'
by measuring the elastic peak of Pb at several locations
along the focal plane and was found to be less than 1.5%.
Dead time effects were assumed to be uniform across the
focal plane for peaks with different counting rates. This
assumption has been tested '

by measuring a ' 0 spectrum
twice, once at a low counting rate and once at a high rate.
From each spectrum, the ratio of the cross sections for the
ground and first excited states (1.98 MeV) of oxygen was
extracted. The two agreed within statistical limits
((1%).

The statistical uncertainty of the experimental cross
section of each peak was determined in a conservative
fashion by taking the larger of (a) the square root of the
number of counts assigned to the peak, or (b) the correlat-
ed fitting error calculated by adding in quadrature the
changes in the area generated by increasing each fit pa-
rameter by its estimated uncertainty. The statistical un-
certainties were then multiplied by the square root of 7
per degree of freedom that resulted from the line fitting
procedure, which usually lies between 0.8 and 2. The er-
rors for the osmium cross sections were computed by add-
ing quadratically the uncertainties in the osmium and car-
bon areas.

Investigation of the homogeneity of our osmium target
by means of elastic proton scattering' revealed local tar-
get thickness variations of 7%. Since the dispersed beam
of the Bates accelerator covers a relatively large area
(-0.5 by 2.0 cm) of the target, these inhomogeneities are
largely averaged out. Nevertheless, to include uncertain-
ties due to positional instability of the beam spot on the
target and due to possible minor changes in the local effi-
ciency of the detector system along the focal plane, an ad-
ditional error of 2%%uo was added quadratically to the cross
sections. The elastic and inelastic electron-scattering
cross sections for ' Os are listed in Table I.

Compared with the data discussed in our earlier
Letter" (which concerned only the ground and first excit-
ed states of ' Os), the present data set contains a few ad-
ditional points at low q and additional points at high q
that extend the q range up to 2.9 fm

V. ANALYSIS OF THE CROSS SECTIONS

A. Elastic cross sections

Fourier-Bessel method

Among the various methods for determining the nu-
clear charge distribution from the measured cross sec-
tions, we used the one introduced by Dreher et al. This
method involves expanding the nuclear charge distribu-
tion into a Fourier-Bessel series,
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p(r)=pa„jo(q„r), for r &R

=0, for r &R,

2. Muonic normalization (elastic)

Muonic-atom data provide a precise and model-
independent moment of the monopole charge distribution,
the so-called Barrett moment, ' "defined by

k -a.(r e ")=— p(r)r e ~"4nr dr .
Z

(9)

As pointed out in Ref. 24, the Barret moments are very
useful in normalizing electron-scattering cross sections,
and substantially reduce the errors of the radial moments
in a combined analysis. The largest uncertainty in the
normalization of the osmium cross sections stems from
the target thickness, which was difficult to determine ab-
solutely because of the method used to fabricate the tar-
get. Therefore we performed a combined analysis of the
electron-scattering data with the muonic data of Ref. 25
(see Table II) and adjusted the normalization of the
electron-scattering data. The two sets of data from the
two targets were adjusted to each other by using the ex-
perimentally determined ratio of the thicknesses of the
two targets.

3. Cutoff radius, errors, and ground state results-

where the cutoff radius R is taken to be well outside the
nuclear volume. The values q„R give the nth zero of the
spherical Bessel function, so that jo(q„R ) =0 with
q„=nm/R . O. nly coefficients a„with n &Rq, „/m are
well determined by an experiment that measures the cross
sections up to a momentum transfer q,„. Lack of data
at higher momentum transfer causes the so-called incom-
pleteness error that limits our knowledge of the charge
distribution primarily in the nuclear interior. The incom-
pleteness error was calculated by using an asymptotic esti-
mate of an upper limit for the form factor at q &q
namely,

~
F(q)

~

&c q F~(q), (8)

where F~(q) =exp( —q ( r )„/6) is the proton form factor,
and the proton radius (,r )~ was taken to be 0.86 ftn.
Twelve Fourier-Bessel coefficients were fitted, and the
maximum q„was extended to about 3.5 fm '. The con-
stant c was computed by matching the envelope of F(q)
at the last measured maximum of the form factor.

The Fourier-Bessel method yields the charge distribu-
tion, including its error band, and has the advantage that
the statistical and completeness errors, which contribute
to this band, can be easily distinguished.

TABLE II. Muonic atom parameters (Ref. 25) used in the
combined analysis of the ground state and first excited state
electron scattering data.

A (fm )

(f —m —3)

k

u (fm-')
B (fm")

W (fm-')

Ground state

2.3065

0.1445
21.283(9)'

2+ state

—0.87152 X 10
0.10047 X 10

2.3790
0.1477

0.0731 1(32)

'Statistical error (0.02%) plus contribution from nuclear polari-
zation (0.04%).
Total error with the following contributions (see Ref. 27): sta-

tistical (0.37%), charge model (0.06%), M1 distribution (0.2%),
and nuclear polarization (0.1%). All errors are added in quad-
rature.

to f

M

c 10 '-
0

W

(D
V3

10-5
M
N0

10-7

calculated for an energy of 364 MeV) and the Fourier-
Bessel fit are shown in Fig. 2. The corresponding charge
distribution is shown in Fig. 3, and the rms radius is listed
in Table III.

We conclude from the small X of the fit (see Table III)
and from the excellent agreement between experimental
and fitted data (see Fig. 2) that the data taken at different
energies and angles are consistent and show no energy- or
angle-related systematic errors. In our analysis, oscilla-
tions leading to negative charge densities at large radii
have been suppressed. ' " However, we also performed
fits without this constraint and found no indication of os-
cillations. This fact again implies the absence of signifi-

Some model dependence is introduced by the choice of
the cutoff radius R. Therefore we made fits with various
values of R between 10 and 12 frn and found that 7 did
not significantly improve for R &11 frn. Similarly, ex-
tracted values of the rrns radius and the normalization pa-
rameter for the (e,e') data did not charge significantly for
R & 11 frn, nor did the charge distribution show any sig-
nificant change. Consequently, the cutoff radius was
chosen to be 11 fm. The experimental cross sections (re-

10-9

0 1 2

qett (fm )

FIG. 2. Experimental elastic electron-scattering cross sec-
tions (recalculated for 364 MeV) of ' Os. The cross sections are
compared with the Fourier-Bessel fit and the Hartree-Fock cal-
culation. Errors smaller than the circle diameter are not drawn.
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0.08

0 06 Qumr~
1 9 2g

state

0.001 fm. Quadratic addition of all contributions leads to
the total error listed in Table III. The same considera-
tions (but without the systematic contribution) were used
to determine the total error of the normalization parame-
ter for the (e,e') data, which also can be found in Table
III.

0.04 B. Inelastic cross sections

0 1. Fourier-Bessel method

0.00

WZW E.xperi

.-"-"HF (D

The inelastic data were analyzed following the method
of Heisenberg. ' In this approach, the transition density
p~(r), from the ground state to an excited state, is
described by

r (fm)
p&(r) =g a„q„j'x(q„'r ), for r & R

=0, for r)R, (10)

FIG. 3. Experimental and Hartree-Fock ground state charge
density for ' Os. T»e-error band shown includes statistical and

completeness errors. The normalization of the charge distribu-

tion is given as p(r)r dr =Z/4m.

cant systematic errors in the cross sections, particularly in
the normalization, which can readily cause a negative lobe
in the tail of the charge distribution.

The Fourier-Bessel coefficients and their statistical er-
rors are given in Table IV. The dominant contribution to
the error band of the charge distribution arises from the
statistical uncertainties of the cross sections. Only in the
interior of the nucleus, where the total error is largest,
does the incompleteness error exceed the statistical uncer-
tainty (by about 20%). Increasing the number of
Fourier-Bessel coefficients to 15 enlarged the incomplete-
ness error at r =0 by only a few percent and did not have
any significant effect on the shape of the charge density
or the 7 value. Therefore, 12 coefficients were con-
sidered sufficient to fit the present data.

The combined analysis yields a relatively small error in
the rms radius. The statistical component of this error
amounts to 0.003 fm, and a contribution of 0.001 fm was
derived from the variation of the rms radius with a
change of R from ll to 12 fm. Systematic uncertainties
in the carbon cross sections were taken from Ref. 20; this
uncertainty produces an error in the ' Os rms radius of

and

+B(EA.:0+~A.)=v'(2A, + I)fpq(r)r + dr

R„=f p~(r)r + dr/ f p~(r)r +~dr . (12)

Use of the Fourier-Bessel expansion may introduce oscii-
lations in the extracted density at large radii because of
the limited q range over which the cross sections are
determined. Therefore, the method of constraining the
tail of the transition density by an exponential function'
was applied.

where R is the transition density cutoff radius. The
values q„'R are the nth zeros of the spherical Bessel
function of order A, —1. The constraint that the transition
density must vanish at the cutoff radius R imposes a con-
dition on the coefficients a„. We estimated the incom-
pleteness error, in a manner similar to that used for the
elastic cross sections, by generating pseudodata beyond

q „with an upper limit for the squared form factor of
c-exp( —aq). The parameters c and a were chosen to
give a reasonable envelope at q &q,„. The data for all
inelastic levels were fitted by adjusting 12 Fourier-Bessel
coefficients. The transition probability and transition ra-
dius are defined as

TABLE III. Experimental results for ground and excited states of ' Os from Fourier-Bessel
analysis.

0+
2+
2+
4+
3

No. of
points

27
27
22
19
20

16.7
23.9

8.4
15.5
15.3

&r'&'" or R„
(fm)

5.413(4)'
6.950(61)'
7.04(15)
6.894(79)
7.18(33)

B (EA, :0+ A. )

( 2bA)

2.009(32)
0.189(32)
0.0365(42)
0.130(34)

Normalization
factor

0.994(12)
0.978(31)
0 994"
0 994
0 994

'Analysis includes muonic atom data.
Normalization taken from 0+ state.



30 GROUND-STATE AND TRANSITION CHARGE DENSITIES IN ' Os 1471

TABLE IV. Fourier-Bessel coefficients a„as defined in Sec. IV A and IVB for the ground and excited states of ' Os. The errors
represent the diagonal elements of the error matrix. A cutoff radius of 11 fm was used for all states, and for tke transition charge dis-
tributions a tail constraint was applied. The coefficients a„ for the ground state charge distribution are normalized to p(r ) r dr = 1.
The normalization for the coefficients a„of all transition densities is given by Eq. (11).

1

2
3
4
5
6
7
8
9

10
11
12

0+
ground state

0.0097614(29)
0.0068609(393)

—0.0082500(1047)
—0.0016837(787)

0.0048058(443)
—0.0009487(579)
—0.0015268(534)

0.0005980(318)
0.0004751(757)
0.0000400(742)

—0.0002772(1947)
0.0001217(1506)

2
206 keV

0.029985(185)
0.033852(1266)

—0.013297(265)
—0.013953(335)

0.011124(271)
0.003754(180)

—0.005344(160)
—0.001160(230)

0.001208(321)
0.000587(818)

—0.000505(418)
—0.000337(222)

2+
489 keV

0.009223(754)
0.009601(1450)

—0.005448(499)
—0.005327(597)

0.003783(418)
0.001987(218)

—0.001698(198)
—0.000671(180)
—0.000620(340)
—0.000624(308)

0.000066(294)
0.000206(164)

4+
580 keV

0.005946(645)
0.011360(1483)
0.003943(399)

—0.004232(369)
—0.001499(159)

0.002016(181)
0.000606(134)

—0.000464(326)
—0.000233(421)
—0.000172(239)
—0.000020(196)

0.000081(117)

3
1341 keV

0.008713(623)
0.012111(1232)

—0.000885(304)
—0.006789(534)
—0.000186(129)

0.002340(192)
—0.000142(104)
—0.000448(171)
—0.000010(322)

0.000069(170)
—0.000015(111)
—0.000012(54)

VJ J(r) =r [A +Br exp( ar )], — (14)

where the parameters A, B, rn, and a are determined
from a least-squares fit to the numerically computed
muon potential. In the case of osmium, this combined
analysis was applied to the first 2+ state for which a pre-
cise value of 8' is available from the rnuonic work of Ref.
25. The transition density constraint that we used in fit-
ting the (e,e') data is then

W=+(2A. +1)J p2(r)(A+Br e ')r + dr . (1S)

This procedure allows an independent normalization of
the inelastic electron-scattering cross sections, which can
be compared to (and should agree with) that derived from
the elastic combined analysis.

2. Maonic normalization (inelastic)

As pointed out in Ref. 27, it is possible to perform a
simultaneous analysis of inelastic electron-scattering and
rnuonic atom hyperfine-splitting (HFS) data. Inclusion of
the muonic HFS data considerably improves the accuracy
of the normalization for the inelastic (e,e') data and,
with it, the accuracy of the extracted B(E2) values. The
method is particularly applicable to deformed nuclei with
low-lying excited states that connect to the ground state
by strong E2 transitions. In such cases the strong quad-
rupole interaction between the muonic 2p levels and the
low-lying nuclear states leads to a hyperfine splitting of
the muonic states that can typically be measured with an
uncertainty of less than 0.5%. The observed HFS ener-
gies are directly related to the model-independent quan-
tity 8' J ~ by

IV J ~= f p„(r)V„(r)r dr . (13)
I'I

Here, p,„(r) is the transition density between nuclear
states

~
I) and

~

I'), and V~~(r) is the muon-generated
potential between muon states j and j'. The muon poten-
tial can be approximated '

by an analytic function of the
form

3. The 2+ state

Because of its comparatively large cross section, the
first 2+ state (206 keV) provides, among all excited states,
inelastic data of the highest statistical accuracy. Analysis
of this data is also favored by the existence of precise
muonic-atom normalization data that permits us to use
the inelastic combined analysis method discussed in the
preceding section. For the calculations we used a modi-
fied version of the DWBA code of Heisenberg' ' and the
muonic constraint parameters listed in Table II. We in-
vestigated in detail the influence of variations of the cut-
off radius R and the matching radius R

~
for the tail con-

straint on the normalization of the (e,e') data and the ex-
tracted B(E2) value. R values between 10 and 12 fm
were found to produce a nearly constant 1' value of about
24 (for 27 data points). Values of R& (the radius where
the tail constraint begins) between 9 and 9.S fm were
found to be appropriate and produced results in good
agreement with those obtained with no tail constraint.

The excellent agreement between the experimental cross
sections and the Fourier-Bessel fit is demonstrated in Fig.
4. The extracted transition charge density is displayed in
Fig. 5, and the corresponding Fourier-Bessel coefficients
are listed in Table IV.

As expected in view of the high collectivity of the 2+
state (about 61 W.u.), the transition density exhibits a
strong peak at the surface of the nucleus. The interior
structure of the transition density is similar to that ob-
served for the 2+ rotational state of ' Gd (Ref. 17) and of

Sm (Ref. 29). The error band of the 2+ state, like that
for the ground state density, is primarily determined at
the nuclear surface by the statistical accuracy of the data
and in the nuclear interior by the incompleteness error.

Values obtained for the transition probability B(E2),
the transition radius R,„, and the (e,e') normalization pa-
rameter vary slightly depending upon the cutoff radius
chosen. We have therefore adopted values (see Table III)
that represent averages over the realistic range of values
of R and R&. The quoted total error (see Table III) for
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FIG. 5. Experimental transition charge density for the first
2+ state (206 keV) of ' Os. The error band shown includes sta-
tistical and completeness errors. The experimental transition

density is compared with two theoretical predictions. The HF
density is calculated using the Legendre expansion of the HF in-

trinsic charge distribution.

FIG. 4. Experimental inelastic electron-scattering cross sec-
tions (recalculated for 364 MeV) for the first 2+ state (206 keV)
of '"Os. The data are compared with the Fourier-Bessel fit and
the Hartree-Fock calculation.

the B(E2} contains the following contributions: uncer-
tainty in the muonic moment 8' and statistical error in
the electron-scattering data (1.3%), systematic errors in-
cluding uncertainties in the reference cross sections
(0.3%), and a systematic error (1.0%) representing the
largest deviation observed in the B(E2) as R and R

&
were

varied over reasonable ranges.
The ratio of the elastic normalization to that of the 2+

state inelastic normalization for our electron-scattering

data was found to be 1.016+0.033. This consistency of
the two independent normalizations represents an impor-
tant test of the validity of both the muonic and (e,e'} ex-
periments, a topic discussed in detail in Ref. 27. The ex-
perimental B(E2) value from our combined analysis is
compared with Coulomb excitation results and theoretical
predictions in Table V. The present result is seen to be in
good agreement with the other experiments and is dis-
tinguished by its small uncertainty.

4. The 2+, 4+, and 3 states

The inelastic data were of sufficiently good quality that
we were able to use the Fourier-Bessel method to make
model-independent determinations of the transition densi-
ties of the 2+ (489-keV), 4+ (580-keV), and 3 (1341-

TABLE V. Comparison of the B(E2) value and transition radius for the 2+ (206 keV) state of ' Os
with other experiments and calculations.

B(E2:0+~2+ )
(e2 b2)

2.009(32)
2.123(50)
1.896
2.09(21)
1.99(11)
2.04(6)
2.22(34)
1 ~ 83
2.102
1.95
2.07
2.58

R,„
(fm)

6.950(61)

7.03

7.06

Method

(e,e') +p
Coul. exc.
Coul. exc.
Coul. exc.
Coul. exc.
Coul ~ exc.
Coul. exc.
HF (DME)

IBA
IBA
BET
PPQ

Davydov+ JM'

Ref.

This work
47
48
49
50
51
52

This work
31
34
35

1

42

'Davydov transition density fitted to p-atom data.
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keV) states. Since muonic-atoin data are not available for
these states, normalization of the cross sections was taken
from the elastic combined analysis. In other respects, the
analysis procedure closely followed that used for the 2+
state. For the 2+ state, X converged to S.4 (22 data
points) for cutoff radii greater than 10 fm, and for the 4+
state, X converged to 15.5 (19 data points) for R greater
than 9 fm. The radial moments quoted in Table III were
determined by averaging over reasonable R and R~ re-
gions.

The experimental cross sections together with the
Fourier-Bessel fit are shown in Figs. 6 and 8. The corre-
sponding transition densities are displayed in Figs. 7 and
9, and the Fourier-Bessel coefficients a„are listed in
Table IV. The error bands of the transition densities of
the 2+ and 4+ states are relatively larger in the surface
region of the nucleus because the large radiation tail of
the elastic and first 2+ states causes a larger uncertainty
in the low-q inelastic cross sections.

The 4+ state exhibits a transition density that peaks at
a smaller radius than that of the first 2+ level. This result
differs from the results obtained for the deformed nuclei

Gd (Ref. 17) and "Sm (Ref. 30). This fact is con-
sistent with the negative Pq deformation of ' Os as com-
pared to the positive P4 deformation of Gd and Sm. Cal-
culations using a deformed Fermi model show that the
difference in transition radii between the 2+ and 4+ states
of these three nuclei is consistent in magnitude with that
produced by the purely geometric effect of the different

10 2—

0.6
/%

&&&&&& Experiment
1 92C)

C3
C3

0.3
X

0.0
L

Q

—0.3

P4 deformations in the three cases.
The transition radius of the 2+ state appears to be the

same as or slightly larger than that of the lowest 2+ state
(see Table III). From a vibrational model viewpoint, we
would expect the 2+ y band head to have a smaller tran-
sition radius than that of the 2+ rotational band member.
This expectation, which is based on the fact that the y
band is a shape oscillation involving the shorter of the two
axes of the nuclear ellipsoid, is confirmed in ' Gd (Refs.
17 and 43). The transition density for the 2+ state of

Os also shows a more pronounced internal structure
than the corresponding density in ' Gd.

r (fm)

FIG. 7. Experimental transition charge density for the
second 2+ state (489 keV) of ' Os. The error band shown in-
cludes statistical and completeness errors. The HF transition
density is derived from the HF intrinsic density using the small
amplitude vibration expansion.
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FIG. 6. Experimental inelastic electron-scattering cross sec-
tions (recalculated for 364 MeV) of the second 2+ state (489
keV) of ' Os. The data are compared with the Fourier-Bessel
fit and the Hartree-Fock calculation.

FIG. 8. Experimental inelastic electron-scattering cross sec-
tions (recalculated for 364 MeV) of the 4+ state (580 keV) of

Os. The data are compared with the Fourier-Bessel fit and
the Hartree-Fock calculation.
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FIG. 9. Experimental transition charge density for the 4+
state (580 keV) of ' Os. The error band shown includes statisti-
cal and completeness errors. The Hartree-Fock density is calcu-
lated using the Legendre expansion of the HF intrinsic charge
distribution.

Our experimental B(EA, ) values for the higher states
are compared with other measurements and theories in
Table VI. The B(E2') value agrees well with Coulomb
excitation measurements and with the IBA calculation
from Ref. 31. In contrast to the only previous measure-
ment of the B(E4) value for the 4+ state (580 keV), the
present value is in reasonable agreement with the IBA cal-
culation ' and the prediction of Ref. 32.

The analysis for the 3 state presented a technical
problem: The values for B(E3:0+~3 ) and the transi-
tion radius slowly increased with increasing cutoff radius

R, whereas 7 decreased continuously. This problem is
associated with the tail of the transition density at large
radii r (see Fig. 11), which increased in amplitude as the
cutoff radius was increased. In view of our findings for
the other inelastic states in ' Os, we chose 11 fm for the
cutoff radius and accounted for the observed systematic
increase in B(E3) and R„by increasing the systematic
error. The experimental results are given in Tables III
and IV, and the cross sections are compared with the
Fourier-Bessel fit in Fig. 10. The transition density of the
3 state, like that of the 4+ state, peaks somewhat inside
the nuclear surface and also shows a significant negative
lobe at about 3.5 fm. The gross features of the transition
density, including the relatively large tail outside the nu-
cleus, are similar to those observed' in the 3 state at
5.345 MeV in Pb. Since the octupole vibration in ' Os
is superimposed on a quadrupole deformation, we can an-
ticipate that the originally degenerate 3 state will be split
into several states of different E, each with its separate
rotational band. In the present experiment the B(E3)
value was determined to be 0.130 e b, i.e., about 8.5
W.u. , which is very similar to the random-phase approxi-
mation (RPA) calculated strength of the 3 band head
(7.4 W.u. ), as reported by Neegard and Vogel' for ' Os.
Since the RPA calculations suggest that the 3 state
strengths vary only slightly among the osmium isotopes,
our observed strength in ' Os seems to be entirely con-
sistent with the RPA calculations.

5. Higher states

At some scattering angles, other excited states (see Fig.
1) rose above the radiation tail of the elastic peak and be-
came visible in the spectrum. However, the carbon line
obscured any such peaks below a momentum transfer of 1

TABLE VI. Comparison of the B(EA.) values and transition radii for the 2+ (489 keV) and 4+ (580 keV) states of ' Os with other
experiments and calculations.

B(E2:0+ 2+ )

( 2b2)

0.189(32)
0.181(18)
0.2025
0.196(12)
0.184(27)

0.177
0.150
0.035

B(E4:0+~4+ )

( 2b4)

0.0365(42)
0.343
0.0163
0.040
0.024

R„
(fm)

7.04(18)

6.94

6.83

Rlr
(fm)

6.894(83)

7.09

Method

(e,e')

Coul. exc.
Coul. exc.
Coul. exc.
Coul. exc.

HF (DME)
IBA
IBA
ppQ

Davydov+ p'

Method

(e,e')

Coul. exc.
IBA

b
HF (DME)

Ref.

This work
47
48
50
52

This work
31
34

1

42

Ref.

This work
48
31
32

This work

'Davydov transition density fitted to p-atom data.
Srutinsky method.
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0
(D

10

(Ref. 1) theories to lie at an excitation energy of 1.05,
0.93, and 1.12 MeV, respectively. This state is well
known in the neighboring isotopes and occurs at 1.115
MeV in ' Os and at 1.305 MeV in ' Os. In a recent
(n,n'y) experiment, a 2+ state was observed at 1.127
MeV in ' Os that decays dominantly to the 3+ state of
the y band. However, for a member of the quasi P band
we might expect decay mainly to the ground state band.
In any case, the close proximity of the 2+ state to the 4+
state at 1.069 MeV and to the 6+ ground state band
member at 1.089 MeV makes it impossible with the
present experimental resolution to uniquely distinguish
any of these states.

1O-s

0 1 2

qett (tm ')

FIG. 10. Experimental inelastic electron-scattering cross sec-
tions (recalculated for 364 MeV) of the 3 state (1341 keV) of

Os. The data are compared with the Fourier-Bessel fit and
the Hartree-Fock calculation.

6. Deformation parameters

Intrinsic deformation parameters of a nucleus exist only
within the context of a particular model. A common pro-
cedure for electron-scattering data is the method of fitting
elastic and inelastic cross sections of the members of the
ground state rotational band simultaneously to an intrin-
sic shape, given by a surface-deformed Fermi distribution.
On the other hand, in the rotational model the Pi parame-
ters are directly related to the B(EA.) values via a simple
mathematical prescription. Using this procedure, the de-
formation parameters P2 and P4 were calculated from our
experimental B(EA.) values and found to be 0.15 and
( —)0.04, respectively.

fm '. In general, our data for the higher states are sparse
and have large uncertainties due to the radiation back-
ground of the elastic and lower lying inelastic states and
to competition from target impurities. Therefore, analysis
of these cross sections was not undertaken.

Of some interest, however, is the third 2+ state in
Os, a member of the quasi P band, which has been

predicted by the IBA (Ref. 34), BET (Ref. 35), and PPQ

0.6

O Og
C3

02

r (fm)

FIG. 11. Experimental transition charge density for the 3
state (1341 keV) of ' Os. The HF transition density is derived
from the HF intrinsic density using the small-amplitude vibra-
tion expansion.

VI. COMPARISON WITH THEORY

A. Hartree-Fock theory

I. Ground state

Hartree-Fock (HF) theory probably represents the most
thoroughly explored and successful theoretical method for
microscopically describing the ground states of spherical
and deformed nuclei. An HF study of the osmium and
platinum nuclei, in which the Bardeen-Cooper-Schrieffer
(BCS) pairing approximation was used and the self-
consistent potential was derived from a Skyrme effective
interaction, has been reported by Sauvage-Letessier
et al. However, the radial behavior of the density distri-
bution is not presented in Ref. 37, and the calculated rms
radius (see Table VII) exceeds our experimental result by
0.081 fm. We have therefore independently performed
density-dependent HF calculations using the method of
Vautherin and Negele and Rinker. ' The calculations as-
sume axially symmetric nuclear deformation and use the
density matrix expansion (DME) effective Hamiltonian
and the pairing approximation described in Ref. 10. The
DME method is appealing compared to the use of Skyrme
forces, since it is based on a realistic two-body effective
interaction rather than a purely phenomenological poten-
tial. The present work (and our previous Letter" )

represent the first reported DME calculation for nuclei in
the osmium-platinum region.

The HF calculations were performed using the code
and procedure discussed in Ref. 10. If desired, the quad-
rupole moment can be constrained in the calculation, thus
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(t2 ) I/2

(fm) Method Ref.

TABLE VII. Comparison of the rms radius of ' Os with the
results of various Hartree-Fock calculations. -20

Q s
192 p

&r'&~ = 5.417 fm

5.413(4)
5.417
5.494'
5 335

(e,e') +p
HF (DME)
HF+ BCS

HF (Skyrme)

This work
This work

37
53

'Deformed (prolate) solution.
Spherical nucleus assumed.

:.(a)

making it possible to map out the energy of deformation
versus quadrupole moment. The degree to which the
predicted deformation of greatest binding energy matches
the experimentally observed nuclear quadrupole deforma-
tion can be used to assess the validity of the calculation.
The calculations were made using a basis consisting of 14
major harmonic oscillator shells. The pairing energy was
obtained from experimental mass differences between
neighboring isotopes and isotones for each nucleus. The
oscillator length and the basis deformation parameters
were calculated from empirical relations obtained by ad-
justing the binding energy and internal density of Ca.
The HF calculations were performed on a Cray-1 comput-
er, and each iteration required about 20 sec of CPU time.
Typically 10—20 iterations were made at each of 10—15
quadrupole deformations to map out the binding energy
versus deformation curve. At the minimum of the poten-
tial curve about 100 iterations were performed to guaran-
tee convergence of the higher multipole orders.

We performed HF calculations for three nuclei in the
transition region (' Os, ' Os, and ' Pt) to investigate the
ability of the method to predict the quadrupole deforma-
tion sign change that occurs in the osmium-platinum re-
gion. The binding energy versus deformation curves for

Os and ' Pt are presented in Fig. 12. As we pointed
out in Ref. 11, the experimental findings are rather well
reproduced by HF theory: a prolate-oblate transition is
predicted near ' Os, and the intrinsic quadrupole mo-
ments, as defined by the deformation of greatest binding
energy, are within a few percent of the values derived
from experimental B(E2:0+~2+) transition probabili-
ties (see Table VIII). The predicted radial moments are
also in remarkable agreement with the experimental
values (Table VII).

Q -Z
194 pt

~136 fm

~ ~ ~
~
~ ~ ~ I ~ ~

~ ~ ~ ~ I ~ i ~ ~ I ~
I

~

os1 ~ ~
I
~ ~

~ ~ ~ ~ ~ ~
I

~ ~, ~

I

0
z (fm)

: (b)
~

I ~

10

FIG. 12. Proton densities of ' Os and ' Pt computed by
Hartree-Fock (DME) methods. The densities are (by assump-
tion) symmetric about the z axis. The change from prolate to
oblate shape is clearly evident. The computed binding energy
versus intrinsic quadrupole mass deformation parameter Q for
each nucleus is shown in the inserts. The arrows indicate the Q
values computed from experimental B(E2) values. The poten-
tial surface curve of '"Os is very similar to that of ' Os.

The computed ground-state charge density of ' Os and
that extracted from our experiment are compared in Fig.
3. The agreement is quite good: The small density oscil-
lations at about one-half the nuclear radius are well repro-
duced in amplitude and position, and the predicted nu-
clear surface density is nearly indistinguishable from the
experimental density. A comparison of these results in q
space (Fig. 2) shows a visible deviation only for momen-
tum transfers greater than 2.5 fm

TABLE VIII. Results of our Hartree-Fock calculations compared with experimental values.

Nucleus Expt.
(e b)

HF

rms radius
(fm)

Expt. HF Expt.

RI,
(fm)

HFb
(BE„-BEHF)/3 '

(MeV)
ARI,
(fm)

iseO

"-Os
194pt

568
448
403

615
434
374

5.413(3)
5.409
5.417
5.436

6.8779(27)'
6.9108(25)'
6.9285(20)'

6.8923
6.9088
6.9312

0.069
0.052
0.045

—0.014
0.002

—0.003

'Binding energies are taken from Ref. 38.
The equivalent radii are calculated by using the HF (DME) monopole charge distribution and the values for k and o. from Ref. 25.

'See Ref. 25.
"This work.
'Preliminary muonic atom results (unpublished).
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2. Dynamics

In its present state, the HF theory discussed in the
preceding section is able to represent only the intrinsic nu-
clear ground state; it makes no pretext at describing nu-
clear excitations. However, low-lying nuclear states in de-
formed nuclei can be described in terms of rotation and
vibrations based on the intrinsic ground state. In this ap-
proxirnation, the ground state rotational band transition
densities are obtained by Legendre expansion of the intrin-
sic density distribution as given by'

p~=v'(2K+ I)/4m f p~F(r, Q)Y~0(Q)dQ . (16)

In the model of small-amplitude vibrations, the members
of the y-vibrational band are related to the intrinsic
ground state charge distribution by

pf(r)=P'~2 f Yq2(Q)Y2q(Q) (r, Q)dQ, (17)
5r

where the transition strength p' is adjusted (in the present
analysis) to the experimental B(ei, ) value. Within the
same model, one-phonon octupole vibrations are related to
the intrinsic nuclear density by

p~(r) =y f (r, Q) Yga(Q) Y30(Q)dQ
5r

+gf Yga(Q) (r, Q)dQ, (18)
5r

where y and g are vibrational constants common to all
states in the same band. The parameter g accounts for the
center-of-mass correction in the presence of a pure iso-
scalar ( T =0) transition. However, as discussed in Ref.
39, the center-of-mass correction can be neglected in first
order (i.e., /=0), and we have therefore adjusted the single
parameter y to fit the observed B(E3:0+~3 ) strength.

Figure 5 demonstrates that the transition density to the
first 2+ state is very well reproduced by the projection of
the intrinsic HF charge density. The calculation follows
the interior structure of the experimental density very
well, despite neglect of possible triaxial or y-soft character
of ' Os in the HF intrinsic state calculation. We should
emphasize that the amplitude of the predicted transition
density comes directly from projection of the intrinsic
charge density —no renormalization using an effective
charge is involved. The theoretical cross sections (Fig. 4)
agree very well with the experimental data up to a
momentum transfer of 2.5 fm

The 4+ member of the ground-state rotational band is
reasonably well described by the projected HF calculation
as regards the shape of the transition density (Fig. 9), but
the transition probability is about 35% underestimated.
A similar situation has been observed in the case of the
4+ state of ' Gd (Ref. 17), while the nucleus U (Ref.
39) shows reasonable agreement

Using the experimental B(E2) value from Table III for
normalization, we derived the transition density of the
second 2+ state (y vibration) from the intrinsic HF densi-
ty via Eq. (17). The agreement with experiment (Fig. 7) is
remarkably good; even the small density oscillations in the
nuclear interior are qualitatively reproduced. The predict-
ed cross sections (Fig. 6) show good agreement with ex-
periment over the entire rnornentum transfer range for

which we have data for this state.
The transition density for the 3 level (1341 keV) was

obtained from the intrinsic HF distribution by using Eq.
(18) and the transition probability of Table III. The cal-
culated shape of the transition density (Fig. 11), though
surface peaked like the experimental density, has a transi-
tion radius that is clearly too large. The discrepancy in

Os is also evident when the experimental and theoreti-
cal cross sections are compared (Fig. 10). This deviation
may indicate that the 3 state is less collective than im-
plied by a pure octupole vibrational representation. As
pointed out in Ref. 33, the low-lying octupole states in the
deformed region 152 (A (190 exhaust only a small part
of the full octupole strength. The small-amplitude vibra-
tion model using the HF intrinsic density was found to be
in good agreement with the experiment for the 3 state
(0.732 MeV) of the 0 band in U (Ref. 39). However,
in the case of U the B(E3) value is considerably larger,
amounting to about 25 W.u.

The HF calculations presented here were restricted to
axial symmetry. The question arises as to what extent in-
clusion of nonaxial deformations would affect the predict-
ed charge densities. This question is currently being in-
vestigated by Cartesian-coordinate-based HF calculations
that contain no restrictions on deformation or nuclear
symmetry. ' Preliminary results reveal a calculated total
binding energy that is astonishingly independent of the
triaxial deformation parameter y, which may be a factor
in understanding the success of the present calculations
that implicitly assume y=0. No charge densities are yet
available from these calculations.

B. Davydov model

Although the Davydov model of a triaxially deformed
rotor is based on somewhat unphysical assumptions, its
equations of motion are similar to those of more realistic
models and, with appropriate parameter values, it is as
capable as other existing models of describing the E2
transitions and low-energy excitation spectra of the Os
nuclei. The model may be taken as representative of a
class of collective macroscopic models and has the advan-
tage of explicit inclusion of a variable y related to axial
symmetry.

We have normalized the Davydov transition densities
for the 2+ and 2+ states of ' Os, as presented in Ref. 42,
to our experimental (e,e ) transition probabilities. A com-
parison with the electron-scattering results is shown in
Figs. 5 and 7. The macroscopic basis of the Davydov
model makes it incapable of predicting detailed structures
in the nuclear interior, and the model therefore fails to
describe the experimental form factors at higher momen-
tum transfer. However, it exhibits reasonably good agree-
ment at the nuclear surface for both the 2+ and 2+ states,
and the calculated cross sections are of the same quality
as the HF calculations up to a momentum transfer of 2
fm-'.

C. IBA

Recently, a new approach to describing nuclear proper-
ties has been proposed, the interacting boson approxima-
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tion (IBA) of Arima and Iachello. ' In this model, the col-
lective properties of nuclei are described in terms of pairs
of nucleons coupled to angular momentum L =0 and 2,
which are treated as bosons. The most general two-body
Hamiltonian within the boson space is written in terms of
the generators of the groups SU(6). It has been shown
that in three specia1 cases this Hamiltonian can be ex-
pressed in terms of generators of a subgroup of SU(6),
namely the SU(5) group, the SU(3) group, and the O(6)
group.

In contrast to geometric models, in the IBA the states
in each subgroup limit are associated into families accord-
ing to their group representations. Thus, in SU(3) for ex-
ample, the f3 and y bands belong to the same representa-
tion but to a different one than does the ground-state
band. On the other hand, in the O(6) limit the ground-
state and y band belong to the same representation.

Attempts to apply the IBA formalism to the density in-
formation available from electron scattering has so far
had mixed success. In the simplest version (IBA-l), the
collective E2 transition densities of the lowest 2+ states of
a nucleus should be linearly re1ated to two basic boson
charge densities a(r) and f3(r) This p. rediction seems to
be reasonably well satisfied by electron scattering mea-
surements on a sequence of samarium isotopes for the cor-
responding first 2+ states, but fails in "Gd (Ref. 43),
where the three lowest 2+ states of the same nucleus are
considered. For the osmium isotopes, IBA-1 is known to
be inadequate, and an approximation that distinguishes
between neutron and proton bosons (IBA-2) is usually ap-
plied. Calculation of transition densities within the con-
text of IBA-2 is more complex since a larger number of
elementary boson densities is now involved. The influence
of states outside the boson model space (core polarization)
must also be considered. Scholten has reported a micro-
scopic IBA approach to the calculation of transition den-
sities in transitional nuclei. Such calculations for ' Os
are currently in progress.

VII. SUMMARY AND CONCLUSIONS

We have measured the elastic and inelastic electron
scattering cross sections of ' Os up to a momentum
transfer of 2.9 fm '. The model-independent Fourier-
Bessel method, in combination with muonic-atom data,
has been used to determine the ground-state density and
the transition densities for the 2+, 2+, 4+, and 3 states.
These experimental results provide a body of charge-
density distribution data against which present and future
models of the dynamics of transitional nuclear models can
be tested.

We have also reported the results of DME Hartree-
Fock calculations for three transition-region nuclei:

Os, ' Os, and ' "Pt. These calculations reproduce the
charge radii and quadrupole deformation trends of the
transitional nuclei unexpectedly well, and in particular the
predicted ground-state density of ' Os is in astonishingly
good agreement with experiment. We have also approxi-
mated the low-lying excited-state transition densities of

Os by Legendre expansion of the HF-computed ground
state and find these predictions to be in reasonable agree-
ment with experiment.

We hope that the experimental data presented in this
paper will encourage further attempts to understand tran-
sitional nuclei. In particular, continued work on
nonaxially-constrained HF methods, together with ex-
ploration of HF calculations of excited states more realis-
tic than the approximation present here, would appear to
be fruitful. Hartree-Fock methods have historically been
applied only to isolated nuclei because of the computing
time required, but the increasing availability of fast virtu-
al memory and Cray-class scientific computers promises
to make the HF method a tool that can now be rather
generally applied to gain a better understanding of nuclear
structure and dynamics.
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