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Differential cross sections and tensor polarizations of elastic neutron-deuteron scattering (n-d) are
calculated at Ef;, < 15 MeV with different nuclear potentials. The pole extrapolation of these model
data reproduces the S-state normalization within 1% and misses the D- to S-state ratio 7 by about
5%. Approximate Coulomb distortion corrections to n-d tensor polarization calculations that im-
prove the agreement with proton-deuteron (p-d) data yield smaller contributions to 7 than found
previously within a distorted-wave Born approximation. Extrapolation of recent n-d differential
cross section data and Coulomb corrected p-d tensor polarization leads to deuteron asymptotic nor-
malizations compatible with current experimental values.

I. INTRODUCTION

Basic properties of the deuteron like, e.g., the binding
energy Ep, the quadrupole moment Q, the asymptotic S-
state normalization A4g, or the asymptotic ratio of the D-
state to S-state normalization 7 have each been important
for the construction of sensible N-N interaction models.
It was, however, not too long ago that it became standard
practice to compare, for a given model, all these deuteron
quantities at one time with the values known from the ex-
periments. To serve as real constraints for N-N potentials
these experimental quantities have to be known at a high
level of accuracy given the very quantitative nature of the
theoretical predictions.! Among others a model indepen-
dent relation between Q and 7 seems to provide very tight
bounds for these quantities, thus challenging the precision
of the experiments, in particular, that of the less accurate-
ly known ratio of the asymptotic normalizations. Dif-
ferent methods to experimentally determine 7 have been
developed in recent years? gradually reducing the uncer-
tainty of the measured 7 down to a few percent. Al-
though there are unsettled questions within the theory,
like the influence of the nucleon size, it seems to be
mainly up to experimentalists to clarify whether or not a
further improvement of their measurements is feasible.

Irrespective of this future development we address here
again one of the methods that have been employed to ex-
tract the present experimental knowledge on 7, namely
the pole extrapolation in elastic (d,p) reactions. This ques-
tion was already the subject of controversies at the
“Deuteron Workshop” at the Karlsruhe conference! in
1983 and it seems to be worthwhile to examine once more
the method of analytical extrapolation.* Specifically, we
treat the elastic three-nucleon scattering system, which
can be described exactly by the Faddeev equations, to
study the validity of the pole extrapolation procedure, i.e.,
to find theoretical bounds on the extrapolated values of
A, and 7. For that purpose we solve the Faddeev equa-
tions with N-N potentials that differ in the deuteron
asymptotic normalizations. The resulting unpolarized
cross sections [0(6)] and the tensor polarizations T,
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T, and T,,, representing “pseudo-data,” are then ap-
propriately incorporated in functions that can be analyti-
cally continued into the unphysical region, and criteria for
a reasonable extrapolation to the proton exchange pole are
discussed (Sec. II). The various results obtained from ex-
trapolating the pseudo-data are compared to the values of
A and 7 inherent to the different potentials employed for
the generation of the pseudo-data. From this comparison
we can deduce lower bounds for the theoretical error of
the extrapolated quantities (Sec. III). The experience
made in extrapolating the pseudo-data is utilized in the at-
tempt to analytically continue recent data. The Karlsruhe
measurements of neutron-deuteron unpolarized cross sec-
tions are analyzed to gain information on A;. The deter-
mination of 7 requires tensor polarization of the deute-
ron® and since no such data are available for n-d scatter-
ing one has to resort to proton-deuteron data. These data,
however, do contain Coulomb effects that ought to be tak-
en into account. One way to handle such effects was pro-
posed by Santos and Colby® who introduced a correction
factor for the neutron exchange pole. Here we propose
another approach by applying approximate Coulomb dis-
tortion corrections’ in the physical region. We extrapolate
n-d and Coulomb corrected n-d pseudo-data to find the
Coulomb contribution to 7 at different energies. We then
calculate 7 from a “n-d” polarized cross section which
was generated from n-d cross section data and Coulomb
corrected p-d tensor polarization data (Sec. IV).

II. PSEUDO-DATA AND POLE EXTRAPOLATION

The increasing importance of the concept of pole extra-
polation in nuclear physics® has been manifest also in N-d
scattering. In particular, the angular extrapolation to the
nucleon-exchange pole turned out to be very interesting,
because the pole residues can be related to the asymptotic
normalizations of the deuteron wave function. The pole
strength (at the dpn vertex) obtained by extrapolating un-
polarized n-d cross sections’ can yield information on the
S-state normalization of the deuteron, whereas informa-
tion on the D /S-state ratio can be gained from tensor po-
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TABLE I. Potentials used in the 3S,->D; coupled state and some of their deuteron properties.

E4
Potential (MeV) Ay n Q Ref.
Graz II 2.2254 0.8878 0.0274 0.281 a
Graz V212 2.2254 0.8843 0.0230 0.238 b
Reid 2.2246 0.8776 0.0262 0.280 c,d
2T7 2.2250 0.9364 0.0033 e
2T4 2.2250 0.8777 0.0260 e

2Reference 10.
"Reference 11.
“Reference 12.
dReference 13.
*Reference 14.

larizations continued to the pole.’ In the latter case
Coulomb corrections and the uncertainty in the data af-
fect the extrapolation,! and it is not yet clear to what ex-
tent they influence the experimental value of 1. To avoid
both of these difficulties we have generated n-d pseudo-
data with an assumed overall 1% error (the actual model
error turned out to be typically smaller than 1%). The
model data, namely o(8), Ty, T,;, and T,,, were ob-
tained from solutions of the Faddeev equations. In detail
we have used different separable potentials (Table I) with
varying deuteron asymptotic normalizations as input for
the three-body equations. n-d calculations using the Graz
II, 2T4, and 2T7 potentials were already carried out by
Koike.!>!® For our purpose of testing the extrapolation
method via the asymptotic deuteron properties we have
included only the 'S, and the coupled 3S,->D; channel.
In Table I the 3S,-3D, potentials and some deuteron prop-
erties are listed, whereas in the 1S0 state we have used the
Graz II potential throughout. For comparison we have
calculated another set of model data based on the T7-
matrix Faddeev results of Stolk and Tjon!” for the local
Reid potential. Since these pseudo-data include the ef-
fects of N-N P and D waves (at least perturbatively), they
are more realistic, i.e., they better resemble the polariza-
tion data than the one obtained by the five-channel calcu-
lation.

For the purpose of angular extrapolation the polariza-
tion data should be expressed in a functional form that
displays minimal complex structure.® For n-d scattering
we employ the formula'® !’

kz(z—zl,)2

Sa(2)=(— )V+10(Z)T2v(2)'(1_—zz)v7? ’

(1)
where v=0, 1, and 2, z=cosf, k is the c.m. momentum,
and z, is the position of the proton exchange pole. Equa-
tion (1) has been used for p-d data,'®~22 but the presence
of the forward angle Coulomb singularity makes an extra-
polation into the unphysical region problematic.* Extrapo-
lation of the unpolarized differential cross section is per-
formed through the function’

h(z)=k*z -z, Yo(z) . (2)

Among the three functions involving tensor polarization
primarily the function f,, lends itself for extrapolation
purposes (Fig. 1), a finding that has been obtained previ-

ously by Amado et al.'® By showing f, for one set of our
pseudo-data we simply want to emphasize that for N-d
scattering f,o and f,; are to be expected to yield inferior
results due to their more complicated shape.

To analytically continue our pseudo-data into the un-
physical region we expanded them in the interval
cosf, m. =[—1,1] into Legendre polynomials. Using oth-
er polynomials, like over the data orthonormalized ones or
Chebyshew, led to identical representations of our data.
The actual expansion was then performed in a conformal-
ly mapped variable?® [wcosf)] to better exploit the
analyticity in the angular variable. The mapping tech-
nique provides the best convergence of the polynomial ex-
pansion within the region of analyticity, but since we have
only a finite number of pseudo-data with finite accuracy
stability in the extrapolation for an increasing number of
terms, represented by the order of the highest used poly-
nomial, L,, cannot be achieved.’* Requiring the fitted
curve through the data to be optimally smooth—a fre-
quently used practice in elementary particle physics®—
did not improve the convergence. The polynomial expan-
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FIG. 1. Function f,, obtained from a Faddeev calculation
with the Graz II potential at Ef,, =5 MeV.
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sion of f,, with the pseudo-data obtained with the Graz
II potential is shown in Fig. 2. An improvement of the fit
in the physical region significantly affects the extrapola-
tion to the pole. Proceeding to higher L., values of the
expansion the fit does not become much better, but the ex-
trapolation in turn deteriorates, i.e., becomes unstable
(Fig. 3). In addition, with increasing L ,, the error in the
extrapolated residue at the pole increases exponentially.
Consequently, only a finite and, in fact, a small number of
expansion coefficients can be taken. This truncation of
the polynomial series has been used in extrapolating N-d
data®!#=22 in the course of which the L, is determined
when the X%;=X2/(degree of freedom) becomes about
one. Since we are dealing with pseudo-data of unknown
accuracy in the first place, we had to modify slightly the
criterion for the truncation. Starting with 1% overall er-
ror in the pseudo-data we calculated the X2 as a function
of L, (Fig. 3). The series was then truncated at this
value of L,,,, where the X4 curve displayed a tendency
to flatten, i.e., where the fit did not significantly change
by adding more coefficients. This happened to be at
L_..=4 for the Graz-potential data. Typically the first
plateau in the X2,y curve occurred at a value not equal to
one and we therefore renormalized the X4 to one. There-
by we obtained an estimate on the accuracy of our model
data which is certainly much better than that of the N-d
experiments.

The extrapolated pole residue and hence 7 remains
quite stable for some low values of L., but tends to os-
cillate when one starts to fit the “noise” in the pseudo-
data. Having established the truncation criteria it was
crucial to find an estimate on the error of the extrapolated
residue. It is only then that we can discuss the usefulness
of the method of pole extrapolation in N-d elastic scatter-
ing processes for determining the deuteron asymptotic
normalizations. We have considered two possibilities to
obtain the error in 77. One is to extrapolate the errors of
the pseudo-data through the errors in the expansion coef-
ficients. The other possibility is to represent each data
point by a Gaussian distribution within its error bounds.
This redefined set of data was then again expanded into
Legendre polynomials. In both cases a very similar, ex-
ponentially increasing error curve was found (dashed-

0.6

w(cos @C'm_)

FIG. 2. Polynomial expansion of the function f,, of Fig. 1
plotted versus the conformally mapped variable w(cosé.m.).
The numbers at the intersection of the function and the pole po-
sition line denote the degree of the polynomial. Circles
represent a sample of pseudo-data.
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FIG. 3. 7 as a function of the highest used degree L., of
the polynomial expansion of the Graz II potential pseudo-data
at Ej,=5 MeV. The line connecting 7 is interrupted when 7
changes sign. Uncertainties A7 in the extrapolation are calcu-
lated on the basis of (i) the expansion coefficients (dashed-dotted
line and error bars) and (ii) a Gaussian distribution (dotted line).
Dashed line denotes the quality of the fit (Y*/degree of free-
dom).

dotted and dotted line in Fig. 3). Since this error is solely
due to the statistical nature of the data and therefore
neglects the error arising from truncating the polynomial
expansion, the error estimate might well be too optimistic.
Hence, it follows that the An curves in Fig. 3 represent
lower bounds for the uncertainty of the extrapolated value
of 7.

III. RESULTS WITH MODEL n-d DATA

Following the procedure outlined in the last section we
have calculated the deuteron asymptotic normalizations
with different sets of pseudo-data. We have chosen poten-
tials with substantially different 7 to get some informa-
tion on the model dependence of the extrapolation
method. The calculations were performed at rather low
deuteron energies, because the Coulomb effects which we
will address in Sec. IV are more important there. Furth-
ermore, the five-channel calculations become less realistic
with increasing energy.

The extrapolated values for 7 (°™), the uncertainties in
the extrapolation An®™, and the deviations of 7°** from
the true value are given in Table II. Also shown are the
overall errors of the pseudo-data and the values of L,
where the expansion series was truncated. The extrapola-
tion method applied to the ‘“‘separable potential data”
seems to miss the true value by about 5%. The extreme
case of the 2T7 potential with 1 being almost zero under-
scores in a qualitative way the applicability of the method.
Taking into account that the quoted number for the extra-
polation error is a lower bound, it is possible that the pole
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TABLE II. 7 found from extrapolating various pseudo-data. AY denotes the average error of the
pseudo-data, A7 the extrapolation accuracy. The last column contains the deviation of 7™ from the

values given in Table I.

E?ab FY Anext A(’I’]——T]eﬂ)

Potential (MeV) Lonax (%) ne (%) (%)
Graz 1I 5 4 0.10 0.0258 1.05 5.25
Graz 11 10 4 0.39 0.0257 1.60 5.62
Graz V212 5 4 0.10 0.0216 0.75 6.09
Graz V212 10 4 0.38 0.0218 1.70 5.14
Reid 5.5 3 0.55 0.0227 1.40 13.43
Reid 10.85 3 1.40 0.0212 1.29 19.06
Reid 14.1 3 1.90 0.0203 3.07 22.37
2T4 10 4 0.37 0.0250 2.14 3.85
2T7 10 4 0.83 0.0061 10.80 83.32

extrapolation method in the form as described by Amado
et al.’ can reproduce 1 of the employed model. The ac-
curacy of n°*, however, would then be quite poor com-
pared to other deuteron quantities. The results obtained
with the Reid potential deviate significantly from the
values given by the deuteron wave functions. If there is
not a trivial reason like missing precision or errors in the
used Faddeev solutions—which we could not confirm—
one explanation could be a model dependence. There is,
however, another possible source for said discrepancies:
In the calculation of Stolk and Tjon!” only the S-wave
projection of the coupled S;->D; N-N channel was treat-
ed exactly; including the D-wave part perturbatively could
lead to substantial differences of the D- to S-state ratio.
The overall trend of the results is to underestimate 7.
This trend would be even much bigger if f,q and f,,; were
used for extrapolation. In the first case we fail to repro-
duce 1 by 40% and in the second case by roughly 30%.

The formula used to calculate 7 involves the unpolar-
ized o(0) at the exchange pole. In our attempt to find ex-
planations for the 5% disagreement we have examined to
what extent the pole approximation of o(8) (Ref. 8) could
be made responsible for it. With the help of Eq. (2) we
have calculated A; with the Graz II potential data and
have found (Table III) that A" almost reproduces the
given A;. Therefore the A4; part does not seem to explain
the 5% shortcoming in 7. On the other hand, it is in-
teresting that A4; can be determined from n-d model data
even more accurately than found previously.?®

IV. RESULTS WITH N-d EXPERIMENTS

Given the accuracy of the asymptotic normalizations
obtained by extrapolating n-d model data, it is interesting
to apply this procedure to recent n-d experiments. Unfor-
tunately, there are only n-d differential cross sections

TABLE III. A4, from extrapolation of the Graz II pseudo-
data. Errors as in Table II.

Efw AA A4, — A
(MeV) Lo A (%) (%)
5 5 0.8787 0.3 1.02
10 5 0.8793 0.3 0.95

available, whereas there exist no n-d tensor polarizations
to date. To extract n from measurements we have to
resort to p-d tensor polarizations implying that the
Coulomb force has to be dealt with. In the absence of an
exact treatment, approximations have been proposed® 2728
to describe the Coulomb corrections at the neutron ex-
change pole. Here we have handled the Coulomb contri-
butions to the extrapolated residues somewhat differently.
Employing an on-shell approximation that describes the
Coulomb distortion in an effective two-body manner’ we
have Coulomb corrected the p-d tensor polarization data.
Assuming nuclear charge symmetry we have thus ob-
tained n-d predictions that can be combined with mea-
sured cross sections for the purpose of pole extrapolation.
This set of n-d data was then subjected to the procedure
described in Sec. III except for the renormalization which
is redundant in this case.

The usefulness of our Coulomb distortion corrections
has already been demonstrated before by explaining, at
least qualitatively, the measured differences of n-d and
p-d differential cross sections’’ and nuclear analyzing
powers.®® As a further example we show the Coulomb
corrections to the tensor polarizations as given by the
Reid potential calculation!’ [Figs. 4(a)—(c)]. The compar-
ison with experiments by the Ziirich group’! again indi-
cates that adding the approximate Coulomb corrections
make the Faddeev results more compatible with the data.
This positive trend of the Coulomb corrections is not con-
tained in more simple approximations like the one which
modifies the n-d amplitudes simply by the Coulomb
phases to yield Coulomb distorted amplitudes [dotted
lines in Figs. 4(a)—(c)]. Sperisen et al.>? have already not-
ed that this approximation fails for T, and T,;. On the
other hand, our approximate Coulomb distortion correc-
tions would bring their Faddeev solutions much closer to
the p-d data.

In Table IV we show the influence of the Coulomb dis-
tortion on the extrapolation of the Reid-potential pseudo-
data. Here it should be mentioned that the function f(z)
certainly cannot be analytically continued into the un-
physical region due to the Coulomb singularity. Alterna-
tively one can use a modified function as proposed by
Londergan et al.* which does not contain this singularity.
We obtained, however, with f(z) identical results within
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FIG. 4. (a)—(c) Tensor polarization T,y, T,, and T), at
Ef, =11 MeV of the Reid potential n-d calculation of Ref. 17
(solid line) with n-d results where (i) lowest order Coulomb
corrections as in Ref. 32 (dotted line) and (ii) approximate
Coulomb distortion effects (dashed line) are included. The p-d
data at Ef, =10 MeV are taken from Ref. 31.

TABLE 1V. Effect of the approximate Coulomb distortion
corrections on 7 calculated on the basis of the Reid-potential
pseudo-data.

Epy A(nPd—qnd)
(MeV) L ax (%)

5.5 3 19.84
10.85 3 16.50
14.1 3 9.83

the error bars when we suppressed the Coulomb peaked
forward direction of the pseudo-data, an approach usually
taken for extrapolating p-d data. The corrections display
the typical decreasing behavior as a function of energy.
The magnitude of the effect on 7, however, is smaller
than previously found by the DWBA-type calculation of
Santos and Colby.® Their method essentially consists of

_Coulomb penetration factor corrections to the pole resi-

due, an approach which has been found to tend to over-
estimate the Coulomb distortion in the physical region.’

The Coulomb distortion corrections to T,, of the Reid
potential calculation at E$, =11 MeV were used for ob-
taining the n-d tensor polarizations from p-d measure-
ments at Ef, =10 MeV.?>! To construct f(z) we have to
know both o(0) and T',, at the same angles, but since the
differential cross section at E[, =5 MeV (Ref. 33) was
measured at different angles we have fitted T, at these
points. The best accuracy in extrapolating the n-d data
was achieved with L, =2, but even here the error was
already around 15% which is unavoidable with the
present accuracy of the data at this energy. The value of
7=0.0266+0.0039 should not be taken too seriously, but
it demonstrates, at least, that 7 extrapolated from n-d
data does not significantly differ from the commonly ac-
cepted values.

Finally, we have looked at the o(0) data to investigate
their correlation with the S-state normalization. In Fig. 5
h(w) at Ef, =12 MeV is shown together with the experi-
mental points. Again the smallest error in 7 was found
for L ,x=2, but in this case the fit to the data is not as
good, which is of particular importance in the backward
direction. At lower energies, like at Ef,, =5 MeV, the fit

1.0

0.5 | \ /

h (w)

0.0 L o v v 0 NP
1.0 0.0 -1.0

wlcos Ocm.)

FIG. 5. Polynomial expansion of the function #(w) obtained
from fitting the n-d cross section data of Ref. 33 at E}, =12
MeV (circles). Angular variable and notation at the pole line
same as in Fig. 2.
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with L., =2 is better, which might explain why at this
energy A, =0.8847+0.0326 is rather close to the average
experimental value,' whereas, e.g., at 12 MeV the L, =2
fit neglects part of the very backward structure, thus
yielding a much too high result of 4;,=0.9199+0.0109.
In this context one should mention also recent measure-
ments of ¢(0) at 8, ,, =180° by the Uppsala group.’? At
6 MeV their data point is significantly bigger than the
179° measurement of the Karlsruhe group,* whereas at 12
MeV it is the other way around.

V. SUMMARY

To study the method of pole extrapolation in the three-
nucleon scattering system we have calculated n-d differen-
tial cross sections and tensor polarizations with various
N-N potentials that differ mainly in the asymptotic prop-
erties of the deuteron. These pseudo-data were then
analytically continued to the proton-exchange pole and
the pole residues were related to the deuteron asymptotic
normalizations. In comparing the extrapolated values
with the deuteron asymptotic normalizations of each
model employed we have obtained information on the ex-
actness of said method in n-d scattering.

As far as A, is concerned, the pole extrapolation almost
reproduces the aimed for value, the difference being close
to only 1%. The discrepancy becomes roughly 5% in the
case of 7, but here the error in the extrapolation is already
2% not including the error due to the truncation of the
polynomial expansion of the pseudo-data. Adding correc-
tions arising from modifications of the pole approxima-
tion of the scattering matrix might further help to fill in
the gap. Considering the 2% accuracy achieved with the

model data the 3% error following from extrapolating less
accurate p-d data?® seems to be rather optimistic.
Continuing recent o(68) measurements in n-d scattering
to the proton exchange pole we have found at lower ener-
gies (<8 MeV) A4; to be roughly compatible with
A,=0.880, but the accuracy of the method is only
moderate. At higher energies where more partial waves
contribute, the precision of the data is not sufficient to
guarantee a sensible extrapolation within our approach.
Approximate Coulomb corrections were shown to im-
prove the agreement of n-d Faddeev calculations with p-d
tensor polarization measurements. The effect of the
Coulomb contributions in the physical region translates
into a 20% effect on 7 at around 5 MeV and shows the
typical decreasing behavior with energy. The magnitude
of the correction to 77, however, turns out to be smaller
than found previously in a DWBA-type calculation. Hav-
ing applied our corrections to T, data of p-d scattering
at E4=10 MeV they were combined with the n-d cross
section data of the same energy and extrapolated to the
pole. The resulting 17 happens to be close to the current
experimental average value. Taking into account the error
of about 15% we may conclude only that this set of “n-d”
data does not severely conflict with the p-d data on the
basis of the asymptotic normalizations of the deuteron.
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