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Advantages are pointed out in studying S-matrix elements between wave packets when long range

Coulomb forces are involved. A straightforward method is presented to calculate such matrix ele-

ments in few-body systems. It is based on a strong approximation of the M@ller wave operators.
For the two-body system the method is tested for (a) short range, (b) Coulomb, and (c) short range

plus Coulomb potentials, and is found in all cases to converge to the reference solution. As an appli-

cation, d + p breakup cross sections are calculated close to the threshold, including Coulomb forces

properly.

I. INTRODUCTION

In nuclear and atomic physics one often encounters a
few-body scattering process among which are charged
particles, which involves the long range Coulomb force.
For some processes, like charged nucleon scattering at
high energies, the Coulomb force can be viewed as a weak
perturbation, and adding a Rutherford-type correction to
a neutra1 amplitude gives a good approximation. Howev-
er, for such a process at low energies or in atomic col-
lisions the Coulomb force is dominant. E.g., major differ-
ences in absolute magnitude between p + d and n + d
breakup cross sections very close to the threshold have
been pointed out in Ref. l. In such cases a systematic ap-
proach for long range forces is a necessity.

There are a variety of rigorous and applicab1e methods
to calculate a scattering amplitude for a charged two-
particle system —the pure Coulomb amplitude, e.g. , is
known analytically. Going over to three- or more-particle
processes with at least two charged components, no such
well settled approach like the Faddeev equations for neu-
tral particles exists. There has been much effort to estab-
lish a stationary multichannel scattering theory involving
Coulomblike potentials. " This is not a trivial problem
since already a two-particle stationary scattering theory
based on the Lippmann-Schwinger equation exhibits cer-
tain difficulties. ' ' E.g. , the transition amplitude does
not exist for forward scattering and hence the conven-
tional partial wave expansion is not possible. ' Coulomb
scattering wave functions, being explicitly known, are rap-
idly oscillating functions in momentum representation
with nasty on shell singularities. This behavior also
shows up in Faddeev-type integral equations where the
charged subsystem transition amplitudes carry those
singularities. One way of treating this problem is the
screening approach. Using this approach Alt et al. have
calculated p + d elastic scattering in the few MeV region.
But most of these attempts " have not been completely
satisfactory since either not sufficient attention has been
paid to practical applicability or the range of application
was restricted.

In this paper we want to describe a new method of cal-
culating quantum mechanical few-body S-matrix elements

for short range and Coulornblike interactions. Its main
motivation is to avoid the singularities of Faddeev-type
integral equations when Coulomb forces are involved. It
is based on the observation that the singularities of
Coulomblike potentials, the corresponding scattering wave
functions, and S-matrix elements in momentum represen-
tation are softened or removed when being integrated over
with square integrable functions, i.e., wave packets. Also,
an 5-matrix element between wave packets has the prop-
erty to be decomposable in partial waves. On the other
hand, partially averaged quantities are often measured in
few-body reactions with charged particles. The new
method will enable us to calculate S-matrix elements be-
tween wave packets. The question arises: How are the
physically interesting quantities like the S- and T-matrix
elements on the energy shell related and how are they ob-
tained from the corresponding matrix elements between
wave packets? The initial and final wave packets have to
be chosen in momentum space with peaks around the on
shell values with a small width. In this work the wave
packets are built from some expansion functions and all
calculations are done in the expansion function basis.
These functions are chosen in momentum space ( q) as
step functions covering a finite interval to describe the

j q ~

dependence, and spherical harmonics are used for
the q dependence. The step functions e„(q) are constant
in a small subinterval [q„~,q„] and 0 elsewhere. Thus
we approximate a sharp momentum continuum state

~ qlm) by a Hilbert state
~

e„lrn). Using these expan-
sion functions, it is easy to construct wave packets con-
centrated at a certain momentum with a small width.
That leads to an approximation of the physical on shell
S-matrix elements by matrix elements in terms of the step
functions. Let us briefly describe the method. The S ma-
trix is composed from wave operators, which contain a11

the scattering information. The wave operators are ap-
proximated by exponentials of an approximated finite
rank Hamilton operator using a large but finite time.
That applies to the standard Moiler wave operator as well
as to the Dollard modified wave operator if Coulomb
forces are invo1ved. The finite rank Hamiltonian is ob-
tained from the original Hamiltonian by projecting onto
the space of expansion functions. That enables one to cal-
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culate the exponential in the eigenrepresentation of the
finite rank Hamilton matrix. One advantage of choosing
step functions as expansion functions is that the asymp-
totic channel Hamiltonian is diagonal in that basis.
Moreover the matrix elements of the two-body Coulomb
potential and the kinetic energy can be calculated analyti-
cally. It can be proven rigorously that the method yields
S-matrix elements which approximate the original ones.
Proofs and mathematical details are given in Refs. 24 and
25. In this paper we want to describe the method in more
detail. In Sec. II the method is explained for the two-
body system. In Sec. III numerical tests are given for the
two-body system for short range potentials, the Coulomb
potential, and a sum of both types. Section IV gives a
generalization to the N-body case. In Sec. V the method
is applied to a three-body reaction with two charged parti-
cles, namely to the d + p breakup process, including
Coulomb forces properly. That extends the results of Ref.
26 and represents the first reasonably rigorous calculation
of the d + p breakup cross section close to the threshold.

(2.7)

or by the expression
t

e = lim 1+—B (2.8)

H (u)=s-limH (u, n),
n~oo

H(u)=s-limH(u, n) .
(2.9)

Although expressions (2.7) and (2.8) converge, they may
turn out to be numerically inconvenient because of a large
8, which arises from large times t or small u. Thus an
additional approximation is introduced which allows us to
calculate exponential operators of large arguments. In a
second step H (u), H(u) are approximated by self-adjoint
finite rank operators (which are of course bounded and
defined on all of A ) H (u, n), H(u, n) such that

II. TWO-BODY SYSTEM

H =s-limH (u), H =s-lirrrH(u) .
u~0 u~0

An example for H ( u ) would be

(2.2)

The units ))r=c =1 are used in the following. Let V
denote a two-body pair potential. The problem is treated
in the center of mass system. Let H denote the kinetic
energy of the free relative motion, I the reduced mass,
and H =0 + V the total Hamiltonian. For pedagogical
reasons let us consider firstly V to be of short range. The
Moiler wave operator is given by the strong limit

~(+ ) s lim eiHte —iH t (2.1)
t~7- oo

The operators H, H are self-adjoint unbounded operators
on the Hilbert space M' (actually they can be defined at
most on a dense subspace M~ of A, as a consequence of
the Hellinger-Toeplitz theorem). In a first step H, H are
approximated by self-adjoint bounded operators (defined
on all of A ) H (u), H(u) such that on N

An example would be

H (u, n)=P„H (u)P„,

H (u, n) =P„H (u)P„,
(2.10)

where I'„ is the orthogonal projector on the subspace
spanned by P), . . . , tt)„, where t (t)„)„~(()v is a complete set
in A '. Let

+iH(u, n)te iH (u, n)t-
~ u, n, tl —e (2.1 1)

It has been shown in Ref. 24 that for every 4EA one
can find u, n, t+ such that

(2.12)

becomes arbitrarily small. The choice of u, n depends on
the choice of t~ (see also Sec. III). The calculation of
(2.11) means some finite dimensional matrix algebra.
Various methods to calculate the exponential of a matrix
have been reviewed by Moler and Loan. In this case the
most promising way is to diagonalize H (u, n), H(u, n)

H (u) =—arctano QH

Q
(2.3)

H (u, n)=g ~e„&e (e„~

(2.13)

where E is a, positive scaling factor of dimension energy.
If V is bounded one can put

n

H(u, n) = g ~
e„&e„(e„~

Let

H(u)=H (u)+V.

II( u t) eiH(u)te iHo(u)t—

(2 4) Thus Q(u, n, t) takes the form
Pl +l6 E —/6n(u, n, t)= g ~

e„&e+""(e„~e„'&e

(2.5)

(2.14)

It has been shown in Ref. 24 that expression (2.5) yields a
strong approximation of the Mgller wave operator, i.e.,
for every @HA 'one can find u, t~e~ i& such that

(2.6)

becomes arbitrarily small. The exponentials in expression
(2.5) are built from bounded operators which allows us to
calculate e, e.g. , by an expansion in a power series

V = V'+ V', (2.15)

where V' is of short range and V' is the long range
Coulomb potential, given in coordinate space by

eie2
V'(r) =

r
(2.16)

Now let us consider the modifications when a long range
Coulomb potential is involved. In particular let
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gg (+ ) l
iHt —iH (t)

'7

t~V oo

where

(2.17)

An extension of the Mq)lier wave operator taking into ac-
count the long range Coulomb potential has been given by
Dollard

partial wave decomposition. The (full) S-matrix is uni-
tary, mapping the Hilbert space onto itself. Considering,
e.g. , a rotationally symmetric potential (short range
or/and Coulomb), then

&e~s ~q&=g &e~io&&ious ~io)&to~a),
1=0

H"(t) =Hot+sign(t)
2H

' 1/2

e, e, ln(4H ~t
~

) . (2.18)
which decouples different angular momenta. Thus it is
sufficient to choose wave packets cp, p as angular momen-
turn eigenfunctions.

H '(u, t) =s-limH '(u, n, t),
n~oo

H ( u ) =s-linM ( u, n ) .
n —+oo

(2.20)

Examples for H '(u, t), H '(u, n, t), H(u), and H(u, n) are
given in Ref. 24. Defining

gc(u n t) eiH(un)t i,H~(u, n, t)—u, n, tl —e e

then for every 4EA one can find u, n, t+ such that

/

/0"+-)cp —0'(u, n, t )4/
/

(2.21)

(2.22)

becomes arbitrarily small. Again the choice of u, n de-
pends on the choice of t +. ~e want to remark that
0 (u, n, t) is unitary, while the original wave operator is
isometric. Finally the approximations of the wave opera-
tors yield for the S matrix

Sc ~c( —) ~c(+) (2.23)

S'(u, n, t+, t ) =0' (u, n, t+ )0'(u, n, t ),
and for every 4,4,

(2.24)

(2.25)

can be made arbitrarily small.
We want to conclude this section with a remark on the

I

Analogously to the short range case already outlined
one can introduce self-adjoint bounded operators
H '(u, t),H(u) such that on a suitable dense subspace M~

H '(t) =s-limH '(u, t},
u~0

(2.19)
H =s-limH ( u )

u~0

and self-adjoint finite rank operators H '(u, n, t),H(u, n)
such that

III. NUMERICAL TESTS FOR
THE TWO-BODY SYSTEM

&q ~x&=
tt(q, „,—q) 0&q &q,„,
0 elsewhere,

which is of separable type, rank 1 with an s-wave form
factor. The parameters were chosen to be

q- =1 fm

We calculate the S matrix element (X
~

S
~
g), where for

the sake of simplicity the wave packet has been chosen to
be identical to the potential form factor. The reference
solution is given by

In this section numerical examples shall demonstrate
the feasibility of the approach. In all numerical calcula-
tions we have skipped the bounded approximation (corre-
sponding to the parameter u}, but we have directly applied
the finite rank approximation (corresponding to the pa-
rameter n). It has been shown in Ref. 25 for a particular
set of expansion functions (later denoted as step functions)
that both the wave operator and the S-matrix converge to
the same limits (and in an analogous way) as in the
preceding. Thus one has as approximation parameters
only the time T =t+ ———t and the number n of expan-
sion functions. Some care is necessary concerning conver-
gence. Keeping T fixed and letting n increase the series
tends to a limit. However, keeping n fixed and letting T
increase the series starts to oscillate after a while. The
correct way is to pick a T&, let n increase until the series
tends to a limit S(T) ), then pick a larger Tz, find S (Tz),
and so on until S(T) ),S(Tq ), . . . , tend to a limit S.

(a) Firstly we consider a short range potential

V'= iX)A, (X i,
(3.1)

(X (S (X)=1 2mif dq f d—q'5'(Eq —Eq )X(q)(q (
T(Eq+i0) [

q')X(q'),

[X)k(s) dq iX(q} i'
1 —A,h(z)

'
z Eq—

and yields the number 0.846 718+0.482 735 i.
The finite rank approximations H (n},H(n) have been

obtained by defining the orthogonal projections P„with
the following choice of expansion functions:

q ~ &q&q
(i) e,(q)=. step function,0 elsewhere

where the q„subdivide the integral [O, q,„,] in subinter-
vals of equal length, and ~„ is chosen to normalize e„ to 1.

(ii) e„ is the vth orthogonal Jacobi polynomial on the
interval [O, q,„,] corresponding to the weight function
4mq . Note that it is not necessary in this case to intro-
duce firstly a bounded approximation because V is bound-
ed and the cutoff in the potential means that H is effec-
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TABLE I. The approximate matrix element (g
~

S
~
g) dependent on the parameters time T and the

number N of expansion functions (step functions). The potential is short range, separable, rank 1 with
an s-wave form factor P given by Eq. (3.1). The wave packet is chosen identical to the form factor.

100

10

0.854088
0.459 915 i

20

0.857 905
0.464 903 i

30

0.858 621
0.465 837 I'

40

0.858 872
0.466 164 i

200
0.840440
0.488 535 i

0.849 241
0.475 326 i

0.849 920
0.476 282 i

0.850 159
0.476 618 i

0.847 204
0.478 208 i

0.847 898
0.479 020 i

0.848 132
0.479 359 i

0.847 139
0.480 168 i

0.847 372
0.480 511 i

0.846 726
0.481 118i

0.847 013
0.481 109 i

0.846 821
0.481 458 i

Reference 0.846 718 + 0.482735 i

0.846 604
0.482 444 i

tively bounded by
~
~H

~ ~

& q,„,/2m. The results are given
in Table I for the choice (i) of expansion functions and in
Table II for the choice (ii).

Next we consider a more realistic separable potential
given by Eq. (3.1) with A, = —1, but now with a Yamagu-
chi form factor

A =1.9 fm ', P=1.786 frn
(3.3)

We have calculated the S-matrix element (P
~

S
~
g) for a

TABLE II. Same as Table I but with Jacobi polynomials as expansion functions.

T
(fm/c 10

0.859 292
0.466 583 i

20

0.859 195
0.466 585 i

30

0.859 195
0.466 585 i

40

0.859 195
0.466 585 i

0.850453
0.477 060 i

0.850466
0.477 049 i

0.850455
0.477 048 i

0.847 985
0.481 648 i

0.848 436
0.479 789 i

0.848 434
0.479 793 i

0.847 694
0.480 926 i

0.847 672
0.480 949 i

0.847 313
0.481 547 i

Reference 0.846 718 + 0.482 735 i

0.846 660
0.483 460 i
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Wave
packet

I
II
IIIa
IIIb
IIIc
IIId
IIIe
IIIf
On shell limes

Width
(fm ')

0.173 555
0.867 777—1

0.433 889—1

0.216 944 —1

0.108 472 —1

0.542 361 —2

0.127 759—0.367 535 i
—0.288 895 —0.723 391 i

0.891 391—0.441 356 i
0.913091—0.404 012 i
0.918 759—0.393 824 I'.

0.920 190—0.391 219 i
0.920 549 —0.390 564 i
0.920 639—0.390400 )'

0.920 668 —0.390 345 i

set of different wave packets l(. Firstly, we have taken the
wave packet identical to the Yamaguchi form factor,
given by Eq. (3.3), but normalized to 1. Secondly, we
have taken as a wave packet a Gaussian form factor,

TABLE III. Dependence of the matrix element ( P ~

S
~
P) on

the wave packet l(. The potential is separable with a Yamagu-
chi form factor P given by Eq. (3.3). Wave packet I is identical
to the Yamaguchi form factor [Eq. (3.3)], but normalized to 1,
wave packet II is Gaussian, given by the antibound state chan-
nel in Eq. (3.5), but normalized to 1. Wave packets IIIa—f are
given by Eq. (3.4), but differ in the choice of the parameters
q~„„,, q„~. They all have a peak at qM ——(q„~+ql„„)/2=0.173 555
fm ', but differ in their half-width m =(q„~—qt„„,)/2. The on
shell matrix element (limes w ~0) is given also.

given by the antibound state channel in Eq. (3.5), but nor-
malized to 1. Finally we have taken wave packets, given
by

q —q

( i )
K 1 —cos 2'

0, elsewhere

qio (q (qup ~

(3.4)

This wave packet is physically more meaningful, as it
has a peak at q ~ ——(q „„+q~„„,) /2 and half-width

tU =(q„~—q~,„)/2. Keeping qM fixed and letting w tend
to 0, the wave packet approximates a delta function, i.e., a
sharp energy state. We have chosen several packets of the
latter type, all with a peak at qM ——0. 1735555fm ', but
different width m. This momentum qM corresponds in
NN scattering to E),b ——2. 5 MeV. The reference values
are given in Table III. For the approximate solutions we
have used as expansion functions the step functions with a
quadratic distribution of nodes in [0,q,„,]. For the
Gaussian wave packet q,„,=5 fm ' has been chosen.
The results are given in Table IV. For the wave packets
given by Eq. (3.4), we have used q,„,=12 fm '. The re-
sults are displayed in Tables V—VIII. Moreover we con-
sider a separable NN potential which distinguishes be-
tween spin singlet and triplet states. It has been used in

TABLE IV. The approximate matrix element (t(
~

S
~
t(j) dependent on the parameters time T and

the number X of expansion functions (step function). The potential is separable with a Yamaguchi
form factor P given by Eq. (3.3). The wave packet gati

is Gaussian, given by the antibound state channel
in Eq. (3.5), but normalized to 1 (wave packet II of Table III).

T
(fm/c)

10

30

—0.296 839
—0.655 948 i

—0.295 398
—0.660 259 i

60

—0.293 750
—0.663 268 i

100

—0.292 710
—0.664 584 i

20
—0.303 713
—0.689 112 i

—0.304 173
—0.688 708 i

—0.303 116
—0.689 333 i

—0.302 764
—0.689 042 i

30
—0.303 097
—0.704238 i

—0.307 222
—0.696 145 i

—0.307 761
—0.695 519 i

—0.307 635
—0.695 446 i

40
—0.306 382
—0.703 680 i

—0.309 412
—0.698 678 i

—0.309 674
—0.698 344 t

50
—0.294 164
—0.716005 i

—0.310640
—0.700 916 i

—0.310640
—0.700 009 i

60
—0.309 684
—0.705 043 i

—0.311 109
—0.701 038 i

70
—0.305 112
—0.714014 i

—0.311 397
—0.701 753 i

80

Reference —0.288 895 —0.723 391 i

—0.311784
—0.702 625 i
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TABLE V. Same as Table IV, but with a wave packet given by Eq. (3.4). The wave packet has a
peak at q~ ——0. 173 555 fm ' and a width w =0.173 555 fm ' (wave packet IIIa in Table III).

T
(fm/c

100

30

0.937 861
—0.289 166 i

40

0.940457
—0.252 571 i

60

0.940 430
—0.251 025 i

100

0.939 535
—0.241 610 i

0.882 801
—0.394 748 i

0.913942
—0.372 571 i

0.906 431
—0.382 453 i

0.905 022
—0.377 890 i

300
0.880 197

—0.398 859 i
0.897 726

—0.424 304 i
0.896 387

—0.423 627 i
0.894048

—0.427 064 i

400

500

0.880 323
—0.450 597 i

0.893 384
—0.434 135 i

0.891 375
—0.437 707 i

0.892 204
—0.436 585 i

0.891 949
—0.438 616i

600
0.890 084

—0.438 276 i
0.891 721

—0.439 742 i

700
0.891 671

—0.440 137 i

Reference 0.891 391 —0.441 356 i

0.891 242
—0.440 702 i

TABLE VI. Same as Table V but with the wave packet having a width m =0.0867777 fm ' (wave
packet IIIb in Table III).

T
(fm 30

0.972 445
—0.133 932 i

40

0.968 701
—0.151 419i

60

0.972 982
—0.127 965 i

100

0.974 700
—0.119073 i

200
0.959 503

—0.207 772 i
0.947 304

—0.264 654 i
0.950 736

—0.225 956 i
0.953 839

—0.215 543 i

300
0.955 966

—0.273 957 i
0.921 793

—0.327 075 i
0.935 700

—0.301 114 i
0.936 069

—0.292 231 i

500
0.920 245

—0.347 754 i
0.923 559

—0.369 548 i
0.918 725

—0.376 039 i

0.914665
—0.400 097 i

0.913728
—0.399 570 i

900
0.902 759

—0.419411 i
0.913423

—0.402 368 i

1100 0.913 187
—0.403 069 i

1300

Reference 0.913091 —0.404 012 i

0.912 022
—0.404 454 i
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TABLE VII. Same as Table V, but with the wave packet having a width te =0.04338889 fm
(wave packet IIIc in Table III).

T
(fm/c) 30

0.980 766
—0.093 372 i

40

0.982 309
—0.091 696 i

0.982 921
—0.083 293 i

0.987 083
—0.063 962 i

0.954 164
—0.267 251 I'

0.957 023
—0.210980 i

0.952 133
—0.224 337 i

0.963 635
—0.173 884 i

700

0.890 542
—0.427 984 i

0.955 700
—0.271 512 i

0.933998
—0.340 998 i

0.933 410
—0.335 452 i

0.903 566
—0.418 380 i

0.945 732
—0.264 419 i

0.931 653
—0.327 997 i

0.872 572
—0.459 076 i

0.924 109
—0.371 350 i

1100
0.916804

—0.392 499 i

1300
0.913551

—0.399 213 i

1500

Reference 0.918759 —0.393 824 i

0.911719
—0.400 994 i

TABLE VIII. Same as Table V, but with the wave packet having a width ur =0.0216944 fm

(wave packet IIId in Table III).

T
(fm/c) 30

0.972 385
—0.169297 )

40

0.979 285
—0.113404 i

60

0.971 332
—0.131415 i

100

0.978 470
—0.107 698 i

0.917913
—0.349 464 i

0.967 182
—0.209 863 i

0.947 335
—0.244 575 i

0.958 640
—0.203 615 i

0.938 3S1
—0.312481 i

0.920 506
—0.361 777 i

0.941 803
—0.283 261 i

0.904 690
—0.401 631 i

0.879 353
—0.451 311 i

0.931 822
—0.338 656 i

0.839 725
—0.518450 i

0.920 504
—0.378 492 i

0.914649
—0.393 66S i

1400
0.912950

—0.396 869 i

1600

Reference 0.920 190 —0.391 219 1'

0.910434
—0.397 927 i
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the three-body calculation described in Sec. V. TABLE X. Same as Table IX but in the triplet channel.

A,~= —0.02047 fm ', @~=0 71.72 fm

A,"=—0.02459 fm ' p"=0.4164 frn' .

(3.5}

p" projects on the spin states co=t(} (antibound state, sing-
let) and co=d (bound state, triplet). The parameters A.",p
are adjusted to the low energy data deuteron binding ener-

gy, singlet and triplet scattering length, and singlet effec-
tive range. Again we calculate the matrix element

(f ~

S
~
g) with l( given by Eq. (3.4) in both the singlet

and triplet channel. One obtains as reference

T
(fm/c) 40

—0.133454
—0.622 121 i

—0.253 278
—0.881 276 i

—0.253 806
—0.900 901 i

60

—0.130547
—0.610353 i

—0.248 867
—0.886 531 i

—0.248 684
—0.908 682 i

—0.250 676
—0.912073 i

(g
~

S~
~
g) = —0.533 572+0.844 763 i,

(Q
~

S
~
Q) = —0.244219 —0.915 836i .

900

Reference —0.244 219

—0.250 576
—0.911 252 i

—0.915 836 I.

The step functions have been used covering the interval
[0,q, „,], q,„,= 5 fm '. The results are shown in Tables
IX and X. Another test is the relation

(3.6)

2V(r)=, e =1/137e

r '

and a wave packet

(3.7)

TABLE IX. The singlet channel matrix element (g
~

S~
~

t().
The potential is separable with Gaussian form factors g, given
by Eq. (3.5). The wave packet is given by Eq. (3.4).

T
(fm 40 60 80

where
~
l() +' denotes the scattered wave packet corre-

sponding to the incoming packet
~
P). Equation (3.6) fol-

lows from the intertwining relation. One has for both
spin channels

(Q
~

H
~
l() =0.878020 10 fm

Using T = 800 fm/c and X =40 expansion functions, one
obtains

'+'(f
~

H
~

g)'+'=0. 886274 10 fm (singlet},

=0.873 612 10 fm (triplet) .

(b) Now we consider a long range Coulomb potential,

(
~

)
~ qio &q&qup
'0 elsewhere (3.8)

which is also s wave. The parameters were chosen to be
q~,„——0.5 fm ', q„p=l fm ', Ir:~~/~~=1. Again we cal-
culate the S-matrix element (f~S

~
g). The reference

solution is given by

V= V'+ VC, (3.10)

and yields the number 0.999 614—0.027 271i. The finite
rank approximations H '(n, t),H(n) have been obtained
by orthogonal projections P„with the step functions
[choice (i)] as expansion functions, but which now cover
an interval [O, q,„,], q,„,=40 fm ' which is larger than
the interval [q~,„,q„p] of the wave packet. The results are
shown in Table XI.

(c) Finally we consider a potential which is a sum of the
above types

200
—0.180 627

0.864 393 i

—0.187 995 —0.193 773
0.855 594 i 0.853 536 i

where V' is of the type given by (3.1) but now with a dif-
ferent form factor

—0.456 263
0.874 496 i

—0.483 258 —0.492 106
0.860 613 i 0.855 857 i

q„p —q
1 —cos 2m.

&q ~x)= qup
—q]ow

qtow & q & qup

—0.484 207
0.862 403 i

—0.506 203 —0.514489
0.856 867 i 0.852 251 i

800
—0.496 876

0.841 284 i
—0.510965 —0.519406

0.856 771 i 0.851 681 i

—0.520 637
0.851 398 i

Reference —0.533 572 + 0.844 763 i

0 elsewhere (3.11)

with the parameters A, = —10 fm ', q~,„——0.5 fm
q„= 1 fm ', and a'~ ~g~ ~

=1. We have calculated the ma-
trix element (X

~

S —S'
~
X) choosing a wave packet iden-

tical to the form factor, where S denotes the full S matrix
and S' the pure Coulomb S matrix, the latter being
analytically known in momentum-angular momentum
representation. The reference solution has been obtained
using the screening and renorrnalization technique'
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TABLE XI. The approximate matrix element (P
~

S
~
g} for the Coulomb potential given by Eq.

(3.7). The wave packet is given by Eq. (3.8).

20

0.999 556
—0.018 302 i

40

0.999430
—0.019 892 i

60

0.999422
—0.019889 i

80

0.999419
—0.019943 i

100

0.999414
—0.020 153 i

0.999 686
—0.020 284 i

0.999 563
—0.022 695 i

0.999 527
—0.023 359 i

0.999 516
—0.023 621 i

0.999 506
—0.023 926 i

0.999 620
—0.022 361 i

0.999 551
—0.023 992 i

0.999 527
—0.024 592 i

0.999 512
—0.025 050 i

0.999 578
—0.023 823 i

0.999 540
—0.024 852 i

0.999 518
—0.025 512 i

0.999 573
—0.023 682 i

0.999 543
—0.025 584 i

Reference 0.999 614 —0.027 271 i

0.999 571
—0.025 401 i

(X ~S —S'~X)= lim 2ni —f dq f dq'5(E~ Eq ) —X(q)(q
~
Ttt(E~+i 0) —Ttt(E~+iO)

~

q')X(q'),
R~ao ZJt (Eq)

(3.12)

with

Ptt (E~ ) = — [ln(2qR) —C], (3.13)

TR(z) = VR + VR Go(z)Ttt (z},

Ttt (z) = VR + VR Go(z)T~(z),

with the screened short range potentials, respectively,

(3.14)

Vtt(r)=V (r)e

Vz=V +V& .
(3.15)

The Lipprnann-Schwinger equation has been solved using
a Pade technique. The solution was found to be stable
with diagonal Pade approximants of order 5 and a screen-
ing radius R =40 fm. It yields the number
—0.320 056+0.699 390 i. The finite rank approxima-
tions of H '(n, t),H(n) have been obtained by the same
type of orthogonal projections as in the case with a pure
Coulomb potential. The results are shown in Table XII.

In summary of this section we have tested the proposed
method by calculating S-matrix elements (g ~

S
~ P} cor-

responding to different potentials between s-wave packets

C =0.577216 . (Euler number),

where Zz represents a renormalizing phase factor and
Ttt, Ttt are defined as the solutions of the Lippmann-
Schwinger equations, respectively,

(,2 2

( q'10
~

S
~
qlO) =St(q)5

2m 2m
(3.16)

one can choose as wave packets a set [ P„(q) I of orthogo-
nal functions in Hilbert space and calculate for each par-
tial wave I

( P;10
~

S
~
P, IO) = f dq P;*(q)St(q)PJ(q), —

i,j =1,2, . . . , (3.17}

P of different shape. The approximate S-matrix elements
tend to the reference solution in all cases. The conver-
gence is fast in the short range case, rather slow in the
pure Coulomb case, but for the Coulomb subtracted S-
matrix element corresponding to a short range plus
Coulomb potential it is comparable to the short range
case. The physically most relevant wave packets are those
concentrating at some momentum [given by Eq. (3.4)]
which approximate a sharp energy state. The correspond-
ing S-matrix elements were found to be relatively stable
under variation of the width of those wave packets
(to~0), which seems to indicate a smooth phase shift
function in the corresponding energy region. Wave pack-
ets concentrated at some momentum with a small width
have been chosen also in the d+ p calculation (Sec. V).
The other wave packets used have no direct physical
meaning, but its corresponding S-matrix elements can be
viewed as bi1inear functionals of the S matrix, which can
be used to recover the energy dependence of the S matrix.
Denoting the S matrix in momentum-angular momentum
representation by
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TABLE XII. The approximate matrix element (g
~

S —Sc
~

g). S corresponds to a short range plus
Coulomb potential given by Eq. (3.10), S corresponds to the pure Coulomb potential given by Eq. (3.?).
The short range potential is separable, rank 1 with an s-wave form factor P, given by Eq. (3.11). The
wave packet is chosen identical to the form factor.

T
(fm

30

20

—0.135 738
0.494 467 i

30

—0.137034
0.497 403 i

40

—0.137 709
0.498 987 i

50

—0.137946
0.499 544 i

60

—0.138056
0.499 802 i

60
—0.270427

0.673 759 i
—0.273 083

0.677 988 i
—0.274472

0.680 276 i

—0.274 958
0.680 107 i

—0.275 183
0.681 452 i

90

120

150

—0.310304
0.691 587 i

—0.315938
0.690 760 i

—0.317245
0.690 768 i

—0.313203
0.696 043 i

—0.318 545
0.695 344 i

—0.319457
0.695 550 i

—0.314703
0.698 459 i

—0.319855
0.697 839 i

—0.320496
0.698 172 i

—0.315225
0.699 308 i

—0.320 304
0.698 718 i

—0.320 838
0.699 100 i

—0.315466
0.699 702 i

—0.320 509
0.699 126 i

—0.320992
0.699 531 i

—0.318 172
0.690 500 i

—0.319988
0.695 485 i

—0.320 716
0.698 252 i

—0.320931
0.699 237 i

—0.321 022
0.699 696 i

210
—0.319089

0.690 110i

—0.320 570
0.695 282 i

—0.320 971
0.698 204 i

—0.321 043
0.699 253 i

—0.321 063
0.699 745 i

Reference —0.320 056 + 0.699 390 i

from which one can obtain the expansion coefficients St k H (u)=s-limH (u, n), H(u) =s-limH(u, n), (4.4)

St(9)= g St, t, Pk(tl) .
k=1,2, . . .

IV. N-BODY SYSTEM

and let

IIa(u n t~ eiH/unI(e iH, (u,n)t-
u, n, t& —e

Then for every &HA one can find u, n, t+ such that

(4.5)

H =H +V, H=H +V. (4. l)

The notation is taken from Ref. 24. Let u describe the
situation (channel) where some of the N elementary parti-
cles form one or more composite particles. The situation
without composite particles is denoted by a=O. Corre-
sponding to each channel a there is a channel interaction
V which is the sum of interactions between those ele-
mentary particles which are contained in a composite par-
ticle ( V =0). The total interaction is V. The kinetic en-
ergy is H . There are channe1 Hamiltonians H and the
full Hamiltonian H,

becomes arbitrarily small. The choice of u, n depends on
the choice of t+.

Inclusion of Coulomb potentials requires a modification
of the wave operator. We follow again the proposal of
Dollard. Assume in channel a there are M particles,
each of which is either elementary or composite (if there
is at least one composite particle I&X), labeled by I,J.
Let er denote the charge of particle I, mlz the reduced
mass of particle I, and J, Htj the kinetic energy of rela-
tive motion between particle I,J.

J/7

In the case of short range potentials the Mgller operator
corresponding to channel cz is given by

A '(t)=sign(t)
1&I (J(M

Ply J
eyeJ o ln(4

~

t
~
Htj )

~~(+) s li iHte —iH+t

t —+goo
(4.2)

Let H (u),H(u) denote self-adjoint bounded operators,
such that on a dense subspace & of A

H"(t)=H +&t'(t) .

Coulomb modified wave operators are

(4.6)

(4.7)

H =s-limH (u), H =s-lit H(nu) .
u —+0 u~0

(4.3) gac(+) s qimeiHte —iH (t)

t~T ao
(4.8)

Let H (u, n), H (u, n) denote self-adjoint, finite rank
operators such that

Again let H '(u, t) denote a self-adjoint bounded operator
such that



H. KROGER AND R. J. SLOBODRIAN 30

H '(t}=s-lirnH '(u, t),
u~o

(4.9)

let H '(u, n, t) denote a self-adjoint finite rank operator
such that

H '(u, t)=s-limH '(u, n, t),
n~co

and let

~ac( ti iH(u, n)te iH —(u, u, t)u, n, tI —e e

Then for every +~A one can find u, nt~ such that

~
~Q

'(-+'4 —0 '(u, n, t~)@~
~

(4.10)

(4.11)

becomes arbitrarily small. Again the choice of u, n de-
pends on the choice of t~. The approximated channel S
matrices can be constructed from the approximated chan-
nel wave operators in analogy to the two-body case. We
want to conclude this section with a remark and a word of
warning. We consider it as an advantage of this approach
that one has not to deal with singularities of the Green's
functions as they occur in integral equation ap-
proaches. Especially for the scattering of oppositely
charged particles, e.g. , e+ d, the infinitely many bound
state poles of the Coulomb Green's function do not occur.

However, a note of warning should be given here.
There is an ambiguity (phase factor) with Dollard's
Coulomb modified wave operators in channels with more
than two charged particles (elementary or composite) cor-
responding to the incomplete knowledge of the boundary
conditions. Also in the approaches of Refs. 2—9 this
phase ambiguity for three charged particles is not
resolved. However, Merkuriev has given boundary con-
ditions in coordinate space for three charged particles.
That should, in principle, serve to fix the above-
mentioned ambiguity in case of three charged particles.

V. d+ p BREAKUP PROCESS

In this section we want to describe an application to the
d + p~p + p + n process very near the threshold, i.e., in
the low energy region where the correct treatment of the
Coulomb force is supposed to be important. We have
considered the potential

V=V'+V', V'=g V", ~+12,23, 31 (5.1)

2ni5(E' E)0(E—'
~

T(')~(E—+i 0)
~
E)u . (5.3)

The differential cross section is obtained from the T-
matrix element in the same way as for short range forces.
The phase space factor is given, e.g., by Ebenhoh. The

where for each channel a we have taken the strong two-
body potential V given by Eq. (3.5) and the Coulomb
potential V, acting only between p-p, given by Eq. (3.7).
The breakup S matrix

s,'.=n"'-' n"'+ ~ (5.2}

is related to the breakup T matrix, which enters in the
cross section via

,(E'~S,'. ~E).

potential conserves the quantum numbers total spin and
total angular momentum, but not total isospin. We have
used the following basis of functions:

~
e,e„LM(l, i, ) ), m, n =1,2, . . . , I, i(, =0.1,2. . . ,

where e~ are the step functions, as given in Sec. III, used
here for the variables

~ p ~, ~ q ~

which describe relative
and subsystem motion, respectively. The quantum num-
bers l, A, describe relative and subsystem angular momenta,
respectively, and LM describes the total angular momen-
tum. Also spin and isospin have been included. In the in-
going state the wave packet for the relative motion has
been represented by the function ek(p}, such that the on
shell (os) momentum p„ lies in the subinterval k
(i()k i &p„&pk). It has been summed in the outgoing
channel over all S-matrix elements with those step func-
tions e~(p)e„(q) which contribute to the energy interval

2

Pk —I I

&"
I

&
4 i '+ &

4 ik —
I

~"
I4mN 4nzy mg 4mN

m N
——nucleon mass .

The following approximations have been made. The
subsystem, the relative, and the total angular momentum
have been restricted only to s and p waves (note that the
breakup amplitude does not have the forward singularity
due to the Coulomb potential as the elastic amplitude).
The number of expansion functions has been limited to
400. Only total isospin conserving Hamilton matrix ele-
ments have been taken into account. The differential
cross sections d o/d 0(d Q2dE. , projecting on the
kinematical curve have been calculated, and the absolute
norrna1ization is adjusted to the experiment. ' Figure 1

shows the results for 7.5 MeV incident deuteron energy,
which corresponds to an energy of 0.275 MeV for the out-
going three nucleons, while Fig. 2 gives results for 7.402
MeV deuteron energy.

We want to discuss qualitatively the structure of the
curves, in particular the major bump. Although the phase
space factor has a maximum near that bump, it does not

)
& 4-
OJ

I

E

W

& 2

b

i i ) i

0 0.4 0.8 l.2 l.6 2.0
Es (MeV)

FIG. 1. The d+ p breakup cross section at 7.5 MeV incident
deuteron energy, 13'-13' proton-proton detection angle, along
the kinematic curve; the data are taken from Ref. 33.
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oJ 3—
I

S

J3
E

QJ 2

Al

1

b

Coulomb effect in the outgoing channel, namely the
Coulomb repulsion of the two protons, yields an enhanced
probability to find the two protons widely separated
which is most likely with a large pp relative momentum
and that is exactly where the peak is found.

In the future, it is planned to investigate if the devia-
tions in Figs. 1 and 2 can be ascribed (at least partly) to
three-body forces. However, two-body forces are fairly
dominant. The strategy is therefore to deal with the
Coulomb problem in an "exact" way. The strength of the
three-body force is believed to be comparable to the
Coulomb force at short distances, but has partly an oppo-
site sign and a different momentum dependence. Hence
interference effects should be strongly energy dependent
and produce deviations with respect to an exact two-body
plus Coulomb treatment.

1.0

Ee (MeV)

FIG. 2. Same as Fig. 1, but 7.402 MeV incident deuteron en-

ergy.

show such a pronounced peak (see also Ref. 23). On the
other hand, the bump cannot be explained by a NN final
state peak due to the strong force, because none of the NN
pairs displays a minimum in its relative energy at the
peak. However, the relative energy of the two protons has
a maximum at the peak. With a total energy tending to
the breakup threshold, i.e., the kinetic energy of the out-
going three nucleons tending to 0, the strong NN force
will become negligible compared to the pp Coulomb force
in the outgoing channel, as has been pointed out in Ref. 1.
Thus we suggest to explain the bump mainly as a

VI. CONCLUSION

We have proposed a method to calculate few-body S-
matrix elements for Coulomblike interactions between
wave packets using a strong approximation of the wave
operators. The method has been tested in the two-body
system and was found to give results converging to the
reference solution. As an application we have calculated
differential breakup cross sections for the d+ p reaction
close to the threshold. We consider as virtues of the
method its technical simplicity and the absence of singu-
larities, which appear in integral equations.
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