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We study the discrepancy between the measured 0it — 2 form factor of 12C and the existing theoretical
results, and specify a generator-coordinate state that resolves the discrepancy.

The charge form factors of the transitions between the
lowest states in !2C have been studied in a variety of
theoretical approaches including random phase approxima-
tion (RPA), alpha cluster model (ACM), generator coordi-
nate (GCM), resonating group (RGM), projected Hartree-
Fock (PHF), and SU; methods (see, e.g., Refs. 1-5).
While in the elastic case the experimental form factor can
be reproduced rather accurately by any of these methods
(except PHF), all of them fail to fit the inelastic form fac-
tors of the 2{, 37, 17", and 4 state over the entire range
of measured momentum transfer g (cf. Figs. 2.8 and 2.9 of
Ref. 1). The discrepancy is particularly severe for the
0i — 2{ transition at high momentum transfer. Here, the
ACM, GCM, RGM, and PHF results fit the experimental
form factor reasonably well up to about g=2 fm~! but de-
viate from the experimental curve for larger g values (cf.
Fig. 1). In particular, the calculated form factors fail to
reproduce the rapid falloff at intermediate momenta and the
shoulder at large momenta, that are characteristic for the
experimental curve.

In this Brief Report we study what types of wave func-
tions are capable of resolving the existing discrepancies
between the calculated and the experimental 0f — 2{ form
factor. In particular, we attempt to determine modifications
of the existing solutions that lead to an improvement in the
inelastic form factor at large momentum transfer while leav-
ing the low-momentum  part and the elastic form factor
unaffected if possible. We ignore here the energy associated
with such a wave function since the minimum-energy prin-
ciple underlying the above variational methods has not led
to a satisfactory description of the form factor. Moreover,

the energy would require the selection of some specific

model Hamiltonian as an additional ambiguity that can be
avoided in a fit of the form factors.
The charge form factor? 367
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is essentially determined by the reduced matrix elements of
the multipole terms
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between the initial and final states |J;) and |J;). Here,
f2(q) is a correction factor for the finite size of the proton
and the center-of-mass motion. The label p denotes the
summation over all proton coordinates 7, and the corre-
sponding angles 7,.

Our selection of suitable methods to describe the initial
and final states is guided by the outcome of previous form-
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factor calculations. Some approaches have to be ruled out
because they either fail to fit the elastic form factor (PHF)
or the low-momenta part of the inelastic form factor (SUj),
or have a complicated geometrical structure (RGM) that is
difficult to improve. Therefore, among the above methods,
the ACM and GCM wave functions appear to be the best
candidates for the initial and final states |J;) and |J;).

The ACM wave function is given by single-nucleon orbits
that are taken to be 1s states of given width b= (k/mw)?
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FIG. 1. Charge form factor |F|2 of the 0i" — 2{ transition in
12C as a function of ¢2, the square of the momentum transfer.
The result of the present work is shown in comparison with the
experimental data and the results of previous calculations (taken
from Refs. 1 and 2 ). For the experimental longitudinal form fac-
tor see Ref. 17.
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with quartet symmetry that are centered around given points
Ry, Ry, R,

¢1(Y1)= (b\/:l;)_yzexp[—(Y,—ij)2/2b2]xi (3)

(i=1,...,12; j=1,...,3)

Here, i labels the nucleons and j the alpha cluster centers,
and X; denotes the spin and isospin state of the nucleon.
The antisymmetrized ACM state of the whole system is
then given by the Slater determinant |R;, Ry, R3,b) of the
(in general nonorthogonal) single-nucleon states.2® The
cluster positions Ry, R,, K; and the oscillator constant b are
the variational parameters of the system.

As the ACM many-body wave functions have in general
neither good parity nor good angular momentum numerical
parity and angular-momentum projections are required. The
latter is performed by using the Peierls-Yoccoz projection
operator
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FIG. 2. Schematic picture of the superposition of ACM states
which (after antisymmetrization, parity- and angular-momentum
projection) fit the form factor. The overlap between the two states
is 62%.
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With the standard Hamiltonians of the Volkov,? Brink-
Boeker,!® or Skyrme type, a variation after projection leads
to minimum-energy states where R;, R, and R; form an
equilateral triangle for both the J”"=0% and 2% result.>11-15
Only ACM states with such a triangular symmetry and some
excited states with a linear configuration have been con-
sidered in this Brief Report. They can be specified by the
two variational parameters R and b. In addition, we have
studied GCM states that are a superposition of triangular
ACM states

6y ~ [ 1R.b) g (R)aR. s)

Since the elastic form factor is known to fit the experimen-
tal data sufficiently accurately!~>1¢ no attempt has been
made to improve the initial state in the .0 — 2i" reduced
transition matrix element of Eq. (1). All searches for a
suitable ACM wave function for the 2% state failed. Any
changes in the parameter values R or b (regardless of the
energy) have led to a 0 — 2f form factor that fits at best
the high or low-momenta part but not both regions simul-
taneously. It turned out that the experimental curve can be
fitted over the entire range by a 2% state that consists of a
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superposition of the original ACM state? (R =1.4434 fm)
and a wider (R =2.0 fm) triangular ACM state with the
same oscillator constant (»=1.4 fm) (see Fig. 2).

The result is plotted in Fig. 1 in comparison with the
results of previous calculations. The only noticeable devia-
tions occur at about g>=7 and 9 fm~2 where the experi-
mental curve appears to have some additional structure
although the error bars are relatively large in these areas. It
is conceivable that a more refined GCM state consisting of
more than two ACM states with a finer generator coordinate
mesh would further improve the agreement. This has not
been studied as the data are rather sparse and the deviation
is small and may even be insignificant. Apart from that the
calculated and experimental form factors agree almost
within the error bars even in the region of medium- and
high-momentum transfer where all previous calculations
failed.
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