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We treat the response in a finite nucleus to spin-isospin sensitive probes in the transverse spin
channel. Since linear momentum is here not a good quantum number, we adopt a formalism sug-

gested by Toki and %cise, which incorporates an expansion in partial waves of good nuclear total
angular momentum. The pion self-energy II is nonlocal in momentum space; iterations of this
quantity give the response function R, which is obtained by solving a matrix integral equation exact-
ly {using numerical methods). We use R to renormalize the matrix element of a transverse spin-
isospin probe and find large effects near the critical momentum region {q-2—3 m ) and almost no
effects for a small momentum transfer. We also find very important effects of the nonlocality in

momentum space. We apply our formalism to the level with J =1+; T=1 in ' C. The results are
compared with currently used approximations: the local density approximation, the infinite nuclear
matter approximation, and the approximations of Toki and Weise. All these approximations fail to
reproduce the exact results, especially for q —+0 and near the critical momentum region. Using the
infinite nuclear matter approximation, we find the best agreement for the equivalent constant densi-

ty p=0.08 fm for low q; this agreement is not found, however, for any particular value of p when

the value of q is either tiny or big. The approximation of Toki and Weise cannot be reliably used in

our case, except possibly for q =m . The finite-nucleus results obtained are compared with the cor-
responding longitudinal response. The great similarity of the last two quantities, in contrast with

Fermi gas estimates, is partially supported by new experimental data.

I. INTRODUCTION

The excitation of pionlike levels and the response of nu-
clear systems to spin-isospin sensitive probes has received
considerable attention in the last years. ' Some au-
thors ' have limited their treatment of this problem to
the context of infinite nuclear matter, while others present
finite-nucleus treatments. " There have also been stud-
ies of spin-isospin strength distribution effects in
intermediate-energy reactions using the local density ap-
proximation. ' ' In this work we study in detail the
response to spin-isospin sensitive probes in the transverse
spin channel and the excitation of pionlike levels in a fin-
ite nuclear system, and attempt to establish the degree of
accuracy and the domain of validity of various approxi-
mations that have been introduced in the context of treat-
ments for finite systems. (The longitudinal spin channel
has been studied elsewhere. ")

The conservation of linear momentum, characterizing
the infinite nuclear matter, is no longer valid for finite nu-
clei. Instead, the response function (obtained by summa-
tion over particle-hole states) can be treated with well-
defined angular momentum. The nonlocality in momen-
tum space is a crucial feature in our subsequent treatment.
We focus on pionlike excitations ( J =0+;
T =O~J =0,1+,2, . . .; T =1) obtained by one-
particle —one-hole (lp-1h) excitations, where the interac-
tion is taken to be one-pion exchange with a repulsive
term represented by the Migdal parameter g'. In calcu-
lating the pion self-energy we adopt the formalism used
generally, namely, we sum over 1p-1h excitations taking
into account ring diagrams only. The formalism is ap-

plied to the study of the nuclear response to a transverse
~~

probe o )(qe' '
'wi, where q is the momentum transfer to

the nucleus. This response is studied for the J = 1+,
T =1 excitation in ' C for low, intermediate, and high
momentum transfers (q=0—600 MeV/c). This range in-
cludes the critical momentum region (2—3 m ) as well as
the q~O region where the quenching related to the ef-
fects studied here is supposed to play a role in M 1 and
Gamow- Teller transitions.

We now give some short remarks on the importance of
the operator studied here, in order to make our subsequent
results more intelligible. The transverse-channel operator
has been analyzed in the context of pionlike excitation for
electron inelastic scattering. The (e,e') reaction can be
used for M 1 excitations via the (o' X q)~3 operator; the
1+, T =1 state in ' C at 15.11 MeV has been explored in
detail at high momentum transfers by Sagawa et al. ,

' by
Delorme et al. ,

' and by Toki and Weise' from various
points of view. (The transverse nuclear response has been
measured with inelastic electron scattering, ' and studied
for infinite nuclear matter in the sum rule approach by
Alberico, Ericson, and Molinari' ' at the quasifree peak
region. ) The (o. Xq)ri-type operator also appears in the
nucleon-nucleon scattering amplitude used, for example,
by Toki and Weise ' ' for the analysis of the (p,p') reac-
tion. This reaction has been proposed, and was later ap-
plied, for the excitation of pionlike levels. No tendency
towards large critical effects in the longitudinal channel is
found, but effects pertinent to the high value of g'
( g' =0.7) are probably existing. The transverse spin
operator also appears in the amplitude of photopion reac-
tions. ' It is also worthy of note that a transition operator
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of the transverse-type is suitable for studying spin-isospin
strength distribution effects in nuclei. For infinite nuclear
matter this kind of operator is not properly aligned with
the driving force for the pionic mode. It will therefore
not be an appropriate tool to investigate the remnants of
the so-called pionic soft mode behavior (which could have
occurred at central nuclear densities for less repulsive
short range correlations in the N-N interaction) in hcavy
nuclei. On the other hand, large surface effects make this
restriction less severe for small nuclei (such as the ' C nu-
cleus studied here).

The paper is organized as follows: The required for-
malism is presented in Sec. II. We then study the nuclear
response for low and medium (Scc. IIIB) and for high
(Sec. IIIC) momentum transfers. In Sec. IV we give an
overall comparison of numerical results obtained for the
fimte nucleus for an I.DA treatment and for an infinite-
matter approximation, as well as a comparison with the
approximations proposed by Toki and Weise for handling
finite systems. We find that our exact method is needed
for a quantitative treatment of finite nuclei. For semi-
quantitative estimates in the critical region one obtains
more or less equivalent results from the approximate ap-
proaches noted above. In the low momentum region the
finite nucleus treatment is needed even for semiquantita-
tive studies, at least for light nuclei. The experimental
response is discussed in Sec. V. We show that the trans-
verse and longitudinal responses are very similar, in con-
trast with nuclear matter results, and this conclusion is in
agreement with recent experimental (p,p') data.

II. FORMALISM

The formalism presented here is similar to that of Toki
and Weise and was already developed in our earlier pa-
per. " We give here some formal comments to make the
subsequent material more self-contained and understand-
able. We first deal with the pion self-energy in the con-
text of finite nuclei. Iterations of the quantity will later
give us the nuclear response function. The latter is then
used for the renormalization of spin-isospin operators.
The various quantities that enter are pertinent without
reference to the character of the outside probe, that is, re-
gardless of whether the probe is longitudinal, o. q, or
transverse, o. &(q.

A. The pion self-energy for finite nuclei

This quantity is the finite-nucleus analog of the lowest-
order pion self-energy II in infinite nuclear matter,
presented diagrammatically in Fig. 1. It can be obtained
by defining the tensor self-energy II (or, in terms of
spherical-component indices, II&&) such that for an excita-
tion energy ~,

( q
'

~
II (co)

~ q )=q
' . II ( q ', q;co ) q,

where we find for the static (co =0) tensor (see Ref. 11 for
details)

11,'.(q'q)=g g X X Q%(q')E E Q;~
JM LM~ I ~~ ph( J} p h

X I'L~ (q')Y*, , (q)( —1)"(LML, 1 —p i
JM)(L'Ml 1

i
JM) . (2)

In Eqs. (1) and (2), q and q
' are the linear momenta of

the incoming and outgoing pions, respectively, Ep —Eh is
the energy of the virtual particle-hole state, and the sum-
mation includes nucleon-hole and 5-isobar-hole states
(when the particle is a 5, the energy E~ Ei, includes the-
b;nucleon mass difference 2.2m ). The particle-hole
state of good quantum numbers J and T is obtained by
L-S coupling, restricting the summation over ph(J) to
lp-lh configurations of a definite angular momentum

number J. The form factors are given by

QM (q) =f(q') +Ni (q)
m

and

Qai (q) =f'(q') +ab(q»
Pl~

(3a)

where m is the pion mass, f(q ) includes a form factor
with cutoff A, namely,

A—f q'=f,
A —co +q2

FIG. 1. Nucleon-hole and h(1236)-hole excitations ring dia-
gram contribution to the piori self-energy in nuclear matter.

and we use the values A = 1000 MeV and
f~(q )/f(q )=2 throughout. The quantities FNi, (q) and
I'ai, (q) are
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p p jp

F,h(q) =il&h[(2L +1)(2S+1)(2j,+1)(2j„+1)]'' 1„—,' j„.
L S J

x( —i) [4m(2lh+1)]' (LOlhO
I lpO) J dr r jL(qr)R~(r)Rh(r),

with sN ———,', gNh ——2 and s~ ———,', g~h ———', (see Oset et al. ), S =1 is implied in Eq. (5), and R~~h~(r) are the radial wave
functions (here taken in a harmonic oscillator basis).

The pion self-energy in a finite system can be decomposed as in Toki and Weise,

(q'I II (co)
I
q)= g IIJ(q', q;co)PJ(q'. q),

4m.

where we use their notation: the partial wave IIJ(q', q;co) is

0 rIIj(q', q;oi) = g ajL [IIJ(q', q;to)]LL'a JL'
LL'

the 2)& 2 matrix IIJ being given by

I +J(q q ~)]LL' g 0 h(q')[« —Eh —~) '+«, —Eh+~) ]Q h
Ph( J)

and ajL ——(J 0 1 0
I
L 0) and L,L'=J+1. In developing

our formalism we use II&, (rather than IIJ) and thus get
results for the most general spin components; in this
respect our treatment is different from that of Toki and
Weise, who focus primarily on longitudinal (0 q and
o q ') coupling in constructing their response function.

In Eq. (8} the summation over ph states refers to states
of definite J; and typically goes up to 10—30 fico

throughout the Periodic Table. As already hinted, we
shall calculate for low-lying levels, and thus use co=0. A
convenient base of states is that of the harmonic oscilla-
tor. Further details are given in Ref. 11.

The characteristic behavior of the matrix partial wave
IIj(q', q) can be summarized as follows: (a) The contribu-
tion of the high-lying excitations for medium and large q
values is very important, and amounts to as much as
200—300%. (b) The diagonal partial wave in momentum
space [IIJ(q,q)] exhibits a pronounced peak (as a function
of q). (c}The self-energy partial waves show large nonlo-
cality in momentum space; they have a clear peak at
q =q' when q=2—3m~, and nondiagonal (in momentum
space) peaks for q &m or q) 3m . (d) The dominant

I

sign of these partial waves is negative with relatively
small positive parts when q' is either much smaller or
much larger than q. This behavior is changed, however,
for q&m or q)3m, where we find large positive
values of IIj(q, q'). (e) The b;isobar contribution to
the self-energy is similar in shape to the nucleon one, and
amounts at its peak to 10—25% of the corresponding nu-
cleon contribution.

B. The response function to spin-isospin sensitive probes
in finite nuclei

We seek the finite-nucleus equivalent of the iterated
self-energy of Fig. 1. For the case of infinite nuclear
matter this iteration results' in the diamesic function re-
normalization, which represents the many body random
phase approximation (RPA) renormaliz ation of the
Fermi-gas self-energy. Including momentum space nonlo-
calities we use an integral equation for the response func-
tion R, that replaces the operator geometric series of the
infinite nuclear matter treatment:

( q
'

I
R(to)

I q) =(q '
I

11(oi)
I q)+ J (q '

I
II(co)

I
k)D(k, o~)(k

I
R(~}

I q) .
(2n )

In Eq. (9), D is the particle-hole interaction including a one-pion exchange (OPE) potential and a term for short-range ef-
fects, represented by the spin-isospin Migdal parameter g'. Using the conventions of Sec. II A, one finds a partial wave
expansion of the spherical tensorial response function which is equivalent to Eqs. (1) and (2). The partial wave matrix
Rj(q,q') satisfies the integral equation

kdk —1 g[RJ(q' q)]LL =[&J(q' q)]LL'+ i g [&J(q' k) ]Li. ajar, , ajar, '+ 5ii.' [ J(k q)]A, 'L'
(2~)' u. k+m k

(10)

where A, ,A, =j+1. This formula is correct both for the longitudinal and the transverse spin coupling.
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We note in passing that the onset of the static (co =0) pionic soft mode occurs where

RJ(q' q) = g aJA[RJ(q' q)lu, ~JR, '

A, iL'

diverges. This happens for g =0.32 in our case in the critical momentum region (q =2—3 m ), a number much below
the currently accepted value of g'=0.7. (We note, however, that this critical behavior is predicted to occur for any value
of g', provided the effective nuclear density is sufficiently high; critical phenomena are the results of an interplay be-
tween the value of g' and the nuclear density. ) In the following we present results for g' in the region 0.7—0.4, which
roughly spans the range from the currently accepted value to a value that gives pion condensation for central nuclear
densities.

In dealing with finite nuclei, we are interested in the degree of nonlocality in R J(q, q ). We find that Rz follows Ilz in
the sense of having a diagonal peak in momentum variables for q =2m and a nondiagonal peak for q=m and

q =4m . We also note that the OPE term in Eq. (10) results in a coupling which gives rise to large nondiagonal ele-

ments of the 2 X 2 matrix Rq.

C. The renormalized matrix element of a transverse probe

The formal comments of this subsection [Eqs. (11)—(13)] are identical to material in the literature, but are required
here to make the subsequent results intelligible and self-contained. We consider the renormalized matrix element of a
transverse spin-isospin operator (valid for J = 1+,2, . . . ; T = 1)

Nf' '(q)=(ph(JM;TMT)
~

(o. Xq)„e'q 1' ~0)~

k dk=5Ti5 i( i) g f— Fpi, (k)[e g '(k, q)]IL bJI (JM IJ IIJ,
~

JM—}Yg~ „(q),
(2~)

where F~i, (k) are given in Eq. (5),

J+1
2J+1

J
2J+1

1/2

' 1/2

I.=J—1

I.=J+1
(12)

and the diamesic matrix function is a solution of the equation

k dk
ej(q, k)RJ(k, q') = II& (q, q') .

(2m )

Defining the reduced element TJ by the relation

(13)

(14)

we can write it as a sum of the P-subspace contribution (the subspace of configurations treated directly —no renormaliza-
tion effects) and a second part, generated by the renormalization effects:

Tz""'(q)= —
& QPpi' (q+zz, + g f, Pfi«) QDJ«)L, iRs«q)u4L, .

L L„I.

D. The P and Q subspaces

A complete calculation of the excitation of pionlike
modes, using a sufficiently large model space, would au-
tomatically include the precursor enhancements without a
special treatment. In the present approach —and in most
similar investigations' ' —we study the renormalization
of a spin-isospin sensitive probe by higher configurations
when only a small P subspace is explicitly treated. The
problem we face is to avoid the double counting of config-
urations that are included in the P subspace and that also

contributed in the iterations for IIq and RJ. Toki and
Weise calculate the pion self-energy and the diamesic re-
normalization in the residual Q = 1 Psubspace only. —As
discussed in detail in Ref. 11, this is not a completely
satisfactory procedure, and a systematic expansion in the
off-diagonal interaction terms connecting the two spaces
is required. In such an expansion the prediagonalization
(P subspace) result is the zeroth-order term while the re-
normalization treated in Q subspace only is a first order
result. This problem has not yet been fully treated in the.
literature, and we believe that the results of the exact ap-
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proach will lie in the region between the P +Q and the Q
results.

III. NUMERICAL RESULTS AND DISCUSSION

TABLE I. Calculational results for the renormalized matrix
element of the transverse probe o Xqe'q' in the residual Q
subspace for J =1+; T =1 in ' C. The value of g' is 0.7, and
the notation is explained in the text.

A. General comments
(MeV/c)

~ ~(H-ren)
LTD

The results presented were calculated for ' C for the
residual Q space, where the Of&co configuration (we take
advantage of the fact that this is an almost pure configu-
ration) (I@3/2)(lp&&2) is the P subspace. (Calculations
performed in the complete P+Q space yield quite un-
reasonable results in disagreement with our expectations
from previous studies "and from nuclear matter calcula-
tions of the present renormalization. This, however, is
not always the case: See Ref. 11 for a study of the
J =0 level in ' 0 where the complete space calculations
are needed. The present case is presumably a consequence
of the overly large contribution of the Orris@ configuration. )
In this case the harmonic oscillator variable is cx = 129.5
MeV, and the summation over particle-hole configura-
tions goes up to 10rria& (in the momentum range can-
sidered). These high principal quantum numbers result in
serious numerical complications, and care must be taken
when handling the high-lying p-h states. (Calculating
these we found it necessary to use double precision in
various CDC computers. )

In order to get a solution of the integral equation [Eq.
(10)] we needed a total of -31 Simpson integration points
(a somewhat lower number of Gaussian points is needed).
These numbers are smaller for q =q', higher when q and
q' are appreciably different, and also depend on the mag-
nitude of q and on the proximity to critical behavior.

B. The low and intermediate momentum region

We first look into the very low to medium momentum
transfer range. As indicated in Ref. 4, it is customary to
assume that when the P space incorporates essentially all
the important excitations of purely nucleonic character,
the diamesic function builds from 6-hole configurations
only, in the long wavelength limit (q, q'«m ). This
should imply a quenching of all spin-isospin dependent

phenomena at low momentum transfer, at least for heavy
nuclei. This mechanism has been suggested to understand
the systematic reduction of strength in Gamow-Teller and
magnetic isovector transitions as compared to shell-model
calculations (see Oset, Toki, and Weise, and references
therein). Pionlike excitations may thus be able to em-
phasize the role of b, degrees of freedom in nuclei, even in
the long wavelength limit. (We note that recent studies
of isoscalar versus isovector 0+—+1+ transitions, as well
as transitions to high-spin states where precursor phenom-
ena in finite nuclei are not expected at all, indicate that
other sources of quenching in both isoscalar and isovector,
channels should exist. )

In Table I we present results for the renormalized re-
duced element Tq""' [see Eqs. (14) and (15)] compared to
the corresponding nonrenormalized quantity T~ . We ac-(0)

tually find that most of the renormalization is contributed
by the lowest b, -hole configurations; other, more high-

10
30
SO

70
100
150

16.34
16.05
15.48
14.66
13.05
9.70

16.31
15.61
14.51
13.04
10.73
6.52

15.44

12.49
8.25

lying ones, including higher nucleon-hole configurations,
begin to contribute appreciably at q & 100 MeV/c. The
effect of those high configurations alone (no Orruu-5-hole
configurations included) is demonstrated in Table I by
iTP ""', and is evidently very small for q & 100 MeV/c.
Table I also shows that the renorrnalization effects are
completely negligible for q~O. We do not find the
aboue mention-ed quenching for this light nucleus Thi. s is
especially interesting since in corresponding infinite-
nuclear-matter or local-density-approximation calcula-
tions one finds a constant quenching for q —+0. We shall
discuss this point in detail in Sec. EV.

C. The high momentum region

TABLE II. The renormalized matrix element of the trans-
verse probe o Xqe' q' in the residual Q subspace for J~= 1+,
T =1 in ' C and for high momenta. The notation is explained
in the text.

q
(MeV/c)

200
250
300
350
400
500
600

6.3
3.4
1.4
0.2

—0.3
—0.3
—0.13

g'=0. 40

3.3

—0.9

—0.9

~

Z
(ren)l g

g'=0. 55

3.4

—0.8

—0.8

g'=0. 70

3.2
0.6

—0.9
—1.1
—0.6

0.2
0.25

Results for the renormalized matrix element compared
to the nonrenormalized one are given in Table EI. The
main contribution in this kinematical region is from very
high-lying configurations (up to —10rrrtu). The contribu-
tion of the (Hire-5-hole configurations is of the order of
20% only for these high momentum transfers. (For
q =350 MeV/c and g'=0.7, for example, we find thati'""' is —1.07 for the full renormalization case, while it
has the value of —1.30 when the lowest 6-hole configura-
tions are not included. ) The importance of nonlocality of
the response function in momentum space is evident. In
the vicinity of the minimum of Tq ', the renormalized
quantity TJ""' collects strength from other regions. This
is especially the case for q=2 —3m, i.e., for the critical
momentum region. The reason for this is the proximity
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of a phase transition which could have occurred for
g'=0.4 (namely, pion condensation or nuclear critical
opalescence}, and seems to enhance nonlocal effects. We
recall that one might expect that an operator such as M 1,
being proportional to o &&q (i.e., not aligned with the pion
source operator cr.q ), is not an appropriate tool for look-
ing into pionic modes. It has been argued, however, that
this is correct for heavy nuclei, but the relatively large
surface of light nuclei makes such restrictions less severe
in the latter case. The moderate effects found here com-
pared with the longitudinal probe case," and, in particu-
lar, the relatively weak dependence on the crucial paraIne-
ter of the precritical effects, namely, g', do not encourage
the study of spin-isospin strength distribution effects with
transverse probes.

This behavior of the renormalized matrix element can
be qualitatively explained on the basis of general argu-
ments given by Osterfeld, Suzuki, Speth, and Krewald
(see, e.g., Ref. 27). The elementary M 1 operator does not
depend on the radial coordinate. It is thus only sensitive
to Q-space ph excitations which have the same radial
wave functions as those of the I' space. The nuclear
operator, on the other hand, does have a radial depen-
dence which, in fact, becomes more and more important
when the momentum transfer q is increased. This can be
seen, for instance, in Eqs. (5), (10), and (15). Thus, the ef-
fect of renormalization is expected to be more and more
significant with increasing values of q. For light nuclei
these effects will be very small for low q; this result is not
produced in a nuclear matter calculation. For the case of
' C only the OAco Ah excitation can contribute at very low

q, while higher (2fico, . . . ) excitations enter only for
higher values of q. The actual shape of the finite-nucleus
response is a result of the finiteness of the system and the
surface, which is not present in the case of nuclear matter
(Sec. IV).

A. The local density approximation

The use of the LDA is based on introducing a density
with radial dependence, taken here in the Fermi form

p(r) = 3

4mc

tz
~ 1+ c2

r —c1+exp (16)

where c denotes the nuclear half-density radius, and
a =4 40t i.s the nuclear surface thickness. This density
determines a local Fermi momentum

pp. (p)=[ ,'n. Ap—(r)j'~

which then appears in the Lindhard function used for
spin-isospin operator renormalization in the Fermi-gas
model. This assumes that the nuclear density is slowly
varying so that it is meaningful at each point to assign a
local Fermi momentum, determined from the nuclear den-

sity at that point, and then to calculate in the correspond-
ing Fermi gas. Naturally this is not necessarily a very
satisfactory approximation, and we wish here to study its
validity by comparing it to the treatment appropriate to a
finite system.

Using the LDA in the Fermi-gas model for the opera-
tor renormalization we have for the static case

tions commonly used in the current literature. These ap-
proximations include: (a) the simplest approximation of
nuclear matter with a constant, effective nuclear density P
(not necessarily the central density po}; (b} the more satis-
factory local density approximation (LDA); and (c) the
approximations of Toki and Weise.

We present an overall comparison of the ratio

9Hz(q) =Tq""'(q)i' '(q)

for the J = 1+, T = 1 level of ' C studied in this work.

IV. COMPARISON OF NUMERICAL RESULTS
VfITH SOME OTHER APPROACHES

[(o&& q )1
e' " 'r. i j„„=( cr'X q )1vie' q ' /[1+g'U (q, O)j,

In this section we compare the results of our treatment
with some other numerical results based on approxima- where the renormalization is given in terms of

e'(k, O) = 1+g'U(k, O) =1+g'
z 2

L +f& A —m 2M'pr k 32 Ap(r)

~ 2 g2+k2 ~2 ~pF
(19)

L (X)= — 1+ ln1 1 —X
2 2X

1+X
1 —X (20)

Using this renormalization, the ratio Aq(q) is given by

~J(q}= QFrh (&' q)b~l. g Fth'(q}bjt.
L

(21)

In Eq. (19), boa ——2.2m is the b, -nucleon mass differ-
ence, M is the effective nucleon mass taken as 0.8 times
the free nucleon mass, and

The quantities baal, and I'~h (q) of Eq. (21) are defined in
Eqs. (12) and (5), while Fzh (e', q) is obtained from
I'~h (q) upon replacement of the nonrenormalized radial
integral in Eq. (5) by the renormalized one

J dr r e' '[p(r) jjL (qr)R~(r)Rh(r) .

Similar applications of the LDA, where the radial
dependence (in configuration space) of p(r) is taken into
account, are given in Refs. 12, 13, and 26.

In the very low momentum region one uses only the 5-
isobar part of the renormalization in Eqs. (18)—(20). This
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TABLE III. Numerical results for the ratio A'q(q) calculated
for the J =1+; T =1 level of ' C. The results refer to a finite
nucleus (FN) and to an LDA calculation. (The dependence on
g' is relatively weak for the former, and we thus give the FN re-
sults only for g'=0. 7). The parameters for the LDA case were
taken as a=2.29 fm and c=2.36 fm.

0.8—
(a)

g =0.40

(MeV/c)

50
100
150
200
300
400

600

FN

0.94
0.82
0.67
0.5

—0.6
2.0

—0.7
—2.0

g' =0.40

0.88
0.88
0.58
0.57
0.47
1.02
0.75
0.68

LDA
g'=0. 55

0.85
0.84
0.50
0.49
0.38
0.98
0.68
0.60

g'=0. 70

0.82
0.81
0.44
0.43
0.31
0.93
0.61
0.52

1.0—

0.8-

0.6-

I .I I I I I I

I I I I I I I

(b)
g =0.55

may be obtained by dropping the first term in the square
brackets of Eq. (19). This results in an almost constant
ratio A'J, which turns out to be 0.88, 0.85, and 0.82 for
g'=0.4, 0.55, and 0.70, respectively. This feature is
essentially different from our finite nucleus results (see
Sec. III B), in which A'q(q) ~ l.

q~0
In Table III we give a detailed comparison of the ratio

9FJ(q) for finite nuclei (in the column denoted by FN) and
for the LDA. Since there is no simple way to separate the
low-lying nucleon-hole configurations from the high-lying
ones in e' of Eq. (19), we have included the full nucleon
Lindhard function for q &150 MeV/c. This lowers the
results for q &300 MeV/c'by about 30%, and has little
effect for q &400 MeV/c. However, it is not an impor-
tant source of error, since we have found earlier" that
LDA results agree much better with finite nucleus calcu-
lations in the residual Q subspace than they do with the
P +Q results, although the Lindhard functions include, in
principle, the complete particle-hole space. A discussion
of our LDA results is given in the following subsection.

B. Nuclear matter with a constant density

Closely related to the LDA is the use of a constant nu-
clear density, p, as the simplest approximation to a finite
nucleus. The density p may be different from the central
one po, since it is well known that light nuclei have a rela-
tively low density on the average. Results for p=0. 17,
0.14, 0.11, and 0.08 nucleons/fm are shown in Fig. 2, and
are also compared with the LDA results. The agreement
is not good, partly due to the different weighing of the
various parts of the nucleus and partly due to the behavior
of the harmonic oscillator wave functions (which give rise
to a minimum in the form factor at q =2a). At very low
momenta the LDA agrees best with p=0.08 fm (rather
than p=po ——0. 17 fm which is frequently used in nu-
clear matter approximate calculations; the corresponding
number found" for ' 0 was p=0. 12 cm ). The P ap-
proximation also gives a constant ratio Az(q) for q~0;
this ratio turns out to be 0.78, 0.72, and 0.66 for p=0. 17
fm; and 0.88, 0.84, and 0.81 for p=0.08, for g'=0. 4,
0.55, and 0.7, respectively, taken as representative cases.

(c
IP

04Ii—~

1.0
I I I I I

I I I I I I l I I I

0.8- (c)
g =0.70

0.6—

~W

200 300 400 500 600

FIG. 2. The ratio AJ(q) as a function of q and with g' as a
parameter. The results refer to constant density calculatioms
with p=0. 17 (long-dashed line), 0.14 (short-dashed line), 0.11
(dashed-dotted line), and 0.08 fm (dashed-double-dotted line).
A comparison with the corresponding LDA results is shown
(full line). The parameters for the LDA calculation are as in
Table III, where a comparison with the finite nucleus results is
given.

It is not surprising that the LDA and p results are appre-
ciably different from the exact finite-nucleus results, since
in the transverse case one expects large effects of the fin-
iteness of the nuclear system, such as important surface
effects, and thus the results are greatly modified by using
a finite system formalism in the calculations.

C. The approximations of Toki and &cise

Reference 8 applies several approximations to the cal-
culation of the response function in the spin-isospin chan-
nel for finite nuclei. In this subsection we apply these ap-
proximations and compare the results with our exact cal-
culations of Sec. III.

Beginning with the pion self-energy, Toki and Weise as-
sume (for q & m )

IIg(q, q') =IIg(q, q )dg(q —q'), (22)
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where q is the mean value of q and q', and the distribu-
tion dq satisfies dz(0) =1. This function is chosen as

dg(k)=j p(kryo), (23)

where rz measures the momentum-space degree of non-
—I

locality generated by the finiteness of the system. Turn-
ing back to Ref. 11, we note that this' is a very unsatisfac-
tory approximation. For the present 1+ case we found a
number of values for rj in the range 1.89—3.78 fm and
use the intermediate one r~=2. 5 fm. For the diamesic re-
normalization matrix Toki and Weise find

eJ(q ) = 1 — Dg(q )II&(q, q )
Sm rg

(24)

—1 g[DJ«)]LL' os 2 oJL'+ ~LL1+m k
(25)

Some numerical tests of these approximations are report-
ed in Ref. 11; we have performed two other numerical
comparisons directly related to the present transverse case.
The most careful one consists of replacing the exact self-
energy by the distribution given in Eq. (23), but solving
exactly the integral equation (10) for this new distribution.
This results, in addition to a systematic and severe un-
derestimation of the response function, also in results rad-
ically different from the exact ones (although for q =m
the agreement is quite good). The numbers are given in
Table IV, where we also show some results pertaining to
the use of a 5-function approximation for the momentum
space nonlocality. In this approximation, used by Toki
and Weise for heavy nuclei, the distribution of Eq. (22) is
taken to be

dq(q —q') = 5(q —q') . (26)

Although this approximation is used by Toki and Weise
for large nuclei, we test it here just for completeness
Under this approximation the ratio AJ(q) is given by

' ggL'Fph (q)[e J (q)]LL'~JL' ' ' gL+ph (q)bJL

%'e note that this approximation gives completely unsatis-
factory results, stressing once again the importance of
nonlocal effects and a complete finite nucleus treatment,
especially for this present case of a transverse probe and a
small nucleus.

The approximation of Toki and Weise were found to be
unsuccessful in both the longitudinal and the transverse
channels. The reason for this, as emerges from calcula-
tions in which we have checked the importance of the
longitudinal versus transverse pieces. of the 1p-1h interac-
tion (including the p exchange contribution), is as follows.
Although the Bessel function distribution may /ook rather
similar to the actual exact shape of [II+(q,q')]LL, it does
not give correct results for the renormalized matrix ele-
ment in both channels. This is the case because this ap-

pJ 0.9 for light nuclei and Dz ( k ) is the particle-
hole interaction matrix which has already been introduced
in Eqs. (9) and (10),

(MeV/c)

150
350
400
500

9.7
0.2

—0.3
—0.3

Bessel

6.8

0.9
1.5

5 function

6.8
0.0

—0.1
—0.1

proximation brings about spurious components which are
aligned with the driving (longitudinal or transverse) in-
teraction, and have large effects. On the other hand, a
careful and correct approximation (for a specific channel)
would not cause any serious errors even when it differs
appreciably from the actual distribution in momentum
space, provided that the differences are orthogonal to the
dominant channel.

V. THE EXPERIMENTAL RESPONSE

The data of Haji-Saeid et al. did not show any c6tical
effects in (p,p') at 800 MeV, where the J = 1+, T = 1 lev-
el in ' C was studied. Although we have shown here that
the approximate finite nucleus calculations used by these
authors are not accurate, the results of Ref. 20 obviously
indicate very small critical effects, as do other experimen-
tal data.

More direct comparison with our calculations can be
obtained from measurements of the longitudinal and
transverse responses themselves. This has been carried
out in a very recent experiment by Carey et al. Their
measurement is for the quasifree peak at momentum
transfer q =350 MeV/c. Nevertheless, a comparison with
our calculation can still be made at the semiquantitative
level, bearing in mind the following points: (a) The quasi-
free peak region is much less sensitive to critical spin-
isospin phenomena than the low-lying pionlike excitations
we deal with, especially because of the relatively high en-
ergy transfers (of order q /2M~) involved in quasifree ex-
citations. (b) Carey et al. compare their results with the
Fermi gas calculations of Alberico, Ericson, and Mol-
inari ' ' which give the longitudinal and transverse
responses relative to the free Fermi gas case, and corre-
spond to the ratios A'q ' '(q) given in Ref. 11 and in the
present work. (c) The large negative values of &z ' ' at
q-250—350 MeV/c are the result of a nonloeal collec-
tion of strength from a low minimum occurrin in the
nonrenormalized matrix elements Lq '(q) and TJ (q), and
are thus model dependent and may not appear in the
quasifree region.

In Fig. 3 we present the ratios AJ ' and A'J ' against q.
The figure shows the great similarity in the behavior of
the longitudinal and transverse responses, in contrast with
Fermi gas estimates (where the longitudinal response

TABLE IV; Results related to the approximations of Toki
and Weise for the renormalized matrix element of the transverse
probe cr Xqe' q ' in the residual Q subspace for Jr= 1+; T = 1

in ' C. The results, given for g'=0. 7, refer to the Bessel func-
tion distribution of Eq. (23) and to a 5-function distribution (ex-
plained in the text) and should be compared to the exact results
of Table II.

~

y (ren)l J
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FIG. 3. The exact finite nucleus ratios A'J ' (q) for the long-
itudinal and transverse renormalized responses. The value of g'
is 0.7.

VI. SUMMARY AND CONCLUSIONS

In this work we have analyzed spin-isospin strength dis-
tribution effects for the transverse spin channel

o Xqe' q ' ' and for a small nucleus, where surface effects
are expected to be strong. Using exact finite nucleus for-
malism and numerical procedures, we have obtained re-

displays the characteristic enhancement, while the trans-
verse response is quenched). Our calculations thus make
it perfectly possible that in the quasifree peak region the
ratio A'q '/Aq" would be unity in an exact finite nucleus
calculation, as the authors of Ref. 24 find for Pb at
q =350 MeV/c. This does not mean that spin-isospin
strength distribution effects are not present. On the other
hand, these effects are not the only important correction
to the model (P) space results, as discussed in Refs. 30 and
25.

suits for low, medium, and high momentum transfers and
have examined in detail some approximate approaches of
common use in the current literature. Although these cal-
culations are complicated and require a lot of computer
time, one has to apply this exact method for studying
these effects, especially for q —+0 and for q=2—3m
We have also found that transverse probes are not good
candidates for studying spin-isopin strength distribution
effects.

A major modification which we now intend to put into
our formalism is the effect of the p-meson exchange on
spin-isospin strength distribution phenomena. This can be
done by modifying the particle-hole interaction [Eq. (25)]
in such a way that it includes the p-meson exchange term
explicitly, as suggested by Delorme et al. ' and by Toki
and Weise. ' We note, however, that for q —+0 only the
repulsive part (g') plays a role in the particle-hole interac-
tion used here, and that for a finite nucleus the OPE term
is important in both the longitudinal and the transverse
channels. (Moreover, some new considerations may
prove that the p contribution to the N-N interaction is
rather weak, a fact that would make its explicit appear-
ance in our formulae unnecessary. ) It remains now to see
how this modification would actually affect our present
finite nucleus results, which are intended to serve as a
guide for further study along these lines.
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