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Within a folding procedure, the universal function of the proximity potential is calculated by us-
ing the energy density functional of Vautherin and Brink for the Skyrme force interactions. The
corrected Thomas-Fermi approximation is used for the nuclear density. Also, the surface energy
coefficient in the nuclear binding energy expression (for a spherical nucleus) is calculated for making
an estimate of the correction to the Thomas-Fermi kinetic energy density. Judging the performance
of the various known Skyrme forces in giving a correct physical behavior of the proximity universal
function and the surface energy coefficient, we obtain the correction parameter A ~ 3‘6— for the origi-

nal Skyrme force and the force SII of Vautherin and Brink.

I. INTRODUCTION

The concept of the proximity potential has come to
play an important role in the physics of heavy ion col-
lisions. First introduced by Blocki et al.! in the calcula-
tion of heavy ion potentials, it has now been extended to
the collision of deformed, oriented nuclei.? The interest-
ing feature of this approach is the separation of the force,
between two gently curved surfaces in close proximity,
into a geometrical factor representing the mean curvature
of the interacting surfaces and a universal function of
separation. The universal function gives the interaction
potential per unit area between two flat surfaces. Various
approaches have been used to calculate the universal func-
tion."* Since the proximity potential is a surface effect,
in judging the effectiveness of such an approach (and of
the interaction itself) it should be useful to examine not
only the microscopic nucleus-nucleus interaction potential
but also how well the method is able to reproduce the sur-
face energy coefficient in the binding energy expression
for the nuclei.

In the present work (which is an extension of a similar
effort by Gupta et al.*) we calculate the universal func-
tion of the proximity as well as the surface energy coeffi-
cient for various Skyrme interactions, using the density
functional method® with the Thomas-Fermi (TF) approxi-
mation for nuclear density. Within a folding procedure,
the potential is obtained as the difference between the en-
ergies of the combined system and those of the isolated
systems. This method of folding the densities ensures that
the attractive nuclear proximity potential arises from the
interaction of the surfaces only. As the overlap becomes
large, the resulting potential becomes repulsive. The ener-
gy density functional used is the one derived by Vautherin
and Brink® for the Skyrme interaction in which the energy
density is given as a function of nucleon density
P=pp+pn, the kinetic energy density 7=7,+7,, and the
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spin orbit density 7 =?p+7n; where p and n stand for
proton and neutron, respectively. The potentials are cal-
culated for various known Skyrme interactions and the
relative contributions of the nucleon density and the ki-
netic energy density are investigated. Also, the surface
energy coefficient is calculated and the performance of
the various Skyrme interactions is judged for a best fit to
the empirical value.’

II. UNIVERSAL FUNCTION
OF THE PROXIMITY POTENTIAL

In the folding procedure, the ion-ion potential V¥, as a
function of the separation degree of freedom, is calculated
as a difference of the energies of the combined system and
those of the isolated systems by considering the density p
of the combined system as a superposition of the densities
pi1 and p, of the individual nuclei:

V(¥)= [HEpndT— | [ Hy(FiprrdTy
+ [HyFpppmddts |, (D
with

p=p1+p2 .
This means that the antisymmetrization effects are
neglected. For the spin-orbit coupling and the Coulomb
effects neglected, the energy density functional H of
Vautherin and Brink,® for the even-even N =Z nuclei, is
given by
o #
H(T,p,m)=~ -7+ TP’ + 5 13p°
+ 531+ 50)p7+ 5 (98, —56,)(Vp)2, (2

where m is the nucleon mass and t, ¢;, ¢,, and ¢; are the
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TABLE I. The Skyrme force parameters together with the Fermi momentum k.

to t t 13 kfa
Interaction (MeV fm?) (MeV fm?®) (MeV fm®) (MeV fm®) fm™Y) Ref.
S —1072.0 461.0 —40.0 8027.0 1.37 8
SI —1057.3 2359 —100.0 14463.5 1.32 6
SII —1169.9 585.6 —27.0 9331.1 1.30 6
SIII —1128.75 395.00 —95.00 14 000.00 1.29 9
SIV —1205.60 765.00 35.00 5000.00 1.31 9
SV —1248.29 970.56 107.22 0 1.32 9
SVI —1101.81 271.67 —138.33 17 000.00 1.29 9

2k, =[(37%/2)po]'/*. This allows us to calculate p, for each interaction.

parameters of Skyrme interactions, listed in Table I.
These parameters have been obtained in a self-consistent
manner by fitting the binding energies, charge radii, and
other single-particle properties of spherical nuclei. Be-
sides the original force given by Skyrme® (denoted as S),
the two sets of parameters (SI and SII) obtained by
Vautherin and Brink® and the four sets of parameters
(SIII to SVI) of Beiner et al.,’ with quite different
strengths, fit the nuclear properties in essentially an equal-
ly satisfactory manner. In Eq. (2) the first term is the ki-
netic energy contribution; the terms involving p? and p*
are the volume effects arising from two- and three-body
interactions; the term proportional to pr is the interaction
term and the last term involving the gradient of density is
the surface term.

In the Thomas-Fermi (TF) approximation the nucleon
density is of the form®

potanh? r—R for r <R
p:
0 forr>R, &)
with
) 3.2 —2/3 172
m | 3w
b=0.16 7 | po/3(9t, —5t,) 4)
and R, the outer radius of the nucleus, given by
R=roA342b; ro=1.12 fm . (5)

In these expressions b is a measure of the surface dif-
fusivity. The kinetic energy density 7, in this approxima-
tion is then given by

To=2(272)¥3p3 . ©)

To this TF Kkinetic energy density 7o, however, is added a
correction 7, that involves additional surface effects, first
suggested by von Weizsicker." Among other methods,!!
this correction can be calculated by using the gradient ex-
pansion method.'>!* One obtains, to a first order, the fol-
lowing expression for the kinetic energy density:

2

, )]

T=To+Tr=To+A _VPR

where A is a constant. The value for A has been a point of

controversy in the literature and different authors'> have
suggested different values, lying between + (=) and .
In the present work, we start with the expression

m* 1

m T4

(8)

A=+

that was derived recently by Barranco and Treiner.'* Here
m* is the effective mass of the nucleon at the saturation
point of the symmetric nuclear matter. A value for
m*/m lying between 0.95 and 1 has been indicated by
these authors; this means A~ 3—56 Our calculations, how-
ever, support the lower estimate of A=+ for the reason-
able set of Skyrme force parameters.
The energy density functional H of Eq. (1), for p and 7
given, respectively, by Egs. (3) and (7), takes the form
2
H(T,p,70)= —2ﬁ—n77'°+ Ttop*+ e tsp’+ 16 (3t + 5t )pTo

N SRV
+a(Vp)*+ B(Z ) , 9)
where
a=a+a,,
with
1
ay=—4(9¢,—5¢%,) ,
. (10)
a,=- (3t +5t)A ,
and
B:—gn—x. (1)

The last two terms in (9) correspond to the surface ef-
fects. We also notice in the above equations that the term
proportional to (Vp)? also contains a contribution from
the correction to the TF kinetic energy, which arises via
the p7 term.

Following the proximity approach,! the interaction po-
tential between the two spherical ions, of radii C; and C,,
is given by

v=2aR [ dDe(D),

where R=C,C,/C;+C, and D is the gap width whose
minimum value is S. For the crevice formation S =0.

(12)
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e(D) is the interaction energy per unit area between two
flat parallel surfaces at separation D. Since f dD e(D)
does not depend on the geometry of the systems involved,
it is a universal function, ®(D), characteristic of the
matter. To calculate ®(D)= | dD e(D), we consider two
slabs of semi-infinite nuclear matter with surfaces parallel
to the XY plane moving in the Z direction. The two den-
sities in the Thomas-Fermi approximation are then of the
forms

potanh? ;b L for Z,<Z <
P1=
0 for Z <Z,
and ' (13)
potanh? ;b for —0<Z<Z,
pP2=
0 forZ>2Z,.

Here Z, and Z, are the parameters that determine the lo-
cation of nuclear surfaces (see Fig. 1). p=p;+p, is the

|

. 2/3
Vv 3 #
P(D)=——===—"—

"

where the integrals, representing the volume, are

I[n]= f(Pl +p2)"a'z— fp’l'dz— fpgdz

P
(fmd
P+ P
% 1
° Y &)
1
- (o} Z, 22 —z(fm) o

FIG. 1. Schematic Thomas-Fermi density distributions for
two colliding nuclei, in a slab approximation.

density when the two systems overlap. The universal
function is then given by

(D)= [e(D)dD= [[H(F\p,70)—H (Tp;,71)
—H(?,pz,Tz)]dZ . (14)

Combining (9) and (14) one gets the following expres-
sion for the universal function:

Its s+ s tol o)+ tetal s+ 16 (3t +58) 3 (57 L1 ) + P+ Py, (15)

(16)

and the other two terms giving the surface contributions due to the nucleon density p and kinetic energy density 7, are

2 2 2
F) )
D, =0, Pp=0q; -—Q—(p1+p2) dz— Py dz — P dz (17)
daz az oz
and
2 2 2
9 5/
e o =
®,, =a,00+8 | [ do— [ 5 g [1Z g | (18)
5T (p1+p2) p1 P2

For the TF densities (13), one obtains an analytical expression for the universal function ®, which is given in the Appen-

dix.

III. SURFACE ENERGY COEFFICIENT

The energy density functional (9) for the corrected TF approximation can also be used to calculate the surface energy

of a spherical nucleus,
2

E;=a [(VpPdT+B [ dv .

Yo
P

(19)

The contributing terms are apparently the gradient terms due to both the nucleon density and the kinetic energy density.
Using for p the TF density given by Eq. (3), we obtain for the surface energy of a spherical nucleus

E,= Esp + E‘s-r)t ’ (20)

where the contributions from the nucleon density and from the correction to the TF kinetic energy density are given,
respectively, as
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2
Ey,=a,Ey=a, {417 ’;—" [0.87728b3+0.606 00b*R +0.266 67bR ?] (21)
and
E,, =aEo+B 'sﬂ fb9 [0.85992b2+1.18172bR +0.666 67R*1{. (22)

This allows us to study the relative importance of the two
terms. We notice that whereas the term Eg, is indepen-
dent of A, E;,, depends on the A value through a; and B.

Equating the total E; to 4mR2y (or equivalently to
a;A%”3) the surface energy coefficient y can be estimated
and compared with the most accepted empirical value of
0.9517 MeV/fm? due to Myers and Swiatecki.” Other au-
thors have used larger ¢ values in their mass formula fits;
the largest one being y=1.3527 MeV/fm? (a,=24.49
MeV) due to Bauer.””> Apparently, these different esti-
mates for the ¥ value should have a strong bearing on the
choice of a value for the parameter A.

IV. RESULTS AND DISCUSSION

Table II gives the universal function ®, as a function of
the separation distance D, for various Skyrme interactions
whose parameters are summarized in Table I. The A
values chosen are = and . We first analyze the results
of the calculation for A= and notice that for the forces
SIV and SV, the potentials remain attractive even up to an
overlap distance of D =—2 fm. This is unrealistic be-
cause already for D = —1.75 fm the compression limit of
nuclear matter is reached (i.e, for D=—1.75 fm,

-
p1+p2=po, the central nuclear density). Also, for the
Skyrme interactions with large values of the three-body
parameter t3 (i.e., SI, SIII, and SVI), the potentials are
shown to behave unrealistically since they become repul-
sive within a short distance of only about —1 fm and are
also quite shallow. The remaining two forces, S and SII,
however, seem to give potentials with acceptable
behaviors. It is interesting to find that the potential due
to the original Skyrme force® S becomes repulsive at ex-
actly the compression limit of D =—1.75 fm. As we take
a smaller value for the parameter A(= —;z ), we notice that
though the qualitative behaviors of the potentials do not
change significantly, the reaching of the compression lim-
it, etc., does get modified. For A= %, Table II shows that
still only the forces S and SII are well behaved, but the
performance of SII over S is now somewhat improved.
Table III gives the calculated surface energy contribu-
tions E, and E,, (E;=E,+ E;,,) for various Skyrme in-
teractions, taking an illustrative spherical nucleus with
A=200. Once again for the parameter A, we have chosen
A=+ and 3. We notice that the contribution to the
term E;,, which is solely due to the correction to

Thomas-Fermi kinetic energy density, is quite large. For
A==, E,, is larger than Eg, for almost all the Skyrme

TABLE II. Universal function ®(D) for various Skyrme interactions and for different A values.

Separation
D (fm) S SI s SIII SIV sV SVI
®(D) in (MeV /fm) for A=
—0.25 —241 —1.18 —3.58 —1.90 —5.84 —9.12 —1.28
—0.50 —4.62 —2.28 —6.86 —3.86 —10.76 —16.37 —2.64
—0.75 —6.15 —1.37 —943 -  —4.87 —14.58 —21.57 —2.28
—1.00 —6.00 4.64 —10.39 —2.98 —17.06 —25.08 2.88
—1.25 —3.84 16.56 —9.38 —2.50 —18.19 —27.36 13.71
—1.50 —0.23 3227 —6.86 10.50 —18.23 —28.73 28.29
—1.75 3.93 48.80 —3.57 19.33 ~17.54 —29.38 43.81
—2.00 7.98 63.94 —0.07 27.77 —16.35 —29.40 58.18
®(D) in (MeV /fm) for A=¢

—0.25 —2.03 —0.70 —3.24 —1.51 —5.53 —8.84 —0.84
—0.50 —3.90 —1.37 —6.20 —3.12 —10.16 —15.82 —1.81
—0.75 —5.13 —0.13 —8.50 —3.84 —13.72 —20.76 —1.14
—1.00 —4.77 6.12 —9.26 —1.75 —15.99 —24.07 423
—1.25 —2.48 18.17 —8.13 3.86 —16.99 —26.20 15.18
—1.50 1.18 33.94 —5.55 11.90 —16.98 —27.51 29.81
-1.75 5.35 50.47 —2.25 20.75 —16.27 —28.15 45.33
—2.00 9.36 65.59 1.22 29.15 —15.12 —28.21 59.68
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TABLE III. Calculated surface energy contributions from p and from 7 for different A values and the surface energy coefficient ¥
for various Skyrme interactions, taking the spherical nucleus with- 4=200.

Skyrme interactions

S SI SII SIII SIV sV SVI

E,, (MeV) 605.58 416.98 716.50 571.59 851.11 1002.99 474.52

E,, (MeV) s 845.37 887.85 833.43 825.09 853.61 886.21 835.02

y (MeV/fm?) I 1.82 1.78 1.87 1.78 1.97 2.09 1.74
E,,, (MeV) A 169.07 177.57 166.68 165.02 170.72 177.24 167.00

y (MeV/fm? B 0.97 0.81 1.06 0.94 1.18 1.30 0.85

interactions. This is completely unrealistic since E,., is
. 1 .
only a correction term. However, for A=+, E;., is

reasonably small compared to the main term E;, and is
more of the order of a correction. Furthermore, a calcula-
tion of the surface energy coefficient ¥ shows that only
A=% give the estimates comparable with the empirical
number 0.9517 MeV/fm? of Myers and Swiatecki.” Once
again, the original Skyrme force S stands out to be the
best. Even if one accepts the largest value of ¥ =1.3527
MeV/fm? due to Bauer,!” it is evident from Table III that
the parameter A must have a value smaller than . A
similar situation is presented in Fig. 2 by the two contri-
butions to the universal function, plotted for the Skyrme
force S. The contribution of the term ®,,, decreases with

the decrease of the A value and becomes more reasonable
for A= .

Finally, two earlier results are also worth quoting here:
(i) von Dewitz'® could reproduce the binding energies of
nuclei reasonably well for A=, and (ii) Skyrme!” had
taken the total kinetic energy density to contribute as
much as one-half to the total surface energy, which ap-
parently rules out the value —3% and suggests a much
smaller value of the order of 5 for the parameter A.

V. CONCLUSIONS

We have shown that for judging the effectiveness of the
proximity approach and the relative performance of the
various known Skyrme force parameters, an estimation of
the surface energy coefficient in the semiempirical mass
formula is as important as the calculation of the ion-ion
proximity potential itself. Interestingly enough, only the
parameters of the original force due to Skyrme® and the
widely used SII force of Vautherin and Brink® generate
realistic results. They demonstrate not only reasonable
behaviors for the universal functions of the proximity po-
tential but also give the calculated value of the surface en-
ergy coefficient ¥ in nice agreement with the usually ac-
cepted empirical number.’

The correction to the Thomas-Fermi kinetic energy
density, representing additional surface effects, is shown

to be always quite appreciable and very sensitive to the
choice of its parameter A. Though a A value lying be-
tween 5 and = does not change the qualitative structure
of the ion-ion interaction potential (the universal function
of proximity) but for a quantitative estimate of the sur-
face energy coefficient ¥ our calculations support a value
of A=7¢.

D(fm)
-2.0 -1.5 -1.0

S (A=1h0) |

|
o
[3;]

1 |
i 1
& P
Universal Function(p,t Contributions)

955:,{7\: 5/36)

Skyrme Force S(Ref.8)7]~2.0

FIG. 2. The surface contributions to the universal function
due to the Thomas-Fermi nucleon density and the surface
correction to the kinetic energy density for the correction pa-
rameters A= % and %. The Skyrme force parameters used are

of Skyrme (Ref. 8).
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APPENDIX

The universal function of the proximity potential, for Thomas-Fermi densities with additional surface correction to

the kinetic energy density, is obtained to be of the form:

oy Y37

27mR 5 2m

37
2

Its 31+ g tol )+ e tal 3 + 45 3ty +56) H 37 1 1) + P+ Dy,

where the integrals I|,), representing the volume, are
2 2 4ng
1[2] =2potanh“(2bk)——4p0bk — ?[k2(2_k2)+2( 1—k2)In(1 _kz)] ,

12b
I =6p3tanh—l(2bk)_4bp3k3——-—”ﬂ[kz(z—k2)+2(1—kz)ln(l-kZ)]-lzb ok (1—+k?)
[3] k3 p 3

12bp}
- kspo {_(l—k2)2+(1—k2)+2(1—kz)(2——k2)ln(1——k2)

+ [(1—k2)2+4(1—k2)+l]kz—(2—k2)2k2+%—%(l——k2)3l ,
I1s/3=(2p)*"? [tanh‘1(2bk)— Dbk +(—Tk3+k)

+3b [k —%(Z—kz)—%(l—kz)ln(l—kz) l +ag [Tk — 2K+ k] ]

+ (2032 2bk(1—%k2)—%(2—k2)—%(ll—k%ln(l—kz)

+72}[ k*(1—k?)+2(1—k>)(2—k)In(1—k%)+[(1—k*P? +4(1—k*) + 1]&>
2=k k2)3” 23" [617 ]k7/3
__5/3 4% 43 %
Po [f tanh dz+f tanh 2% dzl ,

Ijg/31=(2p)%"? [tanh Y2bk)— bk + 5 (—+k3+k)

- 2bk—Zk—b(z—kZ)—Z—g(l—kz)ln(l—kZ)]—%[%k5—%k3+k1]
—(2p0)¥3 3% [Zbk(l—‘kz)-— (2~k2)—:—’;(1_k2)1n(1—k2)

+]2€—’;{ k(1 —k2)+2(1—k2)(2—kDln(1—k2) +[(1—k2P+4(1 — k) + 1]k

+2P8/3

_(2_k2)2k2+%_%(1_k2)3, 3

6b 6b 3, 6b 8b ;1313 ]

8/3 f tanh4/3

dz+ f 2tanh*/3Z dz]

(A1)

(A2)

(A3)

(A4)

(A5)
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with
k =tanhd
and
d=(22—21)/2b=—D . (A6)
For the integral
= an3Z "% 4t "%
le tanh b +tanh 2 dz
in (A4) and (AS), the following approximate analytical expressions can be obtained. If d <0.8,
Z. —_— p—
J,. Jtanti* 3 Z7 a3 222 |z 450,428 57(tanh—"k)"/* —0.102 56(tanh= k)"
1
+0.03197(tanh~'%)'/340.010 78(tanh — 'k )>*/3] , (A7)
and if d >0.8
z —z —z
) tanh*/3Z 2! +mnh“/322—b2 dz ~4b[tanh~k — 2k + L (k3 —3k)— 2 (Lk5— 2K34K)] . (A8)
The terms giving the surface contributions are
402
@, =a,Pp=a; [fg[lzkt 14k* 42k 6+ 12(1 —k)In(1—k2)— 8k 2(1—k)In(1—k2)] } (A9)
and
) 4 72 4 )
q>s,k=a2<po+3—§—° [k(l—kz)lnk +(1—k—li(31i—'3—)1n(1—k2)~(—16—];'§~)(2k4—k2+11)
+$(11—6k2)—(k — LK% _Ink (k —k?)
yl_k
2 2 3 3
2 2, _E Z 1y _E
_Re[-—(l 3yiNzlnz —z)—6y, 2lnz 2 +3[3lnz 5 ”yl
k—y.
2 2 3 3 2
—Re |[(1=3p2)zInz —2)—6p, | Z-Inz — 2 | -3 [Enz — % , (A10)
4 3 9 ||,
with y,(k) and y,(k) as the roots of the equation
pi (1:')y+i=0. (A11)

The expression for @, is the same as already obtained in Ref. 4, where the contribution of the kinetic energy density was

not included.
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