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Formulation of the s-wave, zero-energy Faddeev-type scattering equations for a model which in-
cludes a spin-triplet tensor-force nucleon-nucleon interaction and a Coulomb force between two pro-
tons is discussed. Numerical solution of the equations for the Reid-soft-core, Argonne Vl4, and
super-soft-core C potential models is obtained using spline techniques. Kohn variational estimates
are also presented, and comparison is made with other previously published results. The inclusion
of a tensor force does not alter our previous conclusions about the Coulomb force effects on the p-d
scattering length, which were based upon s-wave nucleon-nucleon potential model studies.

I. INTRODUCTION

Solving exact few-body equations allows us to test our
understanding of nuclear forces by direct comparison of
model calculations with experimental data and to probe
for novel features of physical observables. Trinucleon
bound-state investigations have yielded interesting exam-
ples in each of these categories. ' Nonetheless, it is the
scattering problem which provides the real opportunity to
explore in depth the accuracy of our knowledge of the
nucleon-nucleon interaction. Neutron-deuteron (nd) elas-
tic scattering at zero incident energy is the simplest such
three-nucleon scattering problem. However, it is now
clear that the value of the nd doublet scattering length
( a„d) is closely coupled to the value of the triton binding
energy [B( H)] and that the nd quartet scattering length
( a„z) is determined primarily by the properties of the
deuteron pole. ' The situation with respect to proton-
deuteron (pd) scattering is not as clear. In particular, the
size of the Coulomb modification of the quartet scattering
length was found to be much larger in s-wave potential,
Faddeev-type calculations ' than in approximate calcula-
tions which reduoe the procedure to an effective two-
particle problem. We also found, in our s-wave nucleon-
nucleon force calculations, the pd doublet scattering
length ( a~) to be much smaller than a„e, in disagree-
ment with the established relationship between a„d and
B( H). [Model calculations employing short-range two-
body forces show that a„d increases as B( H) increases,
assuming B( H) is reproduced by the potential model. ]
Thus, we are led to investigate the zero-energy Nd scatter-

ing problem with tensor force NN interactions in order to
test the general validity of our findings.

The accepted experimental values for the nd scattering
lengths are

a„d ——6.35+0.02 fm,

a„d ——0.65+0.04 fm .

These are obtained by extrapolation of low-energy cross
section data to zero energy. Because there exists a pole
close to zero energy, the radius of convergence of the usu-
al effective range expansion is very small, "which orig-
inally led to some confusion as to the proper value for
a„d. ' ' This small radius of convergence results not

from the ground state pole but from the virtual bound-
state singularity, which lies on the second sheet of the en-
ergy plane. %'e note that this virtual bound state, whose
analytic properties are analogous to those of the spin-
singlet deuteron in the neutron-proton system, will mi-
grate onto the first sheet in any model calculation in
which the nucleon-nucleon forces become strong enough
to support a particle-stable excited state in the trinucleon
system. Therefore, it should be reasonable to expect that
the Coulomb interaction in the He- a~ problem will
move the virtual state of the He farther from the origin
than it is in the H case, perhaps even removing it from
the region where it has a significant effect upon the ex-
pansion for the proton-deuteron doublet scattering ampli-
tude. Experimentally, there is some support for this
speculation, ' but we shall not explore it further in this
paper. Additional singularities, such as branch cuts, are
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also expected in the p-d problem. It was in part the estab-
lished relationship between the H binding energy and the
nd doublet scattering length that led to general acceptance
of the s-wave proton-deuteron doublet and quartet scatter-
ing length values first determined from extrapolation of
the phase shifts extracted from analysis of the available
low-energy pd elastic scattering data: '

a~ ——11.88+0 i fm,

a~ ——2.73+0.10 fm .

Recently the Giessen group reported values for these
scattering lengths which are not qualitatively different:

a~ ——11.11+0.25,
2 +1.004.00—o.'67 .

The sign and approximate magnitude of the quartet
difference a& —a„d were reproduced by several theoreti-
cal calculations: the Jost function analysis of Timm and
Stingl, '5 the dispersion relation analysis of Eyre, Phillips,
and Roig, '6 and the approximation procedure of Avishai
and Rinat. ' The s-wave separable potential estimate of
a~ ——13.3 fm by Alt using the Alt-Grassberger-Sandhas

(AGS) formalism' was the only theoretical estimate of
that quantity which was significantly larger than the
quoted experimental value prior to our own s-wave poten-
tial calculations. ' The estimates of the pd doublet scatter-
ing length made in Refs. 16 and 17 also agreed qualita-
tively with the quoted experimental value, implying a
large increase in the magnitude of the Nd doublet scatter-
ing length in the presence of a Coulomb force. However,
our configuration space Faddeev equation calculations
based upon (partial-wave) local s-wave nucleon-nucleon
interactions sharply disagreed with experiment and all of
the theoretical studies except the apd result of Alt. In
particular, we found (1) apd to be approximately 14 fm
and (2) a~ to be approximately zero. The later work
of Kvitsinski is also in contradiction to our s-wave po-
tential results. However, the qualitative studies of Zankel
and Mathelitsch confirin our findings. Thus, it should
be readily apparent why we wished to explore the Nd
scattering length problem in terms of tensor force
nucleon-nucleon potentials. In fact, we find the tensor
force model results to be in essential agreement with our
s-wave potential calculation. Hence, our pd conclusions
remain unchanged, and we believe that a@ is approxi-
mately 13.5 —14.0 fm while apd is very small. This
latter finding is indeed contrary to the intuition based
upon experience with the Phillips line for 8( H) vs a„d.
That is, we find apd to be smaller than a„d rather than
larger, even though 8( He) is smaller than 8 ( H). There-
fore, this novel feature of the "Coulomb correction" to the
doublet scattering length provides another example of
how exact calculations are sometimes required in order to
provide a complete understanding of the physics of nu-

clear systems.
In Sec. II of this paper we outline the three-body

scattering equations in configuration space when tensor
forces are involved. We work in configuration space be-
cause the long-range Coulomb force is naturally intro-

duced in that space. We also discuss the problem of nu-
merically solving the resulting partial-wave equations. In
Sec. III we present our numerical results for the Faddeev
equations as well as Kohn variational ' estimates. We
also compare with previously published values. We sum-
marize our conclusions in Sec. IV.

II. CONFIGURATION SPACE EQUATIONS

A. Formal structure

The motivation for Faddeev's revolutionary work on
the t-matrix approach to the three-body scattering prob-
lem arose from the fact that the boundary conditions in a
Lippmann-Schwinger equation forinulation of the scatter-
ing problem are ill defined. The Faddeev decomposition
(or its equivalent) of the scattering amplitude provides a
convenient method of enforcing the proper boundary con-
ditions required to obtain a unique solution. Noyes first
outlined the configuration space boundary condition prob-
lem for nd scattering. The Grenoble group developed
the configuration space Faddeev equation approach to the
point of numerical solution. Including the long range
Coulomb interaction is a nontrivial addition. Redish sug-
gested modifying the Faddeev equations so that the effec-
tive interaction is of short range; Sasakawa and Sawada
studied a particular Coulomb potential modification.
We chose in Ref. 1 to utilize the approach that we adopt-
ed in our bound state asymptotic normalization calcula-
tions. Kvitsinski based his calculations upon the for-
malism of Merkuriev. 2s Thus there is a long history to
the configuration space Faddeev equations. We review
here briefly their structure and the Coulomb modifica-
tions we employ.

The Faddeev equations which describe three nucleons
interacting via realistic two-body potentials have the same
form whether one is investigating the bound state or the
scattering problem. However, the boundary conditions
for these two problems differ considerably. ' ' In the
bound state problem the wave function vanishes asymp-
totically, and the solution is insensitive to details of imple-
menting this boundary condition. For the scattering prob-
lem the wave function is nonzero in the asymptotic re-
gion, and numerical solution of the Faddeev equations is
much more sensitive to the specific boundary conditions.
In addition, because the continuum wave function remains
finite for large values of the relative coordinates, it is
necessary to ensure accurate solutions for these regions as
well as those which are significant for the bound state
problem. Consequently, in order to make the calculation
tractable it is important to extract from the wave function
as much of the asymptotic structure as possible prior to
numerical solution. The resulting (unknown) function is
much smoother; it can therefore be accurately approxi-
mated by a smaller number of basis functions.

We first review the Faddeev equations for three nu-
cleons in the j-J coupling scheme. %'e then derive the
equations for the smoother, auxiliary function from which
the known asymptotic structure has been removed. The
total wave function 4 is decomposed into a sum'of the
three Faddeev amplitudes
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+1( 1 yi)++2( 2 y2)++3( 3 y3)

where x; and y; are the Jacobi coordinates

x =r ~ —rkl J (2a)

for three nucleons having coordinates ri, rz, and r3. The
Schrodinger equation

(3)

and

y; =-,'(r, + rk) —r; (2b)

can be decomposed into the three coupled Faddeev equa-
tions

[T+V( x, )+ V {Q )+ Vc(X2)+ Vc(x3) E]% '(x;, y;)= —V(x;)[+J(x, y, )++k(xk yk)] (4)

where T is the kinetic energy operator, V(x;) is the nu-

clear two-body interaction, and

e' [1+~.(j)][1+&.«)]
Vc(x )=

Xl 4

is the two-body Coulomb interaction. Note that we have
retained the entire Coulomb potential on the left-hand
side of Eq. (4), which minimizes the long-range Coulomb
polarization distortions. In previous calculations ' in-

volving Coulomb potentials, the two-body Coulomb force
was treated in the same manner as the nuclear force. This
required the addition and subtraction of distorting poten-
tials. Such an approach was also tried for the present
problem, where it was found that the distorting potentials
caused numerical difficulties in the asymptotic region.
The method characterized in Eq. (4) was found to be the
most stable for numerical calculations.

B. Numerical solution

For three identical nucleons, it is only necessary to
solve one of the three equations in Eq. (4); all three Fad-
deev amplitudes have the same functional form. In mak-

ing a partial wave expansion of the Faddeev amplitude we
use the j-J coupling scheme and write the wave function
in the form

where

Ia)=
I
[(1,s j),(L,S )J ]/M;(t, T )WMT), (7)

1 is the relative orbital angular momentum of particles 2
and 3, s is the spin angular momentum of particles 2 and

3, j is the total angular momentum of particles 2 and 3,
L is the orbital angular momentum of particle 1 relative

to the center of mass of particles 2 and 3, S is the spin of
particle 1 (S~= —,

'
), J~ is the total angular momentum of

particle 1, g is the total angular momentum (g = —,', —', ),

t~ is the isospin of particles 2 and 3, T~ is the isospin of
particle 1, and M is the total isospin ( T =M= —,

' ).
We consider the case of local nucleon-nucleon interac-

tions acting only in the 'So and S&- D& states. For this

situation only the five states listed in Table I are needed to
describe the doublet amplitude for zero energy scattering,
and only the seven states listed in Table II are needed to
describe quartet scattering. (W and P' are the total orbi-

tal angular momentum and spin in W-W coupling. ) To
obtain the coupled equations for the channel wave func-

tions, we multiply Eq. (4) by —xiyiM/A', take the inner

product with &a I, and transform to the hyperspherical
variables defined by

x i =p cosO

v3
y~

—— psinO .
2

The resulting equations are

(b, a)P (p, 8) g—(u ~ +u ~ )4—(p, 8)—gu -g J d8'K - (8,8')P (p, 8')=0,
e 8

where we have defined

&a I
V(xi) Ia'&,

&a I
Vc(&i)+ Vc(x2)+ VC(+3) I

a'&

y f d8VC.- (8,8')P. (p, 8')
8

iyi& "Iq'( 2 y2)+"

(10a)

(10b)

and

K

M

8 1 8 1
, +— +,

Bp p ~p p 88

1 (1 +1) L (L +1)
p cos 0 p sin 0

(10e)
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TABLE I. The five three-body Faddeev amplitudes compris-
ing the doublet scattering length solution when the NN interac-
tion is restricted to ('So, S~ 'Di )-: Total g =W= —,.

As discussed above, we simplify the numerical calcula-
tions by writing P~ in the form

0 (xl,yl)=0 (xl yl)+& (xl,yi),
(1,s )j

(0,0)0

(0,1)1

(2, 1)1

(0,1)1

(2, 1)1

(La,Sa)Ja

(0 —)—1 1

(0 —)—1 1

(0-)-1 1

(2 —)—1 3

(2,—,? —,
1 3 0,1,2

, 1

2

1

2

3
2

3
2

1 3
2& 2

(12)

where P is the incident wave. For L & 0 or
(l~,s~)j &(0,1)1 or (2,1)1 then /~=0. For the open
channels,

P (x i,y i ) =y iW(z) u d(x i ) .

Here ud(xi) is the reduced deuteron bound-state wave
function and W(z) can be expressed in terms of a modified
Bessel function of order 1:

The integration limits 8 and 8+ are the same as for the
bound state calculations, and for zero-energy scattering,
~ is the two-body bound-state wave number. However,
E tt is not identical to the kernel defined in Ref. 29.

W(z) =z '~ Ii(2' ) . (13)

The quantity z=2apy~ in the argument depends upon
the fine structure constant, a, and the reduced mass, p.

Inserting Eq. (11) into Eq. (9) one obtains the following
equations for the reduced scattering function Q:

(b, —a )0 (p, 8)—g(v +u ~ )Q (p, 8)—gu ~ g f d8'g - (8,8')0 (p, 8')
CX EX EX

=g(u~~ ro5~~—)P~ (p, 8)+gu~~-g d8'X~-~ (8,8')P~ (p, 8'), (14)
CX

a" a' 8

where

M e
CO=

smoother auxiliary function F which is defined by

L ud(xi )
&.(xI,yi)=F (p 8)lyi ~ (yi)l

X$
(18a}

Q (xi,yi) ~ —a~M~(yi)ud(xi)
f1~oo

for the deuteron channels, where

L~ (z)= (2v z )X„+i(2~z)(2am)
(2L~)! a+

(16)

and &zz + i is the modified Bessel function.2L +1
For the closed channels the function & approaches

zero in the asymptotic region. In order to simplify the
numerical calculations we express Q in terms of the

For large values of y, the outgoing wave Q has the

asymptotic form
for the deuteron channels and

0 (x„y,)=F (p, 8)e (18b}

F~(0,8) =F~(p, 0)=F (p, n./2) =0 (19)

for the remaining channels. In Eq. (18a) we have included
L

the factor y, to remove the singular behavior of M (yi }
at yi ——0. In addition, we have included the factor of
1/xi in Eq. (18a) to simplify the boundary conditions at
x) ——0.

Because Q is the reduced wave function, the boundary
conditions for F (p, 8) are '

(I„~ )j (La,S )J

TABLE II. The seven three-body Faddeev amplitudes
comprising the quartet scattering length solution when the NN
interaction is restricted to ('So, 'Si-3Di ): Total g = T~,M=

2 .

for all channels,

F~(p, 8) ~ —a~ z ——A (8)p
y1~e a

(0,1)1

(2, 1)1

{0,0)0

{0,1)1

{2,1)1

(0,1)1

(2,1)1

(0 —)—1 1

(0,—, ) —,
1 1

(2 —)—1 3

(2 —)—1 3

(2 —)—1 3

(2 —)—1 5

(2,—, )-,1 5

0,1,2,3

0,1,2,3

3
2

1 3
2&2
1 3
2& 2

1 3
2s 2

1 3
2s2
1 3
2s 2

1 3
272

for the deuteron channels, and

F~(p, 8) ~ constant
P~ oo

(20b)

for the nondeuteron channels. These boundary conditions
are implemented by requiring that at p =p,„,

BF~ (1—L~)
(21a)

~P I

for the deuteron channels, and
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for the nondeuteron channels.
Substituting the expression for Q~ given in Eq. (18) into

Eq. (14) yields a set of coupled differential equations for
the E (p, 8). To solve these equations we use a bicubic
spline expansion

F (p, 8)=pais;(p)sj(8), (22)

where the spline functions were chosen to be the cubic
Hermite splines. We solve for the unknown coefficients
a;J by the technique of orthogonal collocation. 30

III. NUMERICAL RESULTS
In our tensor force investigation of the Nd zero-energy

scattering lengths, we have employed three different
nucleon-nucleon potential models: (1) the Reid soft-core
(RSC) potential, ' (2) the Argonne V&4 potential, and (3)
the super-soft-core C (SSCC) potential.

Comparison of the numerical results for these three po-
tentials provides an indication of the model dependence of
our calculation and conclusions. The RSC model has a
stiff Yukawa core (strong short-range repulsion), the V&4

model has a moderate-strength Woods-Saxon core, and
the SSCC model has a soft exponential core (weak short-
range repulsion). In addition to exhibiting a repulsive
strength intermediate to that of the RSC and SSCC
models, the V|4 spin-singlet parameters were fitted to the
np phase shift data rather than the pp data. Thus, the
V&4 'So potential should be more attractive than that of
the RSC or SSCC models. We list in Table III the deute-
ron and triton bound state energies and small wave func-
tion component probabilities generated with each of these
tensor force interactions. For the RSC model, we also list
the triton results for the three-channel approximation,
truncating to the first three states of Table I. We shall
utilize this approximate model in our investigation of the
relation between 8( H) and a„q as a function of the
strength of the spin-singlet (iSO) potential. We note in
passing the well-known increase in B( H) as Pn( H) de-
creases and that fact that PD( H) tracks PD( H). The
value of A /M used for each model is also listed in Table
Irr.

Because the RSC model has the strongest short-range
repulsion and produces the largest bound-state D-state
probabilities, we consider this model in the greatest detail.
It should provide the most stringent test of accuracy and
convergence in our scattering length calculations. To this
end we list in Table IV the mesh parameter values for a
selection of test cases which we explored in the case of the

quartet scattering lengths. The corresponding a„z and
a& values are compiled in Table V. We quote boih the

value extracted from the Faddeev wave function and the
Kohn variational estimate (superscript K) based upon that
wave function and the channel-projected Coulomb in-
teraction. The a~q results follow from the same Kohn
calculation without the s-wave projection. That is, we in-
clude all of the higher partial waves of the Coulomb po-
tential in that estimate. Therefore, a~&" is the best esti-
mate of the physical pd quartet scattering length, but the
comparison of a with a is the proper consistency
check.

As has been true in our previous bound-state and con-
tinuum wave function investigations, the sensitivity of the
solution to the p-grid parameters is the more complex.
We have added an additional break point at 0.5 fm in or-
der to optimally distribute the points in the interior where
the interaction is repulsive, while ensuring a sufficient
number of points in the intermediate region interior to
where the solution becomes reasonably smooth (about 12
fm). At least three points were needed in the interior
(0—0.5 fm), whereas approximately ten were needed in
the midrange, where the nonuniform spacing is controlled
by the scale factor Sz. (S&——1.3 was reasonable. ) In the
exterior region, we found a uniform spacing of as much as
8 fm provided a satisfactory spline distribution. Some-
what surprisingly we found it necessary to go out to
p,„=92 fm in order to obtain proper agreement between
a„q and a„z as well as a& and a~. Sensitivity to the 8

grid was similar to that of the s-wave central force
model. ' However, we used a uniform distribution of
points between 8=0 and m./6 while scaling the points be-
tween m/6 and m/2 in order to ensure that points were
concentrated in the region with the most structure in the
solution. At least three 8 points were required in the exte-
rior region, where the solution decays exponentially. We
needed at least 21 points in the scaled region and
S~——1.35 appeared optimal.

It is clear that the Kohn variational bounds ( a „z——6.31
fm and a& ——13.33 fm) are excellent values even when
the wave function solutions are not as good. A second in-
teresting feature of the quartet results shown in Table V is
that the two-channel calculation results differ insignifi-
cantly from the three-, five-, and seven-channel results
(but require much less computational time). That is, one
need only consider the first two channels in Table II when
studying Nd quartet scattering lengths; the deuteron pole
controls the quartet scattering length. A third point is
that these RSC quartet scattering length results are very
close to the s-wave potential results of Alt and our ex-
ponential potential calculations, ' both of which were NN

TABLE III. Deuteron and triton bound state properties for tensor force potential models investigated here.

Model Ref. &( H) +g( H) &g)( H) Channels

RSC

RSC
~i4

SSCC

31

31
32
33

41.47

41.47
41.473 14
41.47

2.2246

2.2249
2.2241

6.47

6.08
5.45

6.38

7.02
7.44
7.46

1.90

1.67
1.36
1.40

8.01

9.34
8.86
7.96
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TABLE IV. Mesh parameters employed in the accuracy and convergence study of the Nd quartet
scattering length calculations using the RSC potential model.

Case

1

2
3
4
5
6
7
8

9
10
10

12
10
10
10

0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5

12.
12.
12.
12.
12.
12.
12.
12.

60.
76.
76.
76.
76,
76.
76.
92.

1.3
1.3
1.3
1.3
1.3
1.3
1.3
1.3

18
21
20
21
21
21
21
21

1.35
1.35
1.35
1.30
1.35
1.35
1.35
1.35

potential models with no repulsion. Finally, our RSC re-
sults agree with the a„d value of the Grenoble group (6.3
fm).

Next we examine the results for doublet Nd scattering
lengths using the RSC model in the three-channel approx-
imation. A selection of mesh parameters utilized in our
study of accuracy and convergence is given in Table VI.
Thc corrcspondlng a~d and apd values afc cgmpllcd ln
Table VII. Vfe concentrated on the pd scattering problen1
because it is more sensitive to mesh parameter variation.
No essential differences were found between mesh require-
ments for the doublet scattering lengths and those previ-
ously discussed for the quartet scattering lengths. The
RSC three-channel approxlmatlon seriously underblnds
the triton (see Table III). Thus, it comes as no surprise
that a„d is larger than experiment and apd is even larger.
The purpose of Table VII is to confirm that we have accu-
rate, converged solutions.

Having investigated the quality of our zero-energy con-
tinuum solutions, we summarize our results for the trinu-
cleon binding energies and Nd scattering lengths in Table
VIII. The RSC three-channel Nd results are best esti-
mates from Tables V and VII. The RSC five-channel
doublet results provide an interesting comparison with the
three-channel results: a„d decreases much less than apd,
indicating that if a„d is small enough, za~d will be less

an and Thc V14 and SSCC models ylcld very slImla, r
values of 8( H); therefore, it is not surprising that the
values of a„d and a~ for these models are quite compa-
rable. The comparison of the quartet scattering lengths
for all three models shows that a„d is only slightly sensi-
tive to the short-range repulsive nature of the potential

model and the strength of the tensor force as character-
ized by the model value of P~( H). The values of a& are
more sensitive to the off-shell differences of the potential
models; the spread in a~ values is three times that of
the a„z values. The RSC five-channel a„~ value agrees
reasonably well with that of the Grenoble group (1.6 fm)
and the unitary pole approximation result of.Afnan and
Read (1.8 fm). Our SSCC result for 8( H) agrees well
with that of Ref. 35 (7.43 MeV), but our value of a„z is
somewhat smaller than theirs (1.52 fm). We do not
understand this difference, in view of the reasonable
agreement on 8( H) and for both RSC model results.

The results from Table VIII discussed above are in-
teresting model results but do not speak directly to the is-
sue raised in the Introduction. Do tensor force calcula-
tions confirm the conclusions, based upon the central
force model, that a& should lie in the range 13.5 —14.0
fm and that a& is very small'i However, the last entry in
Table VIII does address that issue. The entry RSC-5
[1.11 V('So)t lists results for a calculation in which the
spin-singlet potential is multiplied by the factor 1.11 in
order to increase 8( H) to a value approximating the ex-
perimental triton binding energy (8.48 MeV). The corre-
sponding value of a„d ——0.60 fm is reasonably close to the
experimental result (0.65 fm). The model value for
8 ( He) is larger than experiment, because the
8( H) —8( He) difference cannot be entirely accounted
for by the Coulomb interaction between the two protons
in He. However, we are interested here in the qualita-
tive aspects of a~, when the value of a,~ [and therefore
8( H)j is essentially that observed experimentally. Thus,
the value of a~ ——0.06 fm for this modified RSC poten-

TABLE V. RSC model Nd quartet scattering lengths along with Kohn variational estimates and fu11

Kohn pd estimates for mesh parameters listed in Table IV. Units are in fm.

1

1

1

1

2
3

5
6

8

5
3
2
2
2
2
2
2
2
2

6.282
6.281
6.282
6.282
6.288

6.294
6.295
6.303

6.316
6.314
6.315
6.316
6.313

6.313
6.313
6.305

13.291
13.296
13.297
13.312
13.315
'13.312
13.312

13.334

K
pd

13.335
13.340
13.341
13.344
13.344
13.344
13.344

13.340

g KI'
pd

13.527
13.530
13.531
13.534
13.534
13.534
13.534

13.530
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TABLE VI. Mesh parameters employed in the accuracy and convergence study of the Nd doublet scattering length calcu1ated us-
ing the RSC potential model in the three-channel approximation.

Case

1

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

4
4
4
4
4
4
4
4
4
4
2
3
3
3
3
3
3
3

10
10
10
10
10
10
10
10
10
8

10
10
10
10
10
10
10
10

6
6
6
7
7
5
5
5
5
5
5
5
5
5
5
6
8

10

par

0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5

12.
12.
12.
12.
12.
12.
12.
12.
12.
12.
12.
12.
12.
12.
12.
12.
12.
12.

Pmax

60.
60.
60.
60.
68
60.
52.
52.
52.
52.
52.
60.
60.
60.
60.
60.
76.
92.

Sp

1.30
1.30
1.30
1.30
1.30
1.30
1.30
1.25
1.35
1.30
1.30
1.30
1.30
1.30
1.30
1.30
1.30
1.30

20
17
19
19
19
19
19
18
18
18
18
18
18
18
18
21
21
21

2
3
2
2
2
2
2
2
2
2
2
2
2
2
2
2
3
3

1.30
1.30
1.30
1.30
1.30
1.30
1.30
1.30
1.30
1.30
1.30
1.20
1.25
1.35
1.40
1.30
1.35
1.35

tial model does confirm the results reported previously'
for a central force model. The results for the quartet
scattering length from all three realistic potential models,
already considered, clearly indicate that the theoretical
range for a& is 13.5—14.0 fm, when higher partial waves
are included (6 a being about 0.2 fm in each case).

Case

1

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

2a„d

2.339
2.341

2 K
~md

2.340
2.337

2a~
3.450
3.119
3.435
3.435
3.432
3.434
3.446
3.382
3.383
3.385
3.383
1.021
2.563
3.451
3.458
3.452
3.452
3.462

E
pd

3.454
3.456
3.454
3.454
3.451
3.454
3.465
3.466
3.466
3.468
3.471
3.539
3.465
3.455
3.457
3.454
3.450
3.448

K,F
pd

3.322
3.324
3.323
3.232
3.319
3.323
3.334
3.335
3.335
3.337
3.339
3.403
3.333
3.323
3.325
3.323
3.318
3.316

IV. DOUBLET SCATTERING LENGTH
VERSUS TRINUCLEON BINDING ENERGY

The results for the RSC model summarized in Table
VIII are very suggestive. Although the relationship be-
tween B( H) and a„d has been described as linear, it
seems clear that the relationship is not so simple when one

TABLE VII. RSC three-channel Nd doublet scattering
length results along with Kohn variational estimates and full
Kohn pd estimates for mesh parameters listed in Table VI.
Units are in fm.

examines a broader region than that immediately adjacent
to the experimental value (8.48 MeV and 0.65 fm). In
particular, the value of a& decreases much more rapidly
than does that of a„d as one moves from the RSC three-
channel model to the RSC five-channel model to the RSC
[1.11 V('So)] five-channel model.

To investigate this further, we have generated the
curves for B(3H) vs za„z and B( He) vs a~ by keeping
the Si- Di potential unaltered (so as to fix the deuteron
pole properties) and varying the overall strength of the
spin-singlet ( So) potential. The trinuclmn binding ener-
gies and Nd doublet scattering lengths were calculated us-
ing the RSC potential model in the three-channel approxi-
mation. (The three-channel approximation was used for
simplicity. ) The resulting curves are displayed in Fig. 1.
The five-channel results for each of the three models in-
vestigated in this paper are shown also. These five-
channel points fall on the curves, validating our use of the
three-channel RSC model to generate the curves.

It is obvious that the relationship between B(3H) and
a„d is not linear except in the region near the experimen-

tal value. It is not so obvious, because of the Coulomb
shift in the binding energy, that the Coulomb correction
to the doublet scattering length vanishes around
aNd ——1.3 fm. Thus we find that if 2a„d) 1.3 fm, then

a~ will be even larger. [This is the situation one fmds
for most "realistic" local nucleon-nucleon potential model
calculations where B( H) (7.5 MeV.] Conversely, if
a„d ( l.3 fm, then a& will be smaller than a„z. (This is

the physical situation where a„z=-0.65 fm. ) Specifically,
we find from this model study that a& -—0 is predicted
because the experimental a„d is measured to be some 0.65
fm.

The curves in Fig. 1 are similar in shape to the two-
body plots of Refs. 1 and 37 which showed the Coulomb
and non-Coulomb scattering lengths as a function of the
overall strength of the potential. In the Appendix of Ref.
1, we explored via perturbation theory the expansion
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8( H)
(MeV)

8( He)
(MeV)(fm)

RSC-3

TABLE VIII. Summary of the trinucleon binding energies and nucleon-deuteron scattering lengths
for the four tensor force models investigated. 6 Qpd ls the additional quartet pd scattering length from
the u~~~ calculation.

Model &nd &nd Qpd Qpd -pe K

RSC-5

SSCC
RSC-5
[1.11V('So)]

7.02
7.44
7.46
8.56

1.76
1.35
1.32
0.60

6.38
6.41

6.39
6.80
6.81
7.89

2.23
1.42
1.35
0.06

13.33

13.57
13.67

0.20

0.19
0.17

proaches from above. Large values of the scattering
length a correspond to the former case, while small values
correspond to the latter case. Thus, we find I, & 1, which
accounts for a~d ~ a„d for small values of aNd.

Nd doublet scattering lengths
I i I I

i
I I I I

i
1 I I I

i
I I I I

i
I I I I

i
I i I I

i
I 1 t

nd Phillips line fit
X

a t I i t s

6 6 7

I I I l~l l i I l I t i I I t I I ~ I l

Es (MeV)

where y is Euler's constant and g=2pac/III depends upon
the reduced mass, p, and the fine structure constant, a.
We point out here that it is g(lng+2y)-1/(10 fm) that
provides the scale that separates long range from short
range in the Coulomb problem. Thus, it is the long-range
effects that are of primary importance in modifying the
nn scattering length from —17 to —7.8 fm in the pp sys-
tem. In addltlon, one has

A, —1= 2$f—[1 g(r)]dr, —

where g(r) is the short range defect function in the s-
wave scattering length wave function, P(r)=r ag(r). —
The g (r) approaches [0,1] as r ~[0, oo ], so that

f [1—g(r)]dr &0 and A, (1 if g(r) approaches its
0

asymptotic value from below; conversely, A, &1 if it ap-

V. CONCLUSIONS

We have calculate'd the Coulomb modified strong in-
teraction pd scattering lengths using our configuration
space formulation of the Faddeev equations. Our results
for the three tensor force models considered (the RSC, the
VI4, and the SSCC) are ln essential agreement with the
central force results which we obtained previously. In
particular, we find that a~d is expected to lie in the range
13.5—14.0 fm and that a& is predicted to be essentially 0
fm. The first result is some 2 fm larger than the presently
accepted experimental value. The second result is in clear
disagreement with the quoted measurement. Further-
more, it disagrees qualitatively with the approximate
theoretical calculations which predict apd ~ a„d. Howev-
er, we have investigated the relation between trinucleon
binding energy and doublet scattering length. We find it
to be nonlinear, and we find that it supports our con-
clusion that experimentally apd ~~ a„d.

As we have stated previously, low-energy pd cross sec-
tions are difficult to measure because of the Gamow fac-
tor suppression. In addition, it was the case in Qd scatter"
ing that very low-energy measurements were required, be-
fore the correct a„d and a„d values could be extracted
from the data. Thus, we hope to stimulate further experi-
mental effort to measure these fundamental properties of
the pd system. On the theoretical side, it seems clear that
three-body force effects must be included. The theoretical
model of the three-nucleon system should reproduce the
measured trinucleon properties before one can be certain
that the conclusions reached here are completely correct.
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