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Cold breakup of spectator residues in nucleus-nucleus collisions at high energy
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Inclusive data from fragmentation reactions of the type A p+ AT —+Z+X are analyzed and a reac-
tion mechanism is proposed. A projectile Ap (p, He, n, or Ne) collides with a target nucleus AT
(Au) and one fragment with charge Z and energy E is observed at a solid angle Q. Projectile ener-

gies vary between 843 MeV and several A GeV. %e propose a parametrization for the triple dif-
ferential cross section d o./d 0dE dZ with six free parameters. The parametrization generalizes the
two-vector model which is often used to describe spallation products in proton-nucleus collisions.

By fitting data from various experiments we establish a systematics of the six parameters. The ex-
perimental values of the parameters can be quantitatively understood in a model where the target
nucleus breaks into several fragments similar to the shattering of glass.

I, INTRODUCTION

A bullet is shot through a ball made of glass; the ball
shatters into many pieces. A high-energy projectile is shot
through a target nucleus; many little fragment nuclei are
observed. Does a nucleus shatter 1ike glass when hit by a
high-energy projectile? Or are the fragments formed rath-
er like droplets which condense from a vaporized nucleus?
These questions are behind the investigation whose result
we present here.

In a high-energy nucleus-nucleus collision the straight
line motion of the projectile defines an overlap volume of
projectile and target matter. Nucleons in the overlap zone
are called participants, nucleons outside are called the
spectators. Spectator nucleons belong either to the projec-
tile if they are slow in the projectile rest frame or to the
target if they are slow in the laboratory frame. This paper
deals with medium mass fragments which are believed to
originate when the spectator matter of the target breaks
up. The geometrical division into participants and specta-
tors is verified experimentally by studying the partici-
pants, i.e., the fast nucleons, deuterons, and pions. '
Their distribution in angle and energy indicates that the
participant nucleons have come close to thermal equilibri-
um, therefore the name "fireball. "

One distinguishes peripheral reactions and central ones.
In a peripheral reaction the overlap between projectile and
target nuclei is small and one observes few participants.
The spectator pieces are large, i.e., close in mass to the
projectile or target nuclei, respectively, and little excited.
They decay by evaporating nucleons or light nuclei
and/or by fission. The peripheral collisions seem well un-
derstood within the abrasion-ablation model. ' A near
central collision between two nuclei is characterized by a
high multiplicity of participant charges. In coincidence
one observes several slow fragments, whose masses A are
much smaller than AT, the mass of the target; typically
4&2 &AT /3. We concentrate here on these medium
mass fragments. We exclude masses A &4 since they may
have various origins, e.g., they may be fireball particles or

evaporation products. Fission becomes a competing pro-
cess for 2 & AT/3. The process which leads to fragment
masses in this region has been called "deep spallation, " a
term which has never received a proper definition in
terms of a physical process. Deep spallation processes
have been extensively studied in proton-nucleus collisions
at high energies. We recall the main properties:

(a) All particle stable nuclei are produced. The mass
yield curve der/dA decreases rapidly with increasing mass
until 2 =AT /3. The isotopic distribution do/dN for Z
fixed peaks around the most stable isotope.

(b) The angular distribution der/dQ is essentially iso-
tropic in a system which moves forward with a velocity
U, which is of the order of 1% of the speed of light.

(c) The energy distribution der/dE in the moving sys-
tem decays exponentially -exp( —E/Eo) for energies well
above the Coulomb barrier. The slope parameter has a
value Eo-12 MeV and is practically independent of the
reaction and the observed fragment. For small energies,
do/dE shows the effect of Coulomb repulsion. However,
dtr/dE cannot be fitted by assuming a single Coulomb
barrier. A distribution of barriers is required, whose aver-
age value is about one half of the one expected from two
touching spheres.

The properties of fragments in nucleus-nucleus col-
lisions ' show several similarities to those of proton-
nucleus reactions but also some significant differences.
For instance, no moving system can be found in which
d cr /d 0dE dZ is isotropic.

None of the above features [(a)—(c)] has yet received a
unique and satisfactory explanation. The theoretical ap-
proaches may be divided into two classes, those of
thermal equilibrium and those of cold, nonequilibrium
breakup. In the first class of models, " the spectator
matter receives considerable energy from the reaction and
comes to thermal equilibrium. The calculations usually
start by assuming an equilibrized hot system with the
temperature as a fit parameter. Gross et al. find
T= 5.15 MeV. Then the system decays directly into small
particle stable fragments according to the laws of thermo-
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dynamics. In most cases the slope of the mass yield curve
do. /dA is successfully reproduced. A simultaneous
description of the energy and angle dependence
d o /d 0 dE is not attempted (except by Friedmann
et al. ' who assume conventional sequential compound
decay). The physical significance of the slope parameter
Eo is unclear in all these approaches. The velocity U,
is never calculated. In the nonequilibrium approaches'
the spectator matter remains essentially cold. The ob-
served fragments are formed because the instability
around the fireball zone expands and cracks the spectator
matter into pieces. The slope parameter Eo is then related
to Fermi motion' or to the temperature of the nucleons
around the fireball zone. '

What is the correct physics~ In order to solve this
problem, we proceed in two ways:

(a) We carefully analyze the data of triple differential
cross sections and study their variation with projectile
mass and projectile energy.

(b) We give a quantitative and comprehensive physical
picture of the fragmentation process. We do not claim
that our model is the only explanation, but at present it is
the only one which describes all the data, i.e.,
der /dQdEdZ and not just one aspect of them like
der/dA.

New and rather extensive results of triple differential
cross sections d 03/d 0dE d.Z for proton-nucleus and
nucleus-nucleus collisions

Ap+AT —+Z+X

are published now and form the basis of our investiga-
tion. ' In order to analyze them we propose a parametri-
zation of do /d0 dE dZ, where six parameters can be ad-

justed. The parametrization follows from an intuitive pic-
ture for the reaction but seems sufficiently general to
describe all the data (Sec. II). The experimental data are
well fitted by the parametrization of do /dQdE. The
physics of the data (variation with energy and projectile)
is then fully contained in the six parameters and their sys-
tematics (Sec. III). The mathematical formalism behind
the parametrization is presented in Secs. IV and V, where
microscopic expressions are derived for all six parameters.
Section VI is devoted to the comparison between calculat-
ed parameters and those from the fit to the data. We
close with a summary and conclusions (Sec. VII).

Prefrag-

Praj ectile arget

FICx. 1. Our intuitive picture: A projectile hits the target.
The overlapping zones of target and projectile form a fireball.
Fireball nucleons (black streaks) enter the cold spectator matter
and deposit energy and momentum. This leads to a global de-
stabilization of the spectator matter and finally to fragmenta-
tion.

II. THE MODEL

The mode1 which we propose is based on nonequilibri-
um physics. We view fragmentation as a process similar
to the shattering of glass, but one should be cautious and
not carry this analogy too far. The intuitive picture of the
model is visualized in Fig. 1. Fragmentation is a two-step
process. In the first step the participant nucleons form a
fireball and the spectator matter remains cold. The fire-
ball is described by three quantities: the number of parti-
cipants, their temperature, and their average momentum
in the beam direction. In the second step the fireball de-
cays. Some participants escape without any further col-
lision, mostly at forward angles. Other participants enter
into the spectator matter and deposit energy and momen-
tum. Locally, bonds are weakened and the spectator
matter is destabihzed globally and cracks. The partici-
pants which have penetrated the spectator matter can ei-
ther escape or are captured. If captured, the deposited en-
ergy and momentum help to "break off" a piece of matter
in already globally destabilized nuclear matter. The
Coulomb force also pushes the pieces apart. They are
called prefragments. They are usually excited and evapo-
rate a few nucleons before they are observed as fragments.

This physics is contained in the following parametriza-
tion of the triple differential cross section:

do do (Zs, crz) d Vcg ( Vc)f (E,Q, v, ,p~~, h, Vc), (2.1)

which we explain in this section. Detailed derivations are
relegated to Secs. IV and V. In Eq. (2.1) Z is the charge
of the observed fragment, with E its kinetic energy, and 0
the solid angle, both in the laboratory frame. The vari-
ables E and Q can also be converted to a momentum p.
The total fragmentation cross section is denoted by oF
and the dimensionless parameter s describes the shape of
the charge yield curve. Before breakup the target specta-
tor matter moves with velocity v, in the laboratory. In
the rest system of the target spectator the fragment has a

I

momentum distribution characterized by a width 6 and a
mean momentum p~~ in the beam direction. Vc denotes
the Coulomb barrier between the prefragment and the
remainder.

The final momentum p of the prefragment is a sum of
four different contributions:

(a) In the rest frame of the target spectator the separat-
ed prefragment has a momentum p &

which is isotropical-
ly distributed and most probably arises from Fermi
motion.
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+final = Vc+
2M

(2.2)

where M is the mass of the prefragment and V& the

(b) The decaying fireball imparts a momentum pz to
each prefragment. The distribution of p2 in the target
spectator rest frame has a mean momentum p~~ in the
direction of the beam and a width related to the tempera-
ture T of the fireball.

(c) When rolling down the Coulomb barrier the prefrag-
ment gains energy and. therefore momentum,

Coulomb energy.
(d) Due to the "viscosity, " the process of fireball forma-

tion transfers momentum to the target spectator piece be-
fore decay. This results in a mean forward velocity v,
of all fragments in the laboratory frame.

For p~~
——0, i.e., isotropic decay in the moving system,

our momentum distribution is the same as in the two vec-
tor model for proton-nucleus collisions. ' However, the
data from nucleus-nucleus collisions cannot be fitted with

pll =0. We assume Gaussian functions for the distribu-
tions of p& and pz. Their folding leads to the following
form of the energy distribution in the laboratory system:

1—

f(E,Q, v 'pll'~ Vc) =«xp

Vc

(p —p, )'

1/2

(P —P. ) —Pll

2

2MVC

(p —p, ,
)'

1/2

()I:(p—p..m. )' —2MVc) (2.3)

where p, =Mv, . The last factor is the Jacobian for
the transformation from the center of mass to the labora-
tory system. The distribution is normalized to l:

dO

dZ Zs (2.6)

f f(E,Q, v, ,pllb, Vc)dE dQ=1 . (2.4)

3 &Vc
g( Vc) =— „,0( Vc'"—Vc),

( Vmax)3/2 (2.5)

where V&'" is the maximum Coulomb energy the prefrag-
ment can gain by the remainder and should correspond to
prefragments originally situated at the target surface.

The charge yield curve do/dz reflects the distribution
of "cracks" in the spectator matter. W'e do not know the
detailed mechanism for how the cracks form. Therefore
we approach the problem by the principle of minimum in-
formation (cf. also Aichelin et al. ' ). We assume all pos-
sible fragmentations of the target spectator (which con-
tains Zo charges) to be equally probable. This is a
minimal assumption. If the consequences agree with ex-
perirnent as we shall show, no further information is con-
tained in the data. Our assumption has the same charac-
ter as the fundamental assumptions of statistical mechan-
ics. At the moment, we are unable to justify the assump-
tion. From this assumption we derive in Sec. IV the
shape of da. /dZ to be

Expression (2.3) is the energy and angle distribution for a
given value Vc of the Coulomb barrier. The data cannot
be fitted by this expression, even if the value of Vc is ad-
justed. Rather, the data require a distribution of Coulomb
barriers g(Vc). This has been realized also in p-A col-
lisions. ' In our picture the distribution g(Vc) arises
from the fact that the prefragments originate from dif-
ferent sites in the target. Depending on the place where
they are produced they gain different kinetic energy due
to the Coulomb field. This picture results in the follow-
ing distribution:

Here, cd is the integrated cross section for multifragmen-
tation of the target and the second factor represents the
mean multiplicity of fragment Z, and contains one pa-
rameter s.

We use Eq. (2.1) to fit the experimental data. It allows
us to condense the many data points which constitute the
experimental triple differential cross section into a set of
six parameters. They depend on the beam energy Ep (fol
pll, b, v, , o.F, and s), the projectile mass Ap (for v,
o F, s, and Vc'"), and on the prefragment charge Z (for b„
and Vc'").

III. FITTING PROCEDURE

We apply a P fit routine to analyze the available data
and to determine the free parameters of Eq. (2.1). Triple
differential cross sections by %'arwick et al'. and Bock
eI; al. are analyzed. In the experiment from the Bevalac
a gold target is used and the projectiles are p, He, and Ne
at energies from 2503 MeV to several A GeV. The
second class of experiments uses the beam of 84M MeV
from the synchrocyclotron at CERN with oxygen projec™
tiles and gold as the target.

As mentioned above, the prefragments have some exci-
tation energy due to the absorption of energy from the
fireball nucleons and possibly due to a change of their
shape. Hence they will evaporate some nucleons or light
fragments before they are observed as fragments. . We
checked that the influence of the evaporation on ihe ener-
gy distribution do. /dQ dE can be neglected, whereas the
influence on do/dZ cannot and will be discussed below.
The cross section (2.1) for a given fragment charge has six
parameters to be fitted. The inclusion of each further
fragment require two additional parameters because Vc'"
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IV. THE CHARGE YIELD CURVE
IN MULTIFRAGMENTATION

The target spectator piece of charge Zo breaks into
several fragments. The detailed macroscopic mechanism
is unknown. A11 authors who treat this problem admit
this. They replace the correct treatment by some assump-
tions. There are various assumptions, yet they have one
feature in common: They are based on statistical and/or
geometrical arguments. We do the same. Our basic as-
sumption is the following: All possible fragmentations of
the spectator charge are equally probable.

What is a "fragmentation?" We define it in terms of
partitions. A partition of a number X is a decomposition
of N into integers n; n

~ & n2 & n3 which have multiplici-
ties m ~, m2, etc. , irrespective of their order. For example,
for N =3 exist the following three partitions: (1,1,1), (1,2),
and (3}. Intuitively we think that the requirement of
equal probability for each partition describes fragmenta-
tion similar to the shattering of glass. Other definitions
of fragmentation are possible and are discussed in the Ap-
pendix. We call A (N) the number of all possible distinct
partitions of the number N,

Then

m), m2, . . . , m

5 N —gmkk
k=0

(4.1)

8(N, n)= g 5 N —gmkk m„
m )pmpp ~ ~ ~ p m

(4.2)

is the number of fragments of charge n which are found
in an ensemble of all possible partitions.

The average multiplicity to observe a fragment of
charge n is given by

W(N, n) = 8(N, n)
(4.3)

W(s, n)= 8(s,n)
2 s

where

(4.5)

The values of W(N, n) can be calculated analytically from
the recursion relations

B(N, n) =B(N —n, n)+A (N n), —
(4.4)

+ nB(N, n)
N

In order to have expressions which give W (N, n) in a sim-
ple form, we introduce Laplace transforms. In the
language of thermodynamics we go from a microcanoni-
cal ensemble (where the total number N is prescribed) to a
canonical ensemble where we reqoire only the mean value
(N ) to be fixed. We introduce

8 (s,n) = f dN exp( s—N)8 (N, n)

1 1 1
=rr. —

,.+„ I —exp( —si) s dn 1 —exp( —sn)

The value of s is fixed by the requirement that

N = — lnA (s)
d
8$ s=s(X)

We find (see the Appendix for details)

s (N) = 1.28/~N .

Then, Eq. (4.5) leads to

(4.7)

(4.8)

1
(4.9)

exp(1.28n/VX )—1

which is the mean multiplicity for a fragment of charge n
if a piece of N charges is decomposed according to the
principle of equal partitions. The exact multiplicity
W(N, n) [Eqs. (4.3) and (4.4)] and the one calculated us-
ing the Laplace transforms [Eq. (4.9)] agree well for
X&35 and n &2.

We return to the fragmentation cross section der/dZ.
We postulate that da /dZ is given by the total fragmenta-
tion cross section a~ times the multiplicity 8'(Zo, Z).
What is ZO7 We assume that neither the participants nor
the projectile spectators contribute to fragmentation.
Therefore we have to subtract the fast charges Zf»g and
define Zo by

W(N, n) =

Zo =Zp+ZT —Zfast & (4.10)

V. CALCULATION
OF KINEMATICAL PARAMETERS

A. Energy and angle distribution
of the prefragments

If the participant nuleons have reached thermal equili-
brium, the momentum distribution of the fireball nucleons
is (nonrelativistically)

where Zp and ZT are the charges of projectile and target,
respectively, and Zr», are the charges of the observed fast
particles (essentially fireball charges). Note that Eq. (4.9)
with X=Zp determines the slope of the charge yield
curve completely. As can be seen in Fig. 4, the shape of
the experimental distribution d 0./dZ is quantitatively
reproduced for Z & 3. Fragments with lower charges may
also originate from processes other than fragmentation,
and we leave them out. For instance, in a peripheral reac-
tion the target nucleus is excited and evaporates nucleons
and light nuclei. They may be responsible for the large
increase of the experimental cross sections at Z&3.'
Equation (4.9} can also be derived using the principle of
minimal information. '

A (s)= f dN exp( sN)A (N)—
exp( —s g mkk)

N(b) [P —P ))(»]
[2am T(b)] 2mT(b)

(5.1)

fm ]p ~ ~ ~

1 —exp( si) '— (4.6)

Here, the number 1V; the mean momentum p~~, and the
temperature T are functions of the impact parameter b;
m is the mass of the nucleon. Assuming that all nucleons
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in the geometrical overlap are participants whereas the
rest are spectators, N(b), pll(b), and T(b) can be calculat-
ed from geometry and the conservation of energy and
momentum. T(b) has to be corrected for the production
of pions. Some fireball nucleons penetrate the spectator
matter, carry their momentum into it, and deposit it into
the prefragment. We call a.p the fraction of momentum
which the prefragment receives from the fireball, where p
is distributed according to the function g(p, b). Accord-
ing to our analysis the momentum flow from the fireball
to the prefragment is small. The main part of the
momentum distribution is isotropic in the target rest
frame and arises from Fermi motion: If a prefragment is
cut out of a nucleus in a rapid way, it is left with an iso-
tropic momentum distribution whose mean square value
is given by Goldhaber. '

by about 1 MeV with respect to the prefragment distribu-
tion and can therefore be neglected.

B. Distribution of Coulomb barriers

Energy spectra of fragments emitted in high-energy
nucleus-nucleus collisions exhibit a broad peak and then
an exponential decay (Fig. 2). The peak is usually attri-
buted to the Coulomb repulsion. However, the situation is
complicated: If the compound nucleus (projectile plus
target) would break up into a fragment and a remainder,
the energy distribution of the fragment would show a
sharp dropoff for energies E & Vc', where the "nominal
barrier"

anom

ro [~ '"+(~z +~t, ~)'"]j
kF Az- —Aa„=(p') =
5 Az- —1

(5.2) Z '=Zz-+Zp —Z
(5.6)

where kF denotes the Fermi momentum, and 2 and Az
represent the nucleon numbers of the prefragment and
target, respectively.

If we assume a Gaussian distribution for the Fermi mo-
menta, the momentum distribution of the prefragment is
obtained by folding this Gaussian and the one of Eq. (5.1),
with the result

f ( p, b) =C exp- [p —ap ll(b) 1'

6p +cx 2' T
(5.3)

We then add the effect of the Coulomb repulsion as
described by Eq. (2.2). Then the momentum distribution
in the spectator rest frame has the form (e~ =p/p),

[+(p —2M Vc )ep —a p
I
l(b)

f(p, b)=Cexp-
bF+a2mT b

Xe(p2/2~ V). (5.4)

As long as the projectile dives fully into the target the
quantities N(b), pll(b), and T (b) depend little on the im-
pact parameter b. We replace them by average values
denoted by T», (pll )», and N».

Due to viscosity between the fireball and the whole
spectator matter, the spectator matter receives some mean
forward velocity v, . This is explained below. Here we
use v, to transform Eq. (5.4) into the laboratory sys-
tem, then we integrate over the distribution of Coulomb
barriers and obtain Eqs. (2.3) for do. /dQdE. The pa-
rameters b, and pll in Eq. (2.3) can be calculated by

is the Coulomb energy of two touching spheres (ro ——1.4
fm) which have charges Z and Z ', respectively. Since the
experimental spectra show a broad peak, there must be a
distribution g( Vc) of Coulomb barriers. Satisfactory fits
to the experimental p-3 data are obtained by assuming a
step function g ( Vc ) with two parameters. The center of
g( Vc) is at Vc ——~ Vc', where ~=0.5, and the width of
g ( Vc) is about 0.4 VC' . No justification is given for the
choice of the distribution function, nor for the width and
the value of a.

In this subsection we derive the shape of the distribu-
tion function g( Vc) which we utilize to analyze the ex-
perimental data. The essential idea is the following: The
Coulomb barrier varies because a fragment of charge Z
escapes from different locations inside the target spectator
matter. However, the distribution of spectator matter de-
pends on time. We assume for it a uniform charge distri-
bution which expands isotropically. Of course, this is an
idealization of the true situation, where originally a hole is
drilled out of the target nucleus. The Coulomb barrier
corresponds to the asymptotic kinetic energy which the
fragment receives from the Coulomb force exerted during
the expansion phase.

The electrostatic potential energy of a spherical frag-
ment with charge Z inside a uniformly charged sphere
with charge Zo —Z is

3 (Zo —Z)Ze
Vc(r) =— (R Rp/5 r /3) (r &—R), —

R

(5.7)

5=h~+2ma TF~,

Pll =a(Pll)» .
(5.5)

where RF and R are the radii of the fragment and of the
uniform charge distribution, respectively (Fig. 5). The
force F(r), derived from Eq. (5.7), is

We expect a to be of the order one (one fireball nucleon is
absorbed in the prefragment).

By absorbing the fireball nucleons and by forming a
spherical surface the prefragment gains excitation energy.
This energy is of the order of several MeV per nucleon.
The prefragment deexcites by evaporation. We estimate
that this process shifts the final energy E of the fragment

z(zo —z)e'
F(r)=

R
r (r&R) . (5.8)

Since the broken up spectator matter expands, not only
does the position r (t) of the fragment vary with time but
also the global radius R (t). For a uniform and isotropic
expansion, r (t)/R (t) = r (0)/R (0). Then the asymptotic
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properties, mean value, and mean square deviation of our
g(Vc) correspond to those previously employed. If we
define the reduction factor a as the ratio of the mean
value

@max

( Vc ) = f V d Vg ( V) (5.15)

to a nominal value
and Z and a radius

«, )
K=

anomc

and for the width

Vc' calculated with charges Z0 —Z
RT+RF, we find

2

(1+RF/RT), (5.16)
RT

FIG. 5. The Coulomb energy for an isotropically expanding
charge distribution of radius R (t). A prefragment of radius RF
is located at a distance r (t) from the center. This fragment only
feels the Coulomb force from the charges contained in a sphere
with radius r (t).

(( V2 ) ( V )2)1/2/Vnom

2

=0.26 (1+RF/RT) .
RT

(5.17)

kinetic energy (E) of the fragment initially at distance
[ro =r (0), RT =R (0)] is obtained as

(E) = f F(r)dR =Z(Zo —Z)e f (r/R )dr

Z(Zo —Z)e ro = Vc(t'o) .

g ( Vc )d Vc ro dro, ——
from which

g(Vc) ~ro &Vc

(5.10)

(5.11)

for radii ro&R,„. Normalized to 1, the distribution
function takes the form

3 ~cg(vc)=-
(

Vmax)3

]./2

e( v,-"—v, ), (5.12)

where the maximal Coulomb barrier Vc'" corresponds to
R,„, the largest radius from which a prefragment can
arise. We take Vc'" as a fit parameter, which is deter-
mined from experiment. According to our picture this
parameter can be calculated by

R,„(Z Zo)Ze+IIIax ma X 0 (5.13)
RT RT

where Zo is defined by Eq. (4.12) and RT is the radius of
the target nucleus. Then, according to Fig. 5,

R~,„=RT—RF (5.14)

Although our distribution function g(Vc) [Eq.'- (5.12)]
does not have the functional form of a step function, as
employed in the analysis of the p-A data, the average

The fragment can originate anywhere from inside the nu-
cleus, i.e., from all radii ro&R,„corresponds to the
maximal radius from which the fragment escapes. There-
fore the distribution of Coulomb barriers g ( Vc) obeys the
equation

Qur distribution function has the properties which have
been assumed to describe earlier experiments on p-A col-
lisions. The comparison with the data for nucleus-
nucleus collisions will be relegated to Sec. VI.

C. Velocity of the target
in the laboratory system

In the first step of the fragmentation reaction the pro-
jectile penetrates the target and a fireball is formed. The
spectator matter remains cold but receives a mean velocity
u, This velocity is observed experimentally but has
never been explained quantitatively. We propose the fol-
lowing mechanism: During the formation of the fireball,
nucleons which have been bound to the spectator matter
become free. In this process the bonds are stretched until
they break. During stretching, the spectator matter is ac-
celerated. We cast this picture into formulae (cf. Abul-
Magd et al. ' ).

A particle of mass m is bound by the energy B. Sud-
denly it receives momentum p, the bond is broken, and
the particle escapes with momentum K. Energy conser-
vation leads to

~2
—B.

2m
(5.18)

We assume the vector K to have the same direction as p.
This implies that

K=ap, (5.19)

where a & 1. The difference p —K has to be taken up by
the object to which the nucleon had been bound (in our
case in the spectator matter). We call 1 —a the viscosity
coefficient. Equation (5.18) then reads as follows:

2

(1 a)=B . — (5.20)
2m

If the transferred energy p /2m is large compared to the
binding energy B, which is the case in high-energy reac-
tions, Eq. (5.20) has the solution
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TABLE I. The numerical values for the fitted parameters which characterize the energy and angle
distribution d o./dQdE dZ in the parametrization given in Sec. II for reactions which lead to Z=8
fragments at various projectile energies E. The parameters are of the overall normalization do. /dZ, the
width 6 and the shift pl~ of the fragment momentum distribution in the spectator rest system, the velo-
city U, of this system with respect to the laboratory, and the maximal Coulomb barrier V~'" felt by
the fragment. The last two columns contain the values (ply )» and TF& for the fireball. They are calcu-
lated under the assumption of complete thermalization among all participants.

Projectile/Target ( 3 GeV)
do /dZ

(mb) (GeV/c) (GeV/c)
Uc.m

(c)
~c'" (p~))FB TFs

(MeV) (GeV/c) (MeV)

Ne/Au
Ne/Au
Ne/Au
Ne/Au
He/Au
p/AU
0/Au

0.25
0.4
1.0
2.1

1.2
4.9
0.84

160
170
220
200

80
33

440

0.42
0.45
0.56
0.52
0.44
0.42
0.43

0.15
0.22
0.07
0.001
0.07
0.06
0.28

0.019
0.012
0.0085
0.007
0.009
0.005
0.030

58.1

53.8
43.5
42.0
50.7
53.2
64.2

0.19
0.24
0.38
0.50
0.30
0.50
0.10

24
31
58
89
54

103
11

B
(1—a)=

p /m
(5.21)

If the bonds of n particles are broken, the target spectator
has an average parallel momentum of

B
~p[[~=n(1 —a)(p~[)=n

~ (p[~) .
(p '/m)

(5.22)

We identify the average values of (p~~) and (p /2m) on
the right-hand side of Eq. (5.22) with the mean values

(p~~)FB and —,
' T» for the fireball. Then the velocity of

the target spectator in the laboratory frame is a function
of (p~~ )Fii/T» and can be calculated by

U
1 n B P][ P)J=y (5.23)
3 A{) m T Fg T Fg

where Ao is the mass of the target spec'tator. We take n

to be the number of nucleons from the interface between
participant and spectator matter. For B=16 MeV and a
thickness of the interface of 1 fm, y is around 0.001.
Equation (5.23) is certainly not an exact formula but
should reproduce the trend and the order of magnitude of
the experimental values.

~fit ~I' ++2m TFB (6.1)

as expected from Eq. (5.5). The straight line represents
the theoretical prescription. It is calculated with a Fermi
momentum kz ——240 MeV/c and assuming that one fire-
ball nucleon gets stuck in the prefragment and deposits all
its momentum (a=1). The Fermi momentum of 240

momentum (p~~)» of the fireball nucleons as a function
of (p(~ )FB. The theoretical values of (p~~ )FB which we use
in this figure are listed in Table I. If we assume that one
fireball nucleon gets stuck in the fragment, the ratio
p~~/(p~~)» should be one. The experimental values show
a different behavior: For the 86M MeV systems this ratio
is larger than 1 (zone I) and decreases for higher beam en-
ergies. It passes the value 1 for beam energies around
5002 MeV (zone II) and drops below 1 for higher beam
energies (zone III). The physics of this behavior and the
meaning of zones I—III will be explained later.

Figure 7 shows the fitted widths 6 of the momentum
distribution as a function of the fireball temperature TFii.
One recognizes a linear increase (except for the p-Au reac-
tion),

VI. COMPARISON BETWEEN EXPERIMENT
AND CALCULATON

I I

]01
I

Experimental data for triple differential cross sections
have been analyzed using the parametrization [Eq. (2.1)]
and the fit procedure explained in Sec. III. We recall the
form of the triple differential cross section,

dVcg(Vc)f(E, Q, v, ,p~~, h, Vc) .0 do

&0'—

]0 1

o0

pHe

9p

(2.1)

Table I contains the numerical values of the fitted param-
eters for various reactions which we discuss in detail. We
begin with the parameters 5, p~~, and U, According to
the theory presented in Sec. V they should depend on the
parameters (p~ )» and TFB for the fireball [Eqs. (5.5) and
(5.23)]. Figure 6 shows the ratio of the experimental
mean parallel momentum of the fragment to the mean

I ( I P

0.1 0.2 0.3 0.4 0.5 0.6

P[[ fireball (GeV/c)

FIG. 6. The mean parallel momentum pit of a fragment
Z=8 produced in reactions on Au as a function of the mean
momentum of one fireball nucleon (pl~)F&. Each point corre-
sponds to"one experiment. The projectile is Ne, except ~here in-
dicated by a different symbol. The zones I—III refer to dif-
ferent energy regimes and are explained in the caption of Fig. 9.
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FIG. 7. The width 6 for the fragment momentum distribu-
tion for Z=8 produced in reactions on Au as a function of the
fireball temperature TFB. Note the large offset on the ordinate.
The solid line is our prediction. Each point corresponds to one

experiment. The projectile is Ne, except where indicated by a
different symbol. The zones I—III refer to different energy re-

gimes and are explained in the caption of Fig. 9.

MeV/c corresponds to a slope parameter Eo in
do IdE ~ exp( E /Eo ) —of

2 kI
Eo ——— ——12.3 MeV . (6.2)

5 2M

One notices a good overall agreement between theory and
experiment. However, the discrepancies seem to be sys-
tematic. For low beam energies (zone I) the fitted values
are slightly higher than the theoretical ones. The agree-
ment is best for zone II, whereas at higher beam energies
(zone III) the theory predicts widths which are too large.

Figure 8 displays the velocity U, of the whole system
as a function of the dimensionless quantity (p~~)Fs/TFB.
If u, arises from the viscosity at the interface between
fireball and spectator matter as explained in Sec. V, the
c.m. velocity should be a linear function of this parameter
with a coefficient of proportionality of the order 10
Eq. (5.23). One sees a clear correlation between U, and

the parameter (p~~/T )FB. For high beam energies, above
2003 MeV (zones II and III), the experimental values fol-
low the predicted linear dependence. For low beam ener-
gies (zone I), the experimental values are considerably
higher than the predicted ones.

We conclude as follows: The kinematical parameters
6, p~~, and U, which characterize the momentum distri-
bution of the fragments show the behavior which we ex-
pect from our picture: The spectator matter bursts into
pieces so rapidly that fragments keep the momentum they
have had at the moment of breaking. The momentum
distribution therefore shows Fermi motion and some
momentum which is carried from the fireball into the
fragments. While the overall picture seems correct, we
observe certain systematic deviations. They seem to be re-
lated to the incident energy and may be explained as fol-
lows:

One of the assumptions of our model is the complete
thermalization of all projectile and all target participants.
It underlies the calculation of TFri and (p~~ )FB as a func-
tion of which we have plotted the parameters 6, p~~, and
u, . This assumption is certainly unrealistic in the pro-
ton case and depending on the energy also questionable
for heavy ion projectiles to some degree. We explain a
more realistic situation with the help of Fig. 9.

At low beam energies E & 1502 MeV (zone I), the pro-
jectile is stopped in the target and only part of the geome-
trically overlapping volumes form a fireball. Therefore,
the available energy and momentum are shared by fewer
nucleons. This leads to a larger temperature TFB and
larger parallel momentum (p~~)FB per participant. The
fireball nucleons cannot escape in the forward direction
without moving through the cold spectator matter and ac-
celerating the whole system. For these reasons the veloci-
ty u, of the spectator matter is larger than previously
calculated. The fitted values of p

~ ~

and b, as a function of
(p~~ )FB and Tpii for 86M MeV agree with our predicted
systematics under the assumptions that equilibration takes
place between 60% of the geometrically calculated parti-
cipants.

At energies around 400 MeV (zone II) the standard fire-
ball picture holds. Momentum and energy are shared by
all nucleons in the geometrically overlapping zone. Here,

0o 30—

III II I
g, 20—

E
0

O

o 10— Hey 0

pQ
O

I I I I I I I0 I I I

0 2 4 6 8 10

P~l fireball /T fireball (10 1/c)

Ep & 250 AMeV Ep 250 AMeV Ep & 250 A MeV

FIG. 8. The center-of-mass velocity U, of the spectator
piece as a function of the parameter (pI~/T)Fq for the fireball.
The theory predicts a linear dependence. Each point corre-
sponds to one experiment. The projectile is Ne, except where in-
dicated by a different symbol. The zones I—III refer to dif-
ferent energy regimes and are explained in the caption of Fig. 9.

FIG. 9. The three zones in projectile energy and the possible
reaction mechanisms: (I) the projectile stops in the target; (II)
all geometrically possible participants equilibrate; (III) imperfect
equilibration with two fireballs.
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TABLE II. The maximal radius R,„where a fragment Z=8 originates for various reactions. R
is obtained from the Coulomb barriers V~'" according to the procedure described in the text. The
theory predicts a value 1 for the values of the last line in the table (RT ——7.0 fm, R+——3.0 fm).

Projectile/Target He/Au p/Au 0/Au

Energy ( 3 GeV)
R,„/RT
(R,„+RF)/RT

0.25
0.75
1.8

0.4
0.74
1.17

1.05
0.73
1.16

2.1

0.84
1.27

1.25
0.74
1.17

49
0.7S-

1.18

0.084
0.71
1.14

do 1

exp(Z 1.28/QZO) —1
(6.3)

where Zo is the charge of the spectator matter [Eq.
(4.10)]. According to Fig. 3 the shape of the data is well
described by this equation. What about the normalization
constant o.~?

the fitted values of U, , p~~, and b, agree with the calcu-
lated ones.

At higher energies (zone III) the target participants and
the projectile nucleons do not equilibrate completely
anymore in one fireball. Two fireballs may be a more ap-
propriate picture. Their temperatures TFB and (p~~ )Fz
cannot be calculated using energy and momentum conser-
vation alone. The same holds true for the p- 3 case.

We now turn to the geometrical aspects of the fragmen-
tation reactions. We start with the Coulomb energies.
The theoretical distribution g ( Vc ) [Eq. (5.12)] of
Coulomb energies has been derived under the assumptions
that the fragments can originate from all possible loca-
tions inside the target matter with equal probability. As
one sees from the successful fit to the experimental energy
and angle distributions (Fig. 3), the distribution function
g ( Vc ) which we have derived describes the broad
Coulomb peak well. However, note that the data have an
experimental cutoff towards small energies. From the
data a maximal Coulomb barrier Vc'" is extracted. Ac-
cording to our picture it corresponds to fragments which
are emitted from the surface of the nucleus [Eqs. (5.13)
and (5.14)]. The values R,„can be directly calculated
from the experimental values of VC'" via Eq. (5.13). The
values for R,„which have been determined in this way
are shown in Table II and are compared with the target
radius RT and the fragment radius Rz. According to our
theory [Eq. (5.14)], the ratio (Rp+R,„)/Rr should be
equal to 1. The experiment is very close to this predic-
tion. The slight deviation may originate in the oblate
shape of the prefragments (Fig. 1).

We turn now to the fragment distribution do/dZ Its.
shape and absolute value should be given by

The values obtained by the fit are presented in Table
III. They are calculated from the values do/dZ in Table
I and Eq. (6.3). The values of o'F are of the order of
several hundred mb. For a given projectile target com-
bination they do not vary much with energy, but depend
strongly on the projectile. Since the total reaction cross
sections are of the order of several barns, the fragmenta-
tion cross sections oF constitute only about 10% of all
possible reactions. Fragmentation is considered as a very
violent process which corresponds to small impact param-
eters. If we assume that all collisions with b &b,„ lead
to fragmentation, whereas for larger impact parameters
fragmentation does not occur, we can relate oF to the im-
pact parameter b „by

Values of b,„are tabulated in Table III for various reac-
tions. For reactions with heavy ions the limit b „seems
to correspond to situations where the projectile has com-
pletely dived into the target (b =RT —Rp) (see Table III).
For He and p as projectiles this geometrical interpretation
does not work and the projectile dives in further.

We report another regularity which we have observed
but not understood: The experimental values of o~ seem
to depend linearly on the number of participants. Howev-
er, further data are needed for systematic investigations.

VII. CONCLUSION

We presented an analysis of fragmentation reactions on
nuclei induced by high-energy protons or heavy ions. The
analysis consists of two parts. First of all, experimental
triple differential cross sections d o /d 0dE dZ are
analyzed for various reactions and the essential physics is
extracted and condensed into a few parameters. Any
theory of fragmentation reactions should describe the nu-
merical values of all these parameters and their depen-
dence on the specific reaction.

Then we propose a model for the fragmentation reac-
tion which assumes a cold breakup of the spectator

TABLE III. The total fragmentation cross section o~ for several reactions leading to Z=8 frag-
ments. The cross section is converted into a maximal impact parameter b,„, which is compared with
the situation of complete "dive in" of all projectile nucleons into the target, b =RT —Rp.

Projectile/Target Ne/Au Ne/Au He/Au p/Au 0/Au

Energy ( A GeV)
o-F (mb)

b,„(fm)
R,'-'R, (f )

0.25
339

3.3+ 1

3.9

0.4
368

3.4+0.5

3.9

1.05
547

4.2+0.7
3.9

2. 1

627
4.3+1.1
3.9

1.25
175

2.410.4
5.1

4.9
73

1.5
6.0

0.084
440

3.7
4.0
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We have been able to describe all data of triple differen-
tial cross sections in a consistent and quantitative way.
According to our picture the nucleus breaks into pieces in
a cold way. 0)ne intuitive picture is the shattering of
glass. This picture is very appealing. But is the nucleus
really brittle' We are rather used to viewing the nucleus
as a liquid. We know from macroscopic physics that a
droplet of mercury splashes into small droplets under the
impact of a force. Is this the more correct analogy for
cold breakup of nuclei?
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FIG. 10. The multiplicity distributions of fragment charges

for various limitations of the total number of fragments.

matter. The word "cold" means the available energy is
not equilibrated, rather the spectator matter cracks in a
statistical way into several fragments.

The following features of the reaction can be extracted
from the data:

(1) Fragmentation reactions are believed to be a violent
process. The first well-known indication is a high multi-
plicity of fast particles (participants) in coincidence with
medium mass fragments. We can make the statement
more quantitative. In our analysis we are able to extract
the total cross section crz for fragmentation. When it is
related to an impact parameter, we find that the projectile
has to dive completely into the target nucleus in order to
induce multifragmentation.

(2} The target cracks completely. The original location
of a prefragment in the spectator piece can be extracted by
analyzing the Coulomb peak in the energy distribution.
The data indicate that fragments arise from any location
inside the spectator matter with equal probability. The
maximal Coulomb barrier corresponds to fragments from
the target surface.

(3) Before cracking, the spectator piece moves with a
velocity v, which is of the order of 1%c. Its absolute
value as well as its dependence on the incident energy can
be understood in the following picture: The projectile
drills a hole through the target and the friction or viscosi-
ty between participants and the surrounding spectator
matter transfers momentum from the projectile to the tar-
get spectator.

(4) In the rest system of the spectator matter the frag-
ments have a near isotropic momentum distribution. Its
width is compatible with the assumption that it arises
from Fermi motion. There is a small dependence of the
width on the temperature of the fireball. It agrees with
the assumption that one participant nucleon from the fire-
ball carries its momentum into the fragment. This mech-
anism also explains the deviation of the momentum distri-
bution from isotropy, i.e., it explains the mean momentum
in beam direction.

(5) The reaction mechanism seems to depend on the in-
cident energy: For energies below 2003 MeV the projec-
tile stops in the nucleus. For energies around 5003 MeV
all participants form one fireball. Above 1A GeV in-
cident energy the participants do not thermalize complete-
ly any more and two fireballs seem to be a more appropri-
ate picture.
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APPENDIX

A. The inverse Laplace transform of A (s)
in the saddle point approximation

In order to determine the parameter s we approximate
the inverse Laplace transform of A (N),

A (N) = — f ds exp[in[A (s)]+sN I (Al)

at the saddle point. The integrand has its maximum for

in[A (s)]=N .
dS

Applying this equation to (4.6) one gets

8 + 1 + iexp( si)m-
Bs,. 1 —exp( si),. —1 —exp( —si)

1

exp(si) —1
(A3)

This sum is converted into an integral

oo 1N= f di =—g(2) .
exp(si} —1 s~

(A4)

The value of Riemann's zeta function g(2) is 1.644. This
leads finally to

s =1.28/v N .

One can limit the total number of fragments in a partition
by introducing step functions into Eqs. (4.1) and (4.2).
We do not give details but show the numerical distribu-
tions of charge multiplicity for various cases. For %=65
Fig. 10 shows the multiplicity for a fragment of size n for
three cases: The total multiplicity m is unlimited [Eq.
(4.19)] for m &40 and m ~ 16.
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B. Laplace transform of the
thermodynamic multiplicity distribution

For the case where the partition function for each frag-
ment is set equal to one, the thermodynamic prediction
for 8'(s, n) is given by

( )
B(sn)

A (s)

exp( —sn)
n!

In order to determine s me again apply the inverse La-
place transform and approximate it by the saddle point
method [Eq. (A2)]. Now A (s) has the form

Q g m„/m;!(i! ) 'exp —s g m)j
i Im I J

g g 1/m;!(i!) 'exp —s gmjj
i Im I j

Carrying out the summations one arrives at

(A6)

2 (s)= g + exp —s g m~i /m;!/(i!) ' .
(mI i

(A9)

Hence, in the thermodynamic case, N is related to s by

1 ar m„
+exp( sm—„n) /m„!/(n!) "

n ds
'

in% =exp( —s) —s . (A 10)

8'(s, n) =
g exp( —sm„n)/m„!/(n!) "

m„

The dependence (A8) for the fragment distribution fails
the experiment completely.
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