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Automated algebra for higher order perturbation diagrams with angular momentum coupling
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The use of %Pick's theorem and angular momentum recoupling rules to construct perturbative
algebraic expressions for the shell-model effective interaction is discussed. The problem is shown to
reduce to the evaluation of certain configuration traces, which can be accomplished by techniques
previously developed for use in trace-moment statistical spectroscopy. The use of the existing
configuration-trace symbol-manipulation programs for automatic generation of complete sets of op-
timally simplified expressions is summarized. Examples are presented of expressions for fourth-
order diagrams and of the simplifications achieved for third-order diagrams.

I. INTRODUCTION

Perturbation theory has been the basis of almost all ef-
fective interaction and effective operator calculations.
However, the complexities of the higher order terms are
such that complete calculations have only been done up to
the third order. Until now, even the algebraic expressions
for all the fourth order terms have not been worked out.
The main difficulty seems to be the sheer volume and in-
tricacy of the manipulations involved. Typically one
starts with the m scheme because of the ease of carrying
out the commutations and contractions of the single parti-
cle creation and annihilation operators. On the other
hand, the final expressions for the matrix elements must
be in the angular momentum coupled representation so as
to exploit angular momentum conservation. This can be
done by the use of Clebsch-Gordan coefficients, and for
the low order terms this is indeed a good way to proceed.
However, the method is impractical for the higher order
terms, which are needed for control of truncation errors. '

Recently Kuo et aL devised a method to evaluate per-
turbation diagrams in the coupled representation using in-
genious techniques to decompose a diagram into ladder
diagrams and then express each ladder diagram in the
coupled representation. Although it is a major improve-
ment over the m-scheme approach, it still involves a
painstaking search for all the basic diagrams, then the
decomposition of each diagram, and finally angular
momentum recouplings. Furthermore, there is usually
more than one way to carry out the algebra and, in gen-
eral, different approaches can produce different forms of
the final results. Needless to say, it is very important to
find the simplest final expression, both for aesthetic
reasons and for economy of numerical computational
time.

In this paper we show that the problem can be reduced
to one which has already been completely solved in the
context of statistical spectroscopic theory. The desired
matrix element is in fact a special case of a configuration
trace. The method developed for this problem makes use

of a computer to carry out the tedious work of finding all
the basic diagrams and performing all the contractions
and associated angular momentum recouplings. Since the
work is done by a machine, we are afforded the luxury of
exploring all possibilities so as to arrive at the simplest fi-
nal forms. As a result, many terms acquire simpler forins
by the use of our approach, compared with the results
given by Barrett and Kirson.

The method consists of two parts. Firstly, for a partic-
ular perturbation order, we find by symmetry considera-
tions all the basic or topologically distinct diagrams.
Secondly, for each diagram, the algebraic expression is de-
rived completely in the coupled scheme; no magnetic pro-
jection quantum number m appears anywhere and no
Clebsch-Gordan coefficient is used in any way. All recou-
plings are carried out in terms of 6-J symbols and, in or-
der to make use of further sum rules, 9-J symbols. The
program has built into it the ability to recognize algebrai-
cally all the angular momentum recoupling sum rules up
to and including 9-J symbols.

As mentioned, the computer programs were originally
written for obtaining configuration trace expressions for a
product of excitation operators and Hamiltonians. We
need only apply the close connection between trace and
perturbation diagrams (given in Sec. II) to produce the
effective-interaction results. Since the methods for con-
figuration traces are fully reported in Ref. 4, we shall here
be content to summarize them (see Sec. III). Expressions
for the third order effective interaction terms and some
selected examples of fourth order terms are discussed in
Sec. IV. A brief concluding discussion is given in Sec. V.

II. EFFECTIVE INTERACTIONS
AND TRACE DIAGRAMS

For definiteness, consider the problem of evaluating the
Bloch-Horowitz perturbative expansion of the effective
Hamiltonian A =Ho+/, where Ho is the independent-
particle shell-model Hamiltonian.

The effective interaction P is expanded in terms of the
two-body residual interaction V, as follows:
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where

~1)+y (2)+. . .

n —1

unless this results in ambiguity. We have

where the factor

(12)

~(n) y (2) [f]
—1/2 (2P+ 1)—1/2 (13)

Here Q is the orthogonal projection on the excluded space
(the complement of the model space), Ho is the single-
particle Hamiltonian, and co is the starting energy.

We use rank-i spherical tensor creation operators A and
destruction operators B defined in terms of the conven-
tional operators a ~ and a by

(3)

These definitions imply the following commutation rela-
tions in the representation where A and B are coupled to
tensorial rank I:
(g'XB )r+( —1) + r(B Xg ) =[ ]

The two-body interaction can now be written as

V= ——,
' g [r]'"W' [(a"Xa')'X(B'XB")"]'

rstu l

where 8',„' are unnormalized antisymmetrized two-body
matrix elements of V, related to the normalized matrix
elements M",„,by

nl=(mcrmc ), (14)

where m, =(m, ,m, , . . .) are the occupancies of the coreC)& C2& '

orbits and m„=(m„,m, , . . .) the occupancies of the

valence orbits. Let N; be the maximum number of parti-
cles that can be put into the ith orbit. The number of in-
dependent states that can be formed with m; particles in
orbit i is

arises from expressing the scalar product of two tensors of
rank I in terms of their coupling to zero rank.

The evaluation of Eq. (12) of course involves the appli-
cation of Wick's theorem combined with suitable angular
momentum recoupling rules. To show how this problem
is connected to that of evaluating configuration traces, we
introduce some notation. A configuration is specified by
the number of particles in each active orbit. This may be
written in vector notation as m=(mi, m2, ml, . . .), where
m; is the number of particles in the ith orbit. We may
write m as a direct sum of core and valence parts,

where

(1+g )
—1/2 (7)

where (~) is the binomial coefficient. The dimensionality
of the configuration m is

(N) (16a)
The superscript I represents the total angular momentum
including isospin if JT representation is used.

Our problem now is to evaluate matrix elements of
F '"' between states of two particles relative to a closed-
shell core. Let the single particle orbits be divided into
two groups: the core or hole orbits c &,c2,c3, . . . , and the
valence or particle orbits v 1;v2, vl. . .. The core state

~

c )
is then the one with all the core orbits fully occupied and
valence orbits completely empty. If the core orbits have
definite angular momentum, as we assume,

~

c ) will have
zero angular momentum, and also zero isospin in ap-
propriate circumstances.

Define a set of pair-creation operators by

Z„=Z;J = —g;i [A'X/(J]",

and their Hermitian conjugates by

in terms of the vector binomial coefficient defined by

(16b)

The configuration trace of an operator 0 is then defined

((& &) = y (cr
~

0
~

cr & .

adam

(17)

The particular configuration mo=—(N„O), with all the
core orbits fully occupied (m, =N, ) and the valence orbits
empty (rn„=O), spans a space of dimension 1 and consists
solely of the core state

~

c ). Hence the matrix element of
the nth order perturbation term [Eq. (12)] is given by

Z„=Z ~~J g;/[B'XBJ—]— (9) (g"
~

y"(")
~

1i/") =[I'] '/ (((Z "Xy (")XZ") ))

where x=(i,j) denotes the configuration of the pair.
Then the normalized two-particle states can be written

[I ]
—1/2((O (n))) 0 (18)

(1O)

We can now express the desired matrix element of the nth
order effective interaction P '"' as the core expectation
value of the angular-momentum coupled product of
operators, denoted for simplicity by

0 '"'=(Z "X~(")XZ')'

Let us return to the study of Eq. (2). We recognize that
V is a linear combination of unit scalar two-body opera-
tors defined by

U(q) —= U",„—= ——'[I ]'"[(&"X&')"X(B'XB")"]'

(19)
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where q =(I rstu ) stands for the quantum numbers need-
ed to characterize a two-body matrix element. Using also
the compact notation

g II (q;) U(q )—U(q ) —U(q„) .
e e

~q

W( q) = 8'~,„, (20}

we can write

V= g W(q) U(q) .
q

(21)

In view of Eqs. (2) and (21}, the right-hand side of Eq.
(11) is essentially a multinomial, i.e., a product of sums,
each of the form (21). The following expansion results:

Here q =(qi, qz, . . . , q„) is one possible set of n q's, each
selected from among the values summed over in (21). The
operators Q/e: Q/—(co Ho—) are the propagators; each in-
termediate state of definite configuration is an eigenstate
of Q/e. The Q/e just to the left of U(q;) gets replaced
by its eigenvalue g(q, i}, which depends on the intermedi-
ate configuration and hence is determined by the set

Iq; (i'(i)I.
Now from Eqs. (18) and (22),

(g"
~

~'"'~f„"&=[I ] ' 'g g ~(q;)g(q, i) (([z„'xU(q )xU(q )x xU(q„)xz„"]'&&
i=1

q

(23)

where g(q, l)=1 by convention. Defining

D'"'"=(([z„"xU(q,)x" xU(q„)xz,"]'» ',

we can write

(24)

n

(g„/ P '"'
f @ &=[I ] '~ g + W(q;)g(q, i ) D'"'

j —]

(25)

Having expressed the result in terms of the quantityD'"', we are now ready to exploit the general methods
xy q'

previously developed for the evaluation of configuration
traces of angular-momentum-coupled tensor combinations
of creation and annihilation operators. The use of Wick's
theorem is of course essential to the discussion of (24). To
represent each possible type of fully contracted term, Ref.
4 uses a special kind of Hugenholtz diagram which we
will call a "trace diagram. " As in all Hugenholtz dia-
grams, each basic operator (e.g., two-body interaction,
one-body potential, etc.) is represented by a dot. Each
single-particle creation operator in the basic operator is
represented by an outgoing line coming from the dot and
each annihilation operator by an incoming line. For ex-
ample, the two-body part of a Hamiltonian is represented
by a dot with two outgoing and two incoming lines. The
direction of each line is indicated by an arrow, and the
contraction between a pair of single particle operators is
indicated by a line coming from the creation operator A
and going to the annihilation operator 8. The basic
operators in a diagram are conventionally arranged in
vertical order with the leftmost one in the equation on the
top. As a result, a "downgoing" line represents a left con-
traction, i.e., one with the creation operator on the left of
the annihilation operator. An "upgoing" line, on the oth-
er hand, represents a right contraction, i.e., one with the
creation operator on the right. Since the trace may be

p t ™
where

0 ~ =QO ~(~) (27)

is the sum of all the trace diagrams 0 -, (a ) having a total
of p; contraction lines in the ith orbit with t; of them
downgoing and (p; t;) upgoing. Here —a. represents the
contraction pattern of each individual diagram.

Let us now consider the application of Eq. (26) in the
special case m=mo, corresponding to the core configura-
tion. We shall show that for this case, upgoing (downgo-
ing) lines in trace diagrams can be restricted to particle
(hole) orbits, so that there is a one-to-one correspondence
between the trace diagrams and the diagrams of perturba-
tion theory.

The proof follows easily if we consider the fixed
particle-rank or hole-rank components of the operator 0
in each orbit. An operator with fixed particle (hole) rank
k is one made up of k single-particle creation operators
and k annihilation operators, with all the creation opera-
tors on the left (right) of the annihilation operators.
Therefore, a fully occupied orbit can support only the
zero-hole-rank component of 0. Any operator of nonzero
hole rank has at least one single-particie creation operator

I

taken over a configuration in that does not in general cor-
respond to a closed core, for trace diagrams there is no
rule that upgoing (downgoing) lines are restricted to parti-
cle (hole) orbits. This is in contrast to the usual diagrams
of perturbation theory.

A fundamental general result of Ref. 4 is the "trace
equation, "
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N —p

mp —t

N, —p,

mo, —t, mp„—t ~

N, —t,
N, —t,

N —p

0—0 (28)

Equation (26) can now be rewritten as

((o)) '= g o, -, "„".
&v 'c

(29)

Equation (29) shows that the trace diagrams (restricted by
the perturbation convention) are in one-to-one correspon-
dence with the perturbation theory Hugenholtz diagrams.

Because of the one-to-one correspondence between trace
and perturbation Hugenholtz diagrams of P '"', we can
use the algebraic expressions derived for trace diagrams
directly for effective interaction calculations. The various
steps to be followed in an effective interaction calculation
remain the same except that the tedious job of deriving
the equations is now completely delegated to a computer.
Furthermore, for trace calculations we have developed
further techniques and a computer program by which the
equations are translated directly into Fortran codes. As
we shall discuss in Sec. III, it is possible with only simple
changes to adapt the machine-written codes to the evalua-
tion of effective interaction matrix elements.

III. ALGEBRAIC EVALUATION
OF PERTURBATION DIAGRAMS

We now summarize the details of evaluating the config-
uration trace (24) by the use of Wick's theorem. It is
necessary to consider all the possible contractions among
the single particle creation and annihilation operators in

on the right of all the annihilation operators of the orbit
and therefore gives zero when acting on the fully occupied
state. Similarly, an empty orbit can support only the
zero-particle-rank component of 0 since any nonzero
component of 0 has at least one single-particle annihila-
tion operator on the right of the creation operators. Thus
for the core configuration trace, where orbits are either
fully occupied or empty, the only nonvanishing com-

ponent of 0 is the part with zero hole rank in all the hole
orbits and zero particle rank in all the particle orbits.

By Wick's theorem the zero particle (hole) rank com-
ponent of an operator in an orbit is equal to the sum of all
the possible right (left) contractions of all the single-
particle creation and annihilation operators belonging to
the orbit. Since a right (left) contraction pair is represent-
ed by an upgoing (downgoing) line in the trace diagram,
we can conclude that for the core configuration trace, all

upgoing lines can be restricted to particle orbits and all
the downgoing lines solely to hole orbits. We call this re-
striction the "perturbation convention. "

Returning to Eq. (26), if we restrict the lines according
to the perturbation convention, we have t = ( t „0),
p =( t „p„)and therefore

A. Two-body matrix-element symmetries

Fermi statistics imply

gri'
( 1)r+s —I'PrI

( 1)t+u —I'Pr

while Hermiticity and time reversal invariance imply
r r~ ~u=~~u

(30)

(31)

The programs can optionally be instructed to recognize
diagrams which are related by these symmetries, so that
redundancy of coding can be avoided.

B. No-self-contraction rule

Self-contracting a two-body operator produces a lower
rank operator. In most applications of effective interac-
tion theory, the contributions of these partially contracted
operators are included with the contributions of the one-
body insertions. In other cases, ' they are treated via uni-
tary decomposition', the two-body operator is unitarily

0 '"'. For the nth order there are 2n + 2 creation opera-
tors involved and, consequently, there are (2n+2)! dif-
ferent possible contraction patterns tr (including those
containing self-contractions). Not all the possibilities are
distinct and those which are topologically equivalent, i.e.,
those that can be transformed into each other by symme-
try considerations, need not be considered separately. We
use the following methods to express all the possible dia-
grams in terms of a much smaller set of simpler dia-
grams: (a) the two-body matrix-element symmetries im-
plied by Fermi statistics and Hermiticity; (b) the no-self-
contraction rule; (c) the use of permutation symmetry
among equal or analogous basic operators; and (d) the use
of multipole forms for the two-body operators.

We have written the program DIAGRAM (Ref. 5) to list
the basic diagrams. This seemingly simple task can be ex-
tremely tedious by hand and, for the higher orders, prone
to errors since it is hard to be sure that every possibility of
generating another topologically distinct diagram is ex-
hausted. Even with a computer it is not practicable to
write all the possible contractions (3.6&&10 of them for
n =4) first and then discard all the topologically
equivalent ones. In the program DIAGRAM we have
made good use of a fast pattern recognition procedure to
ensure that a complete set of basic diagrams is produced.

The output of DIAGRAM is used by a second program,
JT-REIUPLING (Ref. 5), which converts the diagrams
into algebraic expressions by carrying out the actual con-
tractions in the angular momentum coupled representa-
tion. Two contracting operators are first brought into ad-
jacent positions by commuting and Racah recoupling be-
fore contraction. The recoupling coefficients, phase fac-
tors, and weight factors produced in the process are sim-
plified by the use of sum rules whenever possible. In spite
of the fact that this is a rigid procedure, one not likely to
be followed if the work is to be done by hand, it is a
straightforward one which can be carried out efficiently
by a computer. Because of this, as we shall see in Sec.
III D, we can afford to explore different possibilities to ar-
rive at the simplest final forms.
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D(n)r ~ D(n)r(+ (32)

decomposed into irreducible parts. The unitary rank (1
parts are essentially lower rank ( & 2) operators, consisting
of products of number operators and (at most) one-body
operators. They are simpler to calculate with than are the
origina1 two-body operators, and their role in a diagram is
no different from that of lower rank operators. We there-
fore can ignore self-contracted parts of V and concentrate
on irreducible (traceless) two-body operators.

C. Permutations of analogous and equal operators

By analogous operators we mean those with simi1ar
numbers of creation and annihilation operators, coupled
in the same way but perhaps multiplied by different
shell-dependent coefficients. All the two-body operators
U in Eq. (24) are analogous in this sense. Now consider
the application of (27) to (24):

(33)

(34)

(Though these operators are of course not equal to V, they
contribute equivalently to any closed diagram. ) The two
possible types of cross-coupled matrix elements are given
by

P& g ( 1)s+t+I'+v[1 ][&]I/2 J
rsI

rstu (35)

D. Multipole forms of the interaction

The two-body interaction in a closed (and therefore ful-
ly contracted) diagram can be written in either of two
multipole forms:

where a ranges over the contractions possible for the
quantum number set q. Each ~ corresponds to a diagram.
By a permutation applied to a diagram we mean a permu-
tation of the operators U with corresponding changes in
the contraction patterns; so that, for example, if U(q;) is
on the left of U(qj ), a left contraction between U(q; ) and
U(qj) becomes a right contraction when they are inter-
changed. We represent a11 diagrams that are permutations
of one another by a single basic diagram, and we say all
of these diagrams are generated from that basic diagram.
In nth order perturbation theory the number of basic dia-
grams is less than the total number of diagrams by a fac-
tor n , which is. large even if n is only 4. All diagrams
that are permutations of a given basic diagram give rise to
the same form of algebraic expression: the expressions
differ only by permutation of the quantum numbers q.
This greatly reduces the number of different equations
and the amount of coding that needs to be done.

Now consider the effect of a permutation on the contri-
bution of a diagram to a model-space matrix element of
1 '"', Eq. (12). The operator P"'"' [defined by Eq. (2)] has
n —1 equal factors (Q/e) V. Therefore, subjecting the dia-
gram to any permutation that corresponds to some per-
mutation of these equal factors will leave invariant the
Ualue of its contribution to the matrix element. The sym-
metric group S„on n objects has n! elements. Let G be
the largest subgroup of S„under which the contribution
of a given basic diagram is invariant, and let no be the
number of elements in G. Then by Lagrange's theorem
for finite groups, the e1ements of S„can be classified into
Co ——n!/no distinct left cosets, each containing exactly
nG elements. The n! diagrams generated from a given
basic diagram can be similarly classified into Co sets,
each consisting of nG equal diagrams. As a result, the
amount of actual computation required to evaluate the set
of diagrams generated by a particular basic diagram can
be reduced by a factor n!/CG ——nG, which can be an im-
portant saving. Accordingly, the program exploits per-
mutation symmetry by automatically distinguishing a11
classes of equal diagrams. It does this essentia11y by gen-
erating all the n! permuted diagrams and then identifies
the classes by sorting.

rs I
P& g ( 1)s t+v[—I ][ ]1/2 ~ ~ IV1

I'
(36)

6(!)

6(2) w
IO

l2(! ) l3 (1) l5

(b)

2O (!) 2l (!) 2 2 (!)

25 (!) 26 (!)

FIG. 1. Basic diagrams of third and fourth orders. (a) shows
all third-order basic diagrams. The nonbasic diagram 7 is in-
cluded to illustrate its relationship to the basic diagram 5, as dis-
cussed in the text. (b) shows selected fourth-order basic dia-
grams.
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Reference 2 also makes use of these cross-coupled matrix
elements.

Even without going into the details, it is clear that for
certain diagrams the ABAB form will produce simpler fi-
nal results. An example of this is the case where the first
B contracts with an A in a basic operator to the left and
the second A with a B to the right. Since the form AABB
is used in Eq. (5), the same 6-J symbol as required to
transform from AABB to ABAB may appear in the inter-
inediate step and, sometimes, in the final result. By ab-
sorbing this 6-J symbol into the defining matrix elements
of the two-body operator, we are likely (but not
guaranteed) to produce a final expression with one 6-J
symbol fewer. In other words, if the multiple form of the
defining matrix elements for the operator is used instead
of two-body matrix elements, the final expression may be
simpler. By allowing the choice of using either 8; P, or
P' for the defining matrix elements of the Vs in Eq. (2)
we open up a new degree of freedom to simplify the final
expression. However, no way is known to find out
a priori which one of the three forms is the best for a
given diagram. Furthermore, each one of the n Vs in Eq.
(2) can take a different form independent of the others.
We thus have 3" possibilities that can be explored. With a

computer, this is fairly fast and the advantage offered by
the increased flexibility can be very rewarding.

IV. DISCUSSION OF RESULTS

The Appendix displays our algebraic results for the
third and fourth order diagrams considered by Barrett
and Kirson in Ref. 3. Figure 1 shows the corresponding
basic diagrams. To make the comparison easier, we adopt
Barrett and Kirson's symbols and diagram numbers, and
use their simple 2fico energy denominators. But for sim-
plicity and clarity, we write our results in the neutron-
proton (n-p) formalism instead of the isospin formalism
employed in Ref. 3. Thus to each of our phases, weights,
and recoupling coefficients, one should add an analogous
isospin factor, to convert the results to the isospin formal-
ism. These isospin factors can be produced simply by re-
placing each single-particle angular momentum j and cou-
pled angular momentum J in the angular momentum fac-
tors by the isospin t and T, respectively. Of course all
matrix elements now need an additional isospin label. For
example, the algebraic result for diagram 4 [Eq. (Al)] be-
comes in isospin formalism

4

1) c+ d+ 6+ x+Jw z[J T ] J
NXgZ

~~~2~~ ~2

Ji jy ja Ji
jd J J2 jb

jz
J

X
~2 2 ~ i +2 2

1 1 1

P'(cwxy J i Ti ) W(ydzb J2 T2 )P'(xzaw Ji Ti )

(2fico)
(37)

We also avoid the normalization factor X,i„~ of Barrett
and Kirson in all the expressions by writing our results
for the unnormalized matrix elements of the effective in-
teraction as defined in Eq. (6).

We use an abbreviated notation, in which P ~ is the
contribution of diagram p to the matrix element (12).
Moreover, only the expressions for the basic diagrams are
given explicitly. Instead of giving the expression for a
permuted diagram {which can be generated by permuta-
tion from a basic diagram), we give only the permutation
that relates the diagram to the basic diagram. For exam-
ple, diagram 7 can be generated by interchanging the first
and third Vin diagram 5; we then write

7 7
——P(321)P 5, (38)

where P(ij, . .) denotes the. permutation that changes the
first Vto the ith V, the second Vto the jth V, etc. As a
result, our equations not only are simpler but also serve to
indicate the permutation relations among the diagrams.
To produce the explicit expressions for the perrnuted dia-
grams, one needs only to permute accordingly all symbols
associated with a V, starting from the expression for the
basic diagram. For example, the result for diagram 7 can
be obtained simply by interchanging (c,y, w, x,Ji) with

(w, x,a,z,Ji ) in diagram 5. Note, however, these permuted
results should not be compared directly with those in Ref.
3 because many of the state lines in the permuted dia-
grams are renamed in Ref. 3. To be self-contained, we
show our basic diagrams in Fig. 1, with state lines named
exactly as in Ref. 3. Some of these basic diagrams are re-
lated by Hermitian conjugation, as pointed out in Ref. 3.

It is clear by comparing Eqs. (Al) —(A31) with the re-
suIts of Ref. 3 that all expressions that involve recoupling
coefficients are simplified by using the multipole matrix
elements. As a consequence, none of our results for the
third order diagrams involves more than two 6-J symbols
and only two involve two 6-J's, three involve one 6-J, and
three have no 6-J. This is much simpler than the results
given in Ref. 3 where in the n-p formalism two diagrams
would have four 6-J's, three would have one 9-J, and
three would have no 6-J. All the fourth order diagrams
considered in Ref. 3 have been simplified as shown in Eqs.
(Al) —(A31). As a matter of fact the most complicated
fourth order diagram in our complete list involves only
five 6-J coefficients. More important, probably, is that
the number of summation variables is often reduced to-
gether with the reduction of the 6-J symbols. This is
most noticeable in Eqs. (A15) and (A30) for the basic dia-
grams 15 and 26(1) where the summation variables are
three fewer than in the results of Ref. 3.
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V. CONCLUSIONS

Computer programs now exist that mill perform the
Fermion algebra and angular momentum recoupling need-
ed to construct approximate expressions for effective in-
teractions. These may be based either on perturbation
theory or on other approximations such as moment
theory. ' As a result possible doubts about the reliability
and efficiency of expressions for effective-interaction ma-
trix elements need no longer hamper calculations.

In particular, complete expressions for the fourth order

effective-interaction matrix elements are now available.
Numerical evaluation of these would improve the accura-
cy of effective interaction calculations, and permit the er-
rors of approximation to be estimated, as shown by Chang
and Vincent. ' However, caution about the practicability
of the calculations is needed, because of the large amount
of numerical calculation that is required.

This work was supported in part by the Nationa1 Sci-
ence Foundation, USA and the Natural Sciences and En-
gineering Research Council, Canada.

APPENDIX: SELECTED ALGEBRAIC RESULTS

The notation used in the following equations is described in Sec. IV of the main text.
r

J +J +z +J +z J J~ Ji J] J~ Ji J~ P'(cwxy J])W(ydzbJz)P'(xzaw J])
Jz J» J Jz Jb J (2fico)

~i~2

1» —j +J+J]+jz i~z
J& J~ & J~ &~ z W(cywxJ] )P(zdybJz )W(wxazJ] )

J ' ' J
(2]tuo)

(A 1)

(A2)

W(ycxw J, ) W(udabJ) W(xwyv J, )

(2]tuo)

W(yuxw J] ) W(cdub J ) W(xwya Ji )

(2]tuv)

P 7
——P(321)X 5,

P s
—P(321)P 4,

9(]) P(321 )P e(i) W9(z) ——P(321 )7 6(z)

W(uwabJ) W(xyuw J)W(cdxy J)
(2]ruv)

F ]](])=P(231)Fio P 11(2) P(312)P ]a ~

r

J +J +~ 1 &~ && J W(cdyzJ)P(wzxbJz)P(yxawJz)

Jz Jy Jz (2]tuv)

(A5)

(A7)

(A10)

Wl2(z) = P( 1 32)P ]3(1),—
r

~ +J +J 1 +J J~ &» P(dwyxJ])W(vyabJ)13(xcwvJ])
is(i) ——— ( —1)

uwx J

(Al 1)

~13(z) P(21 )~lz(1) ~

~]4(])=—P(213)P ]3(i), V]4(z) ——P(312)P iz(]),
r

~ ~

1) a» U w ~ y ]p ]
—]1'ziJ +J +J +J +J +J +~+q. . .j~ &b J 13(cuaxJ])P(wxyvJ])13(ydwbJ])

Jd Jc (2]rico)

(A13)

(A14)

(A15)

P ie(i) =P(132)P ]s~ P 16(2)
——P(213)P"]6,

P"]7(])=—P(213)W4, 7"]7(z)—— P(132)P 4, —
F"]]](])=—P(312)7 4, P is(z)= —P(231)P 4,

]9(])— P(312)F 5, g ]9(z)
——P(2—31)P 6

(A16)

(A18)

(A19)
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r T

Ja J2 Jc Jd Jv

tuvNzyJ) Jp Jd Jb Jy Jb 2

W(tuybJ) ) W(vdtu J( )P(ywvxJ2)P(cxaw Jz)
X

(2'(u)
(A20)

~zo(z) =P(3421)~zo(() (A21)

tuvwxyJ&J&J3

J. Jb J
( 1)Js Jb+Jd Jw Jx Jy+ + 1+ 3+ 3[J ][J ][J ]1/2

Jd Jc J3 Jd Jb

W(tuyb J1)W(vwtu J1 ) W(ydxw Jz }p(cxavJ3 )
X

(21rtru)

J3
P

Jy

r

Jl J2 J3

Jx Jv Jm,

(A22)

&21(2)———P(3421)P 21(1) y (A23)

1
~22(1) T

tuuexyJ)J~J3

J Jb J J1 J2 J3 J1 J2 J3
1}J'.+Jb+J'd+J. +J.+Jy+J+J(+Jz+J3[J ][J ][J ]1/2 ~

Jd Jc 3 Jur Jy Jx Jb Jd Jv

W(tuyxJ, ) W(vdtu J1 ) W(wxvb Jz)p(cyaw J3 )

2)rt(u)
(A24)

&22(2) ——P(3421 )&2)(1),

Jx Ju J2 Ja Jb
1}J,+Jd+JX+Jy+ + q[J ] .

23 J JJy Jv 1 Jd Jc
tuvwxyJ&J&

p(vdxbJ1 ) W(tuvyJ2) W(xwtuJ2)p(cyawJ1 )

(2fico)'

(A25)

(A26)

1

~25(1)= p

W(tuybJ1 ) W(vdtu J1 )p'(c(vxv Jz)p'(xyaw Jz)
(2fuu)

~24(1) (2314)~21(1), ~24(2) (2341)~22(1) i

J J1 J2 J J1 J2
(

1}Jb+J',+J'd+J +J„Jy[J ]
. —

Jv Jc Jd Jy Ja Jb
tuvuIxyJ&J&

(A27)

(A28)

1 25(2) ——P(3412)P"25(1), (A29)

~26(1) ( 1
J +Jb+J +J„+J +J~+Jy+J~+ LJ )

[Jz]'/2 Ju Jd Jc Jx Jt Ja
xysuveJ& J&

W(cwax J1 )P'( vdwzJz )P'( uzvy Jz )P'(xyub Jz )
X

(2fico )
(A30}

r 26(2) ——P(4123)r 26(1) . (A31)

'Present address: Hughes Aircraft Company, Los Angeles, CA
90009.
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