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Cluster model with breathing clusters: Dynamical distortion effects in 6Li
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Distortion effects in an assembly of clusters are studied by using a trial wave function in

which —in addition to the intercluster separations —the size parameters of individual clusters appear
as generator coor'dinates. An application to the nucleus Li, which is described as a bound alpha +
deuteron system, shows that these new degrees of freedom, which can lead to compressional vibra-

tions, are indeed important. We find that the deuteron cluster is compressed, whereas the size and
the compressibility of the alpha cluster are unchanged with respect to the free case.

I. INTRODUCTION

The nuclear cluster model' provides a convenient
framework for the description of those states in nuclei
which may be interpreted in terms of the collective
motion of an assembly of clusters. Because of the Pauli
principle, the internal structure of the clusters is dif-
ferent from that of the free clusters. In addition, the
specific distortion of the clusters at close distances be-
cause of their mutual interaction has been clearly demon-
strated by many authors. In most of these studies,
distortion effects are treated by one of the following two
methods: (i) If there are clusters which are not tightly
bound, it is plausible to assume that new clusters may be
fortned by transferring nucleons between them. This con-
sideration led Mihailovic and his collaborators ' to
study the interplay of different cluster structures in light
nuclei. In these calculations, however, the simplifying as-
sumption of equal oscillator parameters for all clusters
has been adopted. (ii) As for the second method, one usu-

ally assumes that the clusters in a nucleus preserve more
or less their identity (of course, Pauli distortion is always
present), but that their internal structure is different from
that of the free clusters. This point of view has been
adopted by Tang and his collaborators ' "and by other
groups. ' Here one describes the internal wave function
of a distorted cluster by a superposition of its undisturbed
ground state wave function and a few square-integrable
(distortion) functions. The wave functions of relative
motion of the clusters are allowed to be different for the
various intrinsic functions and are determined variational-
ly. However, as Thompson and Tang point out in their
study of the alpha+deuteron system, "it would be more
desirable to let the deuteron parameters be a function of
the cluster separation. However, we should point out that
this will be a very difficult way of studying the specific
distortion effects."

In our model, we use the parameters which describe the
internal structure of the clusters as generator coor'dinates.
The wave function of the nucleus is thus assumed as a su-
perposltlo11 of varlolls elllsteI' confltgllI'RtloIls wtth Rll R111-

phtude which depends on the separations of the shell
model potentials as well as on the internal parameters of

each individual cluster. In this way, we avoid the above
Inentioned difficulties which are related to the adoption of
a nonlinear variational procedure. Thus, in our calcula-
tion, the mathematical ease of a linear variational princi-
ple is pr'eserved, while at the same time we may employ
trial functions of great flexibility. If we assume, for in-
stance, that the clusters may change their size but other-
wise preserve their shape, we may describe compressional
vibrations of individual clusters in the nucleus in addition
to their moleculelike collective motion.

We should mention that the gener'ator coordinate
method (GCM) has already been applied to describe
compressional vibrations of doubly magic nuclei. Flocard
and Vautherin' and Abgrall and Caurier' calculated
monopole and quadrupole vibrations in He, ' 0, and Ca
using Skyrme's interaction. The method was extended by
Krewald et al. ' who employed single-particle wave func-
tions obtained from a constrained Hartree-Fock calcula-
tion.

In ouf present investigation, thc model with breathing
clusters is applied to the nucleus I.i. The bound
alpha+deuteron system is especially suited for our pur-
pose because its constituent clusters exhibit two different
features: The tightly bound a particle shows a breathing
mode' '" at an excitation energy of 20.1 MeV. The
ground state correlations related to this degree of freedom
might be of importance also in the bound a cluster. On
the other hand, because of its weak binding, the deuteron
cluster is known to become appreciably distorted in the
nucleus Li." In addition, we expect distortion effects to
be more pronounced in the bound nucleus than in a
scattering event where, at least at high energies, the clus-
ters will be close together only for a relatively short time.

The special case of the A =6 system has also been stud-
ied extensively' ' by an approach which differs essential-
ly from the one presented in this work: This is the exact
three-body theory (undistorted ct particle plus two nu-
cleons, ctNN). Using suitably chosen aN and NN interac-
tions, good agreement with the low energy data is ob-
tained.

In the next section, we give a description of the GC tri-
al function for a multicluster system. Here our main in-
terest is in describing the methods of projecting the
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center-of-mass momentum, angular momentum, and pari-
ty and in demonstrating how the calculation of complicat-
ed internal structures of clusters may recursionally be re-
duced to that of simple ones. In Sec. III, we discuss the
results for the bound a+ d system, beginning with a study
of the separate a and deuteron clusters. Finally, in Sec.
IV, we summarize the results of this investigation.

II. THE GENERATOR COORDINATE
TRIAL WAVE FUNCTION

cillator well centered at the point S; with width parameter
P;. The quantum numbers n;, I;, and m; denote the radi-
al excitation, the orbital angular momentum, and its z
component. Introducing the spin and isospin wave func-
tions X; of each nucleon, we form A-particle Slater-
determinant wave functions (t). As an intermediate step,
we assume that each nucleon occupies its own harmonic
oscillator orbit (S;,Pi), but restricts the quantum numbers
to the values [nlm]=0

A. The basis of the generator coordinate wave function

In order to describe states in a nucleus with A nucleons
which may be interpreted in terms of the collective
motion of the nucleons in individual clusters and/or mole-
culelike vibrations and rotations of an assembly of clus-
ters, we start with single-particle wave functions (x; is the
spatial coordinate of particle i)

q)((x() =p(xi S;&P—; &n;&1&&m&),

which describe the motion of a nucleon in a harmonic os-

P( [xSP],[nlm] =0)
A

=M+[&p(x; S—;,P;,n; =I; =m; =0)g;], (2.2)

where M is the antisymmetrization operator. A set of
quantities such as Si, . . . , S~ is denoted by [S]. A Slater
determinant with nucleons in arbitrary oscillator orbits
may be obtained from the wave function (2.2) by repeated
use of the following recurrence relations which may be
easily derived from the properties ' of the harmonic oscil-
lator functions (2.1):

P([xSP],[n]=O, l, m, . . . , i;+1m;, . . . )=[P;(l;+1)/2] '~ g (lm', l;m"
~
l;+ lm;)

m'm"

and

XV (S;)P([xSP],[n]=O, l, m, . . . , 1;m", . . . ) (2.3)

p([xSp]n, . . . , n;+1, . . . , [im])= [(n;+1)(n;+i;+—,)] '~ (2p;()/Bp;)p([xSp]ni, . . . , n;, . . . , [lm])

+[n;(ni+I;+ —,
' )/(n;+1)(n;+li+ —,

' )]'~ &t([xSP]n), . . . , n; —1, . . . , [im)) . (2A)

Here V (S;), m = —1,0, 1, are the corn'ponents of the gra-
dient operator in a spherical representation operating on
the variable S; and (1m', l;m"

~
i;+1m;) is a Clebsch-

Gordan coefficient.
In most cases of physical interest, it is unnecessary to

use a separate oscillator well for each particle. Instead
one may form nucleon clusters like H, He, He, etc. , by
choosing the same values of S; and P; for nucleons be-
longing to the same cluster. In our formulation, this has
to be done after the differentiations in Eqs. (2.3) and (2A)
are carried out.

A

S=A-'gS, , (2.5)

the mean position of all A oscillator wells and

s;=S;—S, (i =1, . . . , A) (2.6)

B. Projection of eigenstates of center-of-mass momentum

The center of mass of the nucleus represented by the
A-center shell model wave function, Eqs. (2.2)—(2.4), is
confined to a finite region in space. If we want to
describe a physical state, with total linear momentum Ak,
we may use a projection method which is similar to that
of Yoccoz. To proceed, we introduce

I

the vectors specifying the positions of the oscillator wells

with respect to S. Similarly, let

R=A 'gx; (2.7)

and

g;=x; —R, (i =1, . . . , A) (2.&)

=exp[ —gP (;)(R—S+g; —s (;)) /2], (2.9)

where a(i) denotes the ith element of the permutation a.
If we integrate the functions (2.9) over S, with the weight
exp(ik S), then the center-of-mass coordinate R factors
out in the form exp(ik R), appropriate for an eigenstate
of linear momentum. For the remaining part, depending
on intrinsic coordinates only, we find (up to a normaliza-
tion constant)

denote the coordinate of the center of mass of the nucleus
and the intrinsic coordinates, respectively. A particular
term in the expansion of the Slater-determinant wave
function with [nlm] =0, Eq. (2.2), will contain a product
of orbital wave functions

A

+exp[ —Pa(()( x( —Sa()))'/2]



R. BECK, F. DICKMANN, AND A. T. KRUPPA 30

0'""([4sP] [ I ]=o}—=e p —gP (s; —4;) k —gP, (s, —4, }—gP;(s; —4;) (2.10)

where

A

Pa(i) Pa(i) g Pj (2.11)

Notice that the intrinsic wave function P'"" still depends
on the momentum k. If some of the single-particle orbits
have I;&0 and/or n;&0, we may use the recurrence rela-

tions (2.3) and/or (2.4) with V (S;) replaced by V (s;),
together with the fact that the operations 8/(}P; and
V ( s;) commute with the integration f13S.

C. Projection of eigenstates of angular momentum and parity

In two previous publications, ' a method of project-
ing angular momentum and parity for two- and three-
cluster wave functions was developed which is based on
an analysis of their tensor properties in the space of the
vectors [ s ] specifying the positions of the potential wells.
Here we generalize this method to include cases where the

I

(2.12)

V(l, m, s}=V (s) . (2.13)

Using the differential operators V'(I, m, s ) (which are
spherical tensor operators of rank I} we find (with k =0}
from Eqs. (2.3) and (2.10) for the intrinsic part of the A-
particle wave function

orbital angular momenta of the single-particle orbits may
be arbitrary and the number of clusters may be as large as
the number of nucleons. In many practical problems it
will be sufficient to consider the case k =0 only, to which
the following discussion is restricted.

To begin with, we define spherical differentiation
operators V(l, m, s ) via the recursion relations

V(1+1,m, s)= g (lm', lm"
l
I+1m)

m'm"

)&V(l,m', s )V(1 m", s ), (I ) 1)

A

ya""([g splm], [n]=O) = gV(Ia(, ),ma(, ), sa(, )) ya""([Esp],[nlm]=O), (2.14)
i=1

where we have again written only one term in the expansion of the Slater-determinant wave function and left out a nor-
malization constant. The restriction to [n]=0 is not serious because by using Eq. (2.4) we may generate wave functions
with arbitrary [n] without affecting the angular momentum algebra. It is convenient to rewrite the product of differen-
tiation operators in Eq. (2.14) in terms of the following set of operators which may be defined by the recursion relation:

V([Il']1m[ s])—:V ((. . .(I)lq)1313)I4, . . .}I&lz lm; si, . . . , s~

g V((. . .(lq )I~ ))}1~m~', si, . . . , sz )}V(I&,m~, s~)(1~m~, l~mq
l
lm),

I
mg Nlg

where the notation is chosen such as to indicate the order of coupling of angular momenta. For example, we couple I i
and l2 to a resultant angular momentum l3, then couple l3 and l3 to give l4, etc. To keep the notation as simple as pos-
sible, we use the letter I to denote the total orbital angular momentum. It should not be confused with [I] which stands
for the set li, . . . , Iq of the intrinsic orbital angular momenta of all clusters. Using these generalized V operators, we
derive

A

gV(Ia(i)ima(i)t Sa(i)} g (la(i)ma(i)|Ia(2)ma(2) l
13m3 }(13m3~la(3)ma(3) 114m4 }

i=1 [l'm']1m

(lgmg, I (g)m (~) l
Im) V([l 'I] mIs[]}.

Next we expand P'"", Eq. (2.14), in terms of A-polar spherical harmonics ( [n] =0 is omitted for brevity)

P'"'([gsplm])= g P'""([gLL'splm]LM)B ([LL']LM[s]) .
[LL']LM

(2.16)

(2.17)

The A-polar spherical harmonics B([LL']LM[s]) are spherical tensors of rank L; they obey the same recursion relation,
Eq. (2.15), as the V operators. For A =2, these harmonics reduce to the well-known bipolar harmonics. The complex
conjugate of the tensor 8 is denoted by B* and the symbol is used to denote unit vectors.

If we let the operators (2.15) act upon the wave function Pa"" with [Im] =0, we obtain eigenfunctions of the total
internal orbital angular momentum I and its z component m of all clusters

P'""([g s Pll'] 1m }=V( [II']lm [ s ])@'""([g s P], [lm ]=0), (2.18a)
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where [1') denotes the set of intermediate orbital angular momenta, defined in Eq. (2.1S). We should stress that in Eq.
(2.18a), the orbital angular momenta [1]are those with respect to the centers of the oscillator wells and may differ from
those used for instance in the resonating group method (RGM). The latter ones are defined with respect to the centers of
mass of the clusters. If we expand the function (2.18a) in terms of A-polar harmonics, as we did in Eq. (2.17),

P'""([g s P//']/m ) = g P'""'([gLL's/3//') lmLM )8'( fLL ')LM[s ]),
[LL']L,M

then a theorem proved in the Appendix shows that the functions

P~""([gLL'sP//'](/L)AMi„) =g(/m, LM
~

AMi„)P~""([gLL'sP//']/mLM), (Mi = —A,, . . . , A)

(2.18b)

(2.19)

form a spherical tensor of rank I, with respect to the in-
trinsic coordinates [g]. Equation (2.19) is the basic result
of our projection method. In order to make it more trans-
parent, let us summarize what has been achieved: Assume
for the moment that none of the clusters carries an intrin-
sic orbital angular momentum, i.e., [l)=0. In order to
project the orbital angular momentum of the multicluster
wave function it is then sufficient to analyze its depen-
dence on the set of vectors [ s ] specifying the centers of
the oscillator wells. This analysis is performed by ex-

panding the wave function in terms of spherical harmon-
ics 1'L~(s), bipolar harmonics 8(LiL2LMsis2), etc. for a
system with two, three, etc. clusters. If some of the clus-
ters carry an intrinsic orbital angular momentum, we first
apply the generalized gradient operator V'([//']/m[s]),
Eq. (2.15), to the wave function with [1=0]. As this
function is usually taken as a Gaussian function, the re-
sult can be written analytically. The next step is then an
expansion in terms of YL~(s), 8(LiL2LMsis2), etc. Fi-
nally, eigenfunctions of the total orbital angular momen-
tum A, and z component Mi„of the system are formed by

coupling l and L to A,M~.
Because of [ s ] being just a set of parameters, it is ad-

vantageous to perform the study of the dependence of the
wave function on [s] in the relevant matrix elements
rather than in the wave functions itself. Finally, we
should mention that the set of orbital angular momenta
[L] is related to the motion of the oscillator wells. Again
our method is different from that employed in the RGM
where the angular momenta related to the intercluster
motion are introduced. Examples of such a study, for
two- and three-cluster systems, may be found in Refs. 24
and 25.

It remains to construct eigenstates of the total angular
momentum. This may be simplified by coupling the spins
of all nucleons belonging to the same cluster to the spin of
the corresponding free cluster only. Upon coupling the
spins of all clusters to the total spin (IMz) and by cou-
pling I and the orbital angular momentum A, to the total
angular momentum (JMJ), we end up with the following
wave function:

P~""([fLL's/3//'II']((/L)AI)JMg)= g (XMi, IM~
~

JMJ)P'""([gLL's/3//'II'](/L)AM)„, IMi), (2.20)

where [I] stands for the set of all spins of individual clusters, while [I ] denotes the set of intermediate spins which re-
sult from coupling the spins of the clusters to the total spin (IMz). The order of coupling of angular momenta is indicat-
ed by using the same notation as in Eq. (2.15).

The form of the wave function (2.19) is very convenient for a study of its properties under the parity transformation

[g]~[—g]. We see from Eq. (2.10) that (with k =0)

P'""([—g s P], [n/m ]=0)=P'""([g —s P],[n/m] =0) .

Making use of the parity relations

(2.21)

8(fLL')LMf —s])= +(—)
' 8([LL']LM[s)) (2.22)

and

(2.23)

we find from Eqs. (2.18) and (2.19)

P~"' ([—gLL's/3//'](/L)AMi ) = +(—)
' +(—)

' P'""([gLL'sP//'](/L)AMi„) . (2.24)
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D. The Hill-Wheeler variational equation

(2.25)
[LL 'sPnll'I']1L A,Ia

A (discretized) GC trial function with linear momentum k =0, angular momentum (JMJ), and parity m may be con-
structed by superimposing the functions (2.20)

f'""([gI]JMgn )=

where EN is the signature of the permutation a. The sum
over the set of orbital angular momenta [Ll] in Eq. (2.25)
is restricted by the parity relation

L; (2.26)

which follows from Eq. (2.24). The GC amplitude f in
Eq. (2.25) is determined by solving the Hill-Wheeler (HW)
variational equation

g[(y(int)
~

H
~

q(int))/(y(int)
~

y(int))] 0

where the Hamiltonian H has the form

(2.27)

(2.28)

Here VJ stands for the nucleon-nucleon interaction which
in our calculations is approximated by the effective nu-
clear potential number 2 of Volkov. The Coulomb in-
teraction is neglected. For the mass m of the nucleon, ap-
pearing in the kinetic energy operator, we use

m =938.926 MeV/c (2.29)

In practical calculations, a knowledge of the relevant
degrees of freedom and quantum numbers of the individu-
al clusters, e.g., size, shape, sensitivity to changes in size
and shape, spin and orbital angular momenta, etc., will

I

lead to considerable simplifications. The great flexibility
of the trial wave function (2.25) allows us to select those
sets of parameters which are expected to play a dominant
role also in the assembly of clusters. This will be demon-
strated in the next section for the case of the bound a+d
system.

III. APPLICATION TO THE
BOUND ALPHA+ DEUTERON SYSTEM

The main purpose of this work is to investigate in over-
lapping clusters the effects of distortion, or more precise-
ly, the effects which are related to changes in the size of
the clusters. It is therefore necessary to begin with a
study of the size and (for the a particle) also of the sensi-
tivity to changes in the size of the separate clusters.

A. The clusters as separate nuclei

Dealing with a single cluster with nucleon number
A &4, we restrict the GC trial function to contain orbits
with [nlm]=0 only. In addition, we assume that all
single-particle orbits are characterized by a common oscil-
lator parameter P which is used as generator coordinate.
In this case, the HW equation for the GC amplitude
f (13,E) is given by

gf(P;,E)(P;+P~) " "'~ [ 3(A —1)A P Pg/2m(P;+P~)+A(A —1)/2

X I V, [1+4/a (P;+P~)) ~ + V„[1+4/p (P;+PJ)] '
I
—E]=0, (j= 1, . . . , N) (3.1)

where N is the number of discrete values of the generator
coordinate P. The parameters V„V„,a, and p specify
the strength and range of the effective nucleon-nucleon in-
teraction. Notice that using translational invariant states
( k =0), the energy E is the intrinsic energy.

I

(Throughout this paper, experimental values are given in
parentheses. ) The reliability of these results may be con-
firmed by repeating the above calculation with a larger set
of parameters. If we add the two parameters

I. The alpha particle
P~=0.9 and P~ = 1.0 fm

to the set (3.2a), we obtain

(3.2b)

The HW equation (3.1) for the a particle is solved using
the set of N=8 oscillator parameters P~ which are
equidistantly distributed over the interval

0.1&P &0.8 fm '. and

(E~)s, ———29.402 MeV (3.3b)

The energy of the ground state

(E )s, ———29.391 ( —28.296) MeV,

while the excitation energy of the first excited state

(E~),„=24.979 (20. 1) MeV

(3.2a)

(3.3a)

(3.4a)

(E~),„=24.979 MeV, (3.4b)

which is in satisfactory agreement with the results (3.3a)
and (3.4a).

In our model, it is tempting to interpret the first excited
state as a breathing mode, i.e., a compressional vibration
of the u particle. In order to study this degree of freedom
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-27 we find

E =58.99 MeV (3.12)

-28-

and

(E ),„=29.80 MeV, (3.13}

-29-

0.3 0.4 0.5 0.6 0.7

P, {fm ~)

FIG. 1. Ground state energy E of the a particle. The bro-
ken curve shows the lowest eigenvalue of the (3&(3) Hill-
Wheeler (HW) equation as a function of the mean value P of
the set jS,P +0.05 fm of generator coordinates. The full

curve represents the expectation value of the Hamiltonian, cal-
culated with the GC amplitude for the minimum of the broken
curve for different values of P . The dash-dotted curve shows

the dependence of the energy on P, when only one value of the
generator coordinate (P ) is chosen. The result of an (8&& 8) HW
equation, using the set of equidistantly chosen generator coordi-
nates, P =0.1, 0.2, . . . , 0.8 fm, is indicated by a straight line.

P =P, I3 =t3 +0 05 frn. (3.14)

The ground state energy which results from solving the
3 )& 3 HW equation for different P is given by the dashed
line in Fig. 1. For the equilibrium

(P )~=0.475 fm (3.15)

the rms radius which may approximately be obtained
from Eq. (3.6),

which is considerably larger than our previous result for
the excitation energy, Eq. (3.4b).

As far as the ground state is concerned, we notice from
Fig. 1 that using a trial function of the GC-type (with
eight P values) lowers the energy by 0.6 MeV as com-
pared to the model with a single P~ [at P~=(P~),q]. We
may improve this inodel by choosing a few values of P in
the neighborhood of an average P~ and solving the corre-
sponding HW equation. For our purposes, it is sufficient
to choose the three values

r=1.74 fm, (3.16)

(P~)~——0.53 fm

determines the rms radius of the charge distribution

(3.5)

r = [1.5[(1—1/2)/P, q+a~] I'~

where a~ corrects for the finite size of the proton. With

a~=0.43 fm

(3.6)

(3.7)

we obtain

r~ =1.66 (1.674+0.015) fm, (3.8)

where the experimental value is taken from Ref. 28.
If we adopt the phenomenological model' of the nu-

clear breathing mode, the excitation energy is simply re-
lated to the compressibility K of the a particle and thus
to the curvature of the dash-dotted curve in Fig. 1 at P,q:

', d'E
K = P (3.9)

dP

(E~},„=[K~fi /m]'~ /r~ . (3.10)

which is related to the nuclear compressibility' in more
detail, we calculate the intrinsic energy E of the a parti-
cle for different size parameters P . The results are sum-
marized in Fig. 1. The dash-dotted curve shows the
ground state energy of the a particle as a function of the
oscillator parameter P . (For this curve the quantity P
shown in Fig. 1 is equal to P .} The equilibrium value

is slightly larger than the previous one, Eq. (3.8). The
corresponding ground state energy

E (P ),q= —29.360 MeV (3.17)

d E~ =208 MeVfm
tl eq

(3.18}

is close to that of the model with a single P, Eq. (3.11).
If we use Eqs. (3.9), (3.10), and (3.16), we obtain for the
compressibility and the excitation energy of the breathing
mode

is almost the same as that obtained by solving the HW
equation with the set (3.2a). The curvature of the dashed
line in Fig. 1 at P =(P },q must not be related, however,
to the compressibility K, Eq. (3.9). The reason is that
performing completely independent HW calculations for
each P, we allow the a particle to readjust itself in a way
that goes beyond a simple change in a coordinate scale
factor which is implicitly assumed in Eqs. (3.9) and (3.10).
If we want to study the change in energy which results
from a change in a coordinate scale factor, we may use
the following procedure: First, we determine the GC am-
plitude f,q(13~) for the equilibrium (P ),q. For nonequi-
librium values of P, the energy E is then calculated as
the expectation value of the Hamiltonian with the ampli-
tude f,q(P ). The result is represented by the solid curve
in Fig. 1. The curvature at the equilibrium

Using the result

d E~ =210 MeV fm (3.11)

Ra=46 93 MeV,

(E ),„=25.41 MeV.

(3.19)

(3.20)

eq It is gratifying to notice that the excitation energy of the
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breathing mode as calculated with our refined model is in
excellent agreement with the excitation energy of the first
excited state resulting from a fully microscopic GCM cal-
culation, Eq. (3.4b). This fact encourages us to apply the
same model to a study of the size and compressibility of
the a cluster in the nucleus Li.

2. The deuteron

The free deuteron is known to be less satisfactorily
described by a simple central interaction such as employed
in our calculations than the u particle. Solving the HW
equation (3.1) for the case of the deuteron using the set of
14 oscillator parameters Pd which are equidistantly distri-
buted over the interval

0.04&P«0. 56 fm ',
we obtain the ground state energy

(3.21)

(3.22)(Ea)s, ———0.600 ( —2.23) MeV .

From the fact that an exact solution' of the Schrodinger
equation for the free deuteron with the same interaction
gives —0.6 MeV for the ground state energy we conclude
that our method of solving this equation is rather accurate
and that the discrepancy between the calculated and ex-
perimental binding energy is due to the effective interac-
tion. However, if we calculate the binding energy using a
single dgd only, we find that the deuteron is unbound. In
Fig. 2, this corresponds to the dash-dotted curve. The
solution of the HW equation using the set

Pa ——Pa, Pa ——Pa+0.05 fm (3.23)

for different Pa is represented by the dashed line in Fig. 2.
If we use Eq. (3.6), we find from the equilibrium value

(P,)„=0.19 fm-'

the rms radius

(3.24)

—1.0-0
X
LIj

05-

0N

-0.5-

0.1
I I

0.2 0.3
Pd(frn 2)

FIG. 2. Ground state energy of the deuteron. The dashed
and dash-dotted curves are calculated in the same manner as
those of Fig. 1. The result of a (14& 14) HW equation, using the
set of equidistantly chosen generator coordinates, Pz ——0.04,
0.08, . . . , 0.56 fm, is indicated by a straight line.

rd ——2. 12 (2.51+0.10) fm . (3.25)

Although the free deuteron is not accurately described by
the central effective interaction used in our calculations,
we still expect to get qualitative information on the
change of the size of the deuteron in the bound a+d sys-
tern.

B. The bound alpha+deuteron system

1. The full GC calculation

The bound cx+d system is studied by using a single-
particle basis with [nlm] =0 and taking into account the
three generator coordinates Pa, Pz, and s, i.e., the oscilla-
tor parameters of the a particle and the deuteron and the
separation of their oscillator wells. The following values
for the generator coordinates are used:

Pa=0. 3, 0.4, 0.5, 0.6 fm

pd ——0.05, 0. 15, 0.25, 0.35 fm

s =2, 3, 4, 5, 6, 7 fm .

(3.26)

(3.27a)

Solving the corresponding (96&&96) HW equation, we ob-
tain the ground state energy

(EL; )s, ———30.3 ( —32.0) MeV . (3.28)

Thus there is a discrepancy of 1.7 MeV between the calcu-
lated and experimental binding energy. In order to gain
some insight into possible deficiencies of the model space,
we add a second component to our trial wave function
and study its influence on the ground state energy. The
second component differs from the first one only as far as
the deuteron is concerned which is now described by a
proton and a neutron in n =0, l = 1 orbits coupled to zero
orbital angular momentum. The corresponding many-
body matrix elements are calculated from those with
[nlm]=0 using the recursion relation (2.3). Also in the
second component, we use the parameters P, Pa, and s as
generator coordinates. However, with the sets (3.26) and
(3.27a) of the GC coordinates, we find that adding the
second component does not enlarge the model space.
Thus, even with the restriction to the simplest set of quan-
tum numbers [nlm] =0, our model wave function is
shown to be already quite flexible.

In this context, it is instructive to compare our results
with those obtained by Krivec and Mihailovic' who
developed two different cluster models for the nucleus Li
adopting the same effective interaction as we do in our
calculations. If the nucleus Li is described as an inter-
play of the two-cluster structures (a+d), ( He+p), and
( Li+n), by using the same oscillator parameter for all
clusters, then the calculated ground state energy
Ez, ———28.3 MeV. Similarly, when these authors
describe I.i in terms of the three-cluster structure
(a+p+n), again using a common P, they find Es,= —28.7 MeV.

We conclude that the picture of breathing spherical
clusters is a quite successful one within the limitations of
our simple effective nuclear Hamiltonian. Although fur-
ther extensions of the model space are conceivable, we
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consider it more appropriate to include a noncentral term
in the nucleon-nucleon interaction. Thus deformed clus-
ters are expected to become favored. As our formalism is
well suited to describe also this degree of freedom (which
also includes shape vibrations of the clusters), such a
study is planned for the near future.

2. Restricted GC calculations

In order to study distortion effects in the a particle and
the deuteron when they come close enough to form a
bound Li nucleus, we restrict the set of parameters in the
HW equation. VVe choose only three s points

s=s, s=s+1 fm, (3.27b)

but take the same set of coordinates p~ and pd as in Eq.
(3.26). The ground state energy which is obtained by solv-
ing the (48X48) HW equation for different values of the
average distance s is shown by the full curve in Fig. 3.
This curve exhibits a minimum at the equilibrium value

seq =3.78 fm . (3.29)

(EL;),q ———30. 1 MeV (3.30)

differs only by 0.2 MeV from (EL;)s, , Eq. (3.28), ob-
tained by the full GC calculation. Therefore, it is reason-
able to expect that the restriction to the set of parameters,

This value is close to the result for the rms radius,
r d

——3.32 fm, of the a+d relative wave function, found
by Plattner et al. in a model-independent analysis of
a-d scattering data. The energy at the minimum

Eqs. (3.26) and (3.27b), is unlikely to affect seriously the
resulting behavior of the a and d clusters in Li.

In order to demonstrate in a qualitative way the impor-
tance (or unimportance) of distortion effects in a cluster,
we simply "switch off" its distortion. For the a cluster,
this is realized by the following ansatz for the GC ampli-
tude:

f(p, pd, s) =f""'(p )f(pd, s), (3.31)

where f ~"'( P~) is the GC amplitude obtained for the free
a particle, while the remaining part of the GC amplitude,
f(Pd, s), is determined variationally. If we solve the HW
equation for different values of s, we obtain the dash-
dotted curve in Fig. 3. As is seen, the distortion effects in
the a particle are not important in the bound u+d sys-
tem. For distances s &7 fm, distortion effects in the a
particle become completely negligible.

As for the d cluster, we may switch off its distortion by
using the ansatz

f(p, pd, s) =f~""'(p~)fd'"'(pd) f(s), (3.32)

where fq"'(pd) is the GC amplitude for the free deuteron
and f(s) is again determined variationally. [The use of
f~I "e)(p~) is justified by the unimportance of distortion
effects in the a cluster. ] The ground state energy calcu-
lated with the GC amplitude (3.32) for different s is
shown by the dashed curve in Fig. 3. Here one sees that,
up to a distance of 8 fm, the distortion of the deuteron
cluster drastically affects the energy of the a+d system.

3. Size of the deuteron cluster i n 61.i

o -26-
CD

UJ -27-

I I I I I I
There is evidence from both theoretical3o ' and experi-

mental ' investigations that the deuteron cluster in Li
has a somewhat shorter tail than a free deuteron. We may
study this effect with our model by restricting the set of
GC parameters:

-28—

p~= p~, p~+0.05 fm

pd ——pd, pd+0. 05 fm

s=s, s+1 fm .

(3.33)

-29—

I I I I I I

2 3 t' 5 6 7 8
s (fmj

FIG. 3. Ground state energy of Li. The full curve shows the
result of the (4S&48) HW calculation with the following set of
generator coordinates: (i) P =0.3, 0.4, 0.5, and 0.6 fm 2; (ii)

Pq ——0.05, 0.15, 0.25, and 0.35 fm; (iii) s=s, s+0. 1 fm, for
different values of the intercluster distance s. The dash-dotted
and dashed curves are obtained by "switching off" the distortion
of the a cluster and both the n and deuteron clusters, respective-
ly. The energy resulting from a (96)&96) HW calculation, using
the sets (i) and (ii), and s =2, 3, . . . , 7 fm of generator coordi-
nates, is indicated by a straight line. The sum of the (intrinsic)
energies of the separated a and deuteron clusters is given by a
dashed straight line.

By solving the (27X27) HW equation for different values
of p, pd, and s we determine the minimum of the ground
state energy of Li

(EL;)~=—29.85 MeV, (3.34)

and

(Po),q
——0.475 fm

(Pd),q
——0.24 fm

(s),q ——3.8 fm .

(3.35)

If we compare this result with the equilibrium parameters

which is close to the result (3.28) obtained by solving the
full (96X96) HW equation. This indicates that the re-
striction to the set (3.33) of GC parameters is not a severe
one. The minimum of the energy is found for the follow-
ing average GC parameters:
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0.2 8

0.2 6
C4

E

0.2 4

result on the shrinking of the deuteron cluster in Li is in
accordance with calculations of the rms radius rd of the
deuteron duster by Vegh and Ero ' who use the three-
body wave function of Ref. 20. These authors find that
rd decreases considerably by increasing the momentum Q
of the a particle relative to the deuteron.

4. Compressibi1ity of the a1pha cluster in Li

0.2 2

2.5
I

3.5
I

4.5 5.5
s {fm)

FIG. 4. Size of the deuteron cluster in Li. The curve shows
the dependence of the size parameter of the deuteron Pq, ob-

tained for the minimum of the energy of Li as a function of the
average intercluster distance s.

obtained for the equilibrium configuration. This restric-
tion is analogous to the one discussed in Sec. IIIA 1. Our

of the free clusters, Eqs. (3.15) and (3.24), we find that the
size of the a cluster is unchanged whereas that of the
deuteron clyster is smaller.

It is also of interest to study the size of the deuteron
cluster for nonequilibrium values of the average cluster
separation s. For this we solve the (27 X 27) HW equation
for a range of parameters pd and s [the use of (p~),q is jus-
tified by the unimportance of distortion effects in the a
cluster] and determine the average oscillator parameter P~
corresponding to the minimum of energy for a given s.
The result is shown in Fig. 4. From this figure, one notes
that Pe decreases with increasing s. Thus, the shrinking
of the deuteron cluster becomes weaker when the separa-
tion between the a and d clusters is increased. The same
feature is exhibited in a more detailed way in Fig. 5,
where the ground state energy of Li is plotted in the vi-
cinity of the equilibrium (Pe)~ and (s),q. In this calcula-
tion, Pa=(P~),q and the GC amplitude

Ea(LI) =48.06 MeV

and the excitation energy of the breathing mode

(E iL;~),„=25.72 MeV .

(3.37)

(3.38)

Comparing these values with the result for the free a par-
ticle, Eqs. (3.19) and (3.20), we conclude that —in addition
to its size—also the compressibility of the a cluster is
rather insensitive to the presence of the d cluster in the
nucleus Li. These findings are of interest also in the con-
text of three-body models of Li, where it is a priori as-
surned that the a cluster is undistorted.

In Sec. IIIA1, we calculated the excitation energy of
the breathing mode of the free a particle both from its
compressibility and by an independent GC calculation. It
is an interesting question to ask whether this breathing
mode still exists as a collective excitation when the a and
d clusters are bound together in Li. To shed some light
on this problem, we calculate the compressibility of the a
particle in the bound a+d system, adopting a similar pro-
cedure as for the free a particle.

That is, we start from the solution of the (27X27) HW
equation related to the set of GC parameters (3.33) where
the average values are those of Eq. (3.35) for the equilibri-
um. Using the corresponding GC amplitude f,q(P~, Pd, s),
we calculate the change in energy for nonequilibrium
values of P~. We obtain

(t) Ei,;/t)P~)eq =213 MeV fm (3.36)

which is only slightly larger than the value 208 for the
free a particle. If we use this result together with (P~),q
from Eq. (3.35) in Eqs. (3.6), (3.9), and (3.10), we find for
the cx cluster the compressibility

IV. SUMMARY

0.25-

0.20-

0.15
3.0 3.5 4,0 4.5 5.0

s{fm)

FIG. 5. Contour plot of the ground state energy of Li in the

Pz, s parameter space. The energy increases from the minimum

(+ ) with E= —29.85 MeV in steps of 0.1 MeV per line.

Within the framework of the nuclear cluster model, we
develop a formalism which allows one to treat the mole-
culelike vibrations of a multicluster system and various
oscillations of the size and shape of individual clusters
simultaneously. This is realized by using the separations
between the clusters and the parameters which determine
their size and shape as generator coordinates. It is the in-
clusion of the size parameters into the set of generator
coordinates which (in our opinion) makes this model the
most powerful method so far used for studying distortion
effects within the framework of the cluster model.

The necessary formulae for projecting linear and angu-
lar momentum are worked out in detail. Recursion rela-
tions are derived which allow one to obtain many-body
matrix elements which contain single-particle orbits with
quantum numbers [nlm]&0 from those with [nlm]=0.
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Thus our method is a very simple one, as it is sufficient to
deal explicitly only with nucleon orbits with [nlm]=0.
The tedious task of calculating matrix elements with more
complicated orbits and the solution of the multidimen-
sional HW equation is left to the computer.

The model is applied to the nucleus Li which is treated
as a bound a+d system. Here it is demonstrated that the
use of the size parameters of the a and d clusters (in addi-
tion to the intercluster separation) as generator coordi-
nates leads to a rather flexible trial wave function which
also allows one to study the properties of the clusters in
the bound system. We find that the deuteron cluster is

contracted as compared to the free deuteron. On the oth-
er hand, it turns out that the size and the compressibility
of the a cluster are almost unchanged by the presence of
the deuteron.
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APPENDIX

In this appendix we show that the wave functions (2.19) form a spherical tensor of rank A, with respect to the intrinsic

coordinates [g]. Referring to the usual definition of a spherical tensor, we have to prove that the 2A, +1 functions

p([gLL'spll'](IL}AMi ), Mi = —A,, . . . , A, , transform under a rotation R( &
l(Q) of the framework of intrinsic coordi-

nates [g] in the following way:

R(~ (Q)p([gLL'spll'](IL)AMi )=ADMI (Q)p([gLL'spll'j(ILQM'}, (A 1)[0] M'

where DM M (Q) is the rotation matrix related to the rotation R (Q). Throughout this appendix, the abbreviation P for

the intrinsic wave function P~"" is used.
We study the effect of a simultaneous rotation of the frame of reference of the coordinates [ s ] and [g] on the wave

function (2.18a}

R( l(Q)R(&}(Q)P([gsPII']1m)=R( )(Q)V'([ll']1m[ s])R( ')(Q)R( )(Q)R(&)(Q)P([gsP], [lm]=0)

=gD' ~ (Q)V([II']Im'[ s ])P([g s P],[lm] =0)
m'

=gD' (Q)P([g sPII']1m') .
m'

(A2)

In deriving the first and third equation in this result, we used Eq. (2.18a). The second equation needs two steps: Firstly,
we use the transformation properties of the spherical tensor operator V([ll']1m[ s]), Eq. (2.15). Secondly, we notice

from Eq. (2.10) that a simultaneous rotation R( l(Q)R( &)(Q) does not change the function p([g s p], [lm] =0). Alter-

natively we write Eq. (A2) in the form

R(&l(Q)P([g sPII']1m)=QD~ ~(Q)R (' (lQ)P([gsPII']1m') .
m'

If we now expand P in Eq. (A3) in terms of A-polar harmonics,

P([g sPII']1m)= g P([gLL'sPII']lmLM)B'([LL']LM[s])
[LL']LM

and use

R (Q)B'([LL']LM[s])=+DIM (Q)B'([LL']LM'[s]),
M'

we find that

R (Q)P( [( LL'sPII']ImLM )B*([LL']LM [s ) )
[LL']LM

(A3)

(A4)

(A5)

D (Q)DMM(Q)P([gLL'sPII']Im'LM')B'([LL']LM[s j}.
[LL ']LMM'm '

Equating the coefficient of B'([LL']LM[ s ] ) on both sides of this equation, we obtain

R (Q)P([gLL'sPII']ImLM)= g D ~ (Q)D~M(Q)P([ jLL'sPII']1m'LM') .
M'm'

(A6)

Finally, if we use the Clebsch-Gordan series for the product of rotation matrices and introduce the functions (2.19), we

find the desired result (Al).
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