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The charge-exchange Hartree-Fock random-phase approximation theory is employed in the calcu-
lation of isovector spin excitations in nuclei with N >Z. Distributions of strength for all three
A7,=0,+1 components of S=1, L=0,1,2, J =0—,17,27, 1%, 2%, and 3% excitations are calculated.
The results for isotopes of Ni and Zr are also presented.

I. INTRODUCTION

During the 1970’s, new types of giant electric reso-
nances were discovered in addition to the giant dipole
which had been known for a long time. These resonances
have added new and very interesting information concern-
ing nuclear collective motion, in which only spatial de-
grees of freedom of nucleons are involved. In the 1980’s
giant resonances have been observed in which spin degrees
of freedom of the nucleons determine the collective prop-
erties of these excitations. The long-predicted Gamow-
Teller (GT) resonance was observed! in (p,n) reactions and
recently also the M 1 state? was seen in (p,p’) and (e,e’) ex-
periments.> Giant resonances in which both spatial and
spin degrees of freedom participate, such as the spin di-
pole (L =1, S=1) or spin quadrupole (L =2, S=1),
have been studied in (p,n) reactions.*

The (p,n) reaction in the energy range of several hun-
dred MeV is particularly well suited for the study of spin
excitations in nuclei because of the relatively strong 7T =1
and S =1 component in the nucleon-nucleon force in this
energy range. For energies in the range 100—300 MeV,
the (p,n) reaction excites AS =1 excitations preferentially
as opposed to the AS =0 excitations which are rather
weak.” The Gamow-Teller resonance was clearly observed
in many nuclei throughout the Periodic Table in the (p,n)
reactions.”* The most exciting feature of these experi-
ments was the fact that a large portion of the strength re-
lated to the o operator is missing. This observation con-
firmed the earlier ones that much of the strength is miss-
ing from the GT B~ transitions in light nuclei. In the re-
cent (gj,p') (Refs. 2, 6, and 7) and in some (e,e’) experi-
ments® M1 strength was found in medium-mass nuclei.
The isovector M 1 strength exhausts only about 30—50 %
of the shell-model strength. In heavy nuclei (as for exam-
ple in 2°8Pb) only a very small fraction of the isovector
M1 strength is detected. These experiments together with
the charge exchange results point to the fact that a large
portion of the shell-model o7 strength is missing from the
low-energy region.

To resolve this problem an interesting suggestion was
put forward, namely, that the quenching of the or
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strength is due to the excitation of internal degrees of
freedom of a nucleon.® This quenching is probably one of
the most natural and straightforward manifestations of
the coupling of non-nucleonic degrees of freedom to the
nucleonic ones in a nucleus. Because of the Pauli princi-
ple very few nucleons can flip their spin without a change
in their spatial degrees of freedom. On the other hand,
each of the nucleons in a nucleus can be excited into a Aj;
which occupies the same or nearly the same state as the
initial nucleon. In the language of quarks each nucleon in
the nucleus can flip the spin of one of its quarks, thus
aligning the three quark spins. This spin flip must be ac-
companied by an isospin flip too, so that the state is sym-
metric in spin and isospin of the quarks. Although the
admixture of a A-particle—nucleon-hole state |AN"!)
into the nuclear M1 or GT is small (it costs 300 MeV to
excite a nucleon into a delta), because of the coherence of
the | AN—!) and therefore the large transition strength to
such a state, the effect on the M1 or GT strength is
large.®? This explanation of the missing isovector spin-flip
strength in the low-lying states of nuclei is quite convinc-
ing; however, other possibilities cannot be excluded, and
additional contributions should be taken into account.’~!3

In some nuclei the random phase approximation (RPA)
correlations might affect the GT strength and certainly
the M1 transitions. In a previous work!! this aspect of
theory was studied for the GT and M1 resonances in
several nuclei. The excitations corresponding to the o7_,
oTp, and o7, operators were calculated in the same
theoretical framework. In the present work we extend
these calculations to other isovector-spin excitations in-
volving angular momentum transfer as well. All three
components for each kind of isovector transition operator
are calculated simultaneously using the theory of charge-
exchange RPA.!* The excitations considered in this work
are the isovector S=1, L =1, J=07,1", 27 and isovec-
tor S=1, L=2, J=1%,2%3%  The isovector spin
monopole state, i.e., a state which relates to the operator
rza'r“, is also calculated. For completeness the results for
the L =0, § =1 excitations corresponding to the operator
o, (i.e, the M1, GT, and B states) which were calculat-
ed in Ref. 11 are presented here and some new results
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added. In the present work, we consider only nucleon de-
grees of freedom and do not treat the coupling to the A.
However, the complete nucleon 1p-1h space is utilized.
This includes the continuum particle-hole configurations!?
and therefore we are able to compute the nucleon escape
widths of the resulting excitations.

The calculations performed in the framework of the
charge-exchange RPA use the proton-particle neutron-
hole states to describe the A7,= —1 components of the
isovector excitations. The proton particle-proton hole and
neutron particle-neutron hole configurations form the
A7, =0 excitations and the A7,=1 excitations are con-
structed from the neutron particle-proton hole configura-
tions. The basis of our calculations is made up of
Hartree-Fock (HF) single particle (hole) states calculated
with Skyrme-type forces.!s!”

Previous extensive studies of spin-flip excitations in-
cluded the work in Ref. 18 where the A7,= —1 excita-
tions for L =0 spin-flip excitations were calculated in the
Tamm-Dancoff approximation (TDA) and the L =1 in
the RPA. A simple 6 force was used for the p-h interac-
tion and both HF and Woods-Saxon single particle states
were employed. The A7,=—1 and A7,=0 were not
treated in the above work. In some other papers!®!® the
A7,=—1 excitations have been calculated in a limited
1p-1h basis. Gaarde et al.* have calculated in addition to
the L =0 and 1 strength also the L =2 strength, but
again only for Ar,=1, and they did not include continu-
um states. Full shell-model calculations in a limited space
of GT and M 1 states have been recently carried out.?’

The work which comes closest to ours is that of Izumo-
to in which Ar,=—1, L =0, 1, and 2 excitations are
computed in the RPA framework with the 1p-1h continu-
um states included in the calculation.! But again as in
previous work there is no attempt to treat all three
A7,=+1,0 components of the isovector spin excitations
in the same theoretical framework. The main aim of this
work is to provide such unified treatment of isovector
spin excitations.

II. THE FORMALISM

The fundamental quantity of the method used here is
the particle-hole Green’s function, G(E), where E is the
excitation energy.?? The linear response of the nucleus to a
one-body probe Q can be calculated in coordinate space as
SoB)=L1m [ [o*6mEQIdTAT| . @D

T

The transition density p, () for the excited state | n) at
energy E, is unambiguously determined as follows:?

1 > = = N ad 4 b4
—Im [fQ+<r )G (T,F",E, P(T )dT dr]
V'So(E,) ~ ’

pu(?)=

(2.2)

where p(T') is the one-body density operator.?*

Our framework consists of a shell-model (HF) Hamil-
tonian and a residual interaction. The Green’s function is
obtained by solving the ladder approximation equation

G(E)=G'AE)—GE)V,,G(E) . (2.3)

Vo is the particle-hole (residual) interaction which we
take to be of static nature, and G'°/(E) is the free Green’s
function constructed using HF wave functions and ener-
gies. This framework was used in the past®>2® for sys-
tematic studies of electric isoscalar and isovector reso-
nances. It was recently!* extended to include the charge-
exchange (A7,=+1 and A7,= —1) components of giant
isovector states.

In this work we use the Skyrme III (SIII) effective
two-body nucleon-nucleon force!” in order to generate the
HF Hamiltonian. The 1p-1h space we use to construct
the free Green’s function is complete,!® and consequently,
as already remarked, the excited states lying in the contin-
uum will have particle escape widths. The spreading
widths due to 2p-2h or higher order configurations are not
treated in our calculations.

The residual p-h interaction may, in principle, be calcu-
lated in a self-consistent manner by employing Landau’s
prescription:??

8’Enr
— dpdp ’

where Eyg is the HF energy and 8p designates a variation
in the one-body density function. However, it is well
known in the literature that the Skyrme forces SI to SVI
(Refs. 16 and 17) (including the SIII force used here in the
construction of the HF potential) have some shortcomings
in relation to spin-flip excitations.”’~?° The authors of
Ref. 29 have tried to determine a few new sets of parame-
ters for the Skyrme interactions. Being interested mainly
in the general features of the strength distributions for the
three isospin components of magnetic isovector states, we
adopted here a simpler approach. The residual interaction
was taken to be of zero range and of the form:

(2.4)

Von

Vn(1,2)=t[(1—P,P,)+x (P, —P,)]8(F;—T) , (2.5

where P,,P, are the spin and isospin exchange operators
and t,x are two constants to be determined. In expression
(2.5) the density-dependent and the velocity-dependent
terms and also the spin-orbit term, that appear in a
Skyrme force, have been dropped. The value of ¢ was
chosen so as to reasonably reproduce the two GT peaks of
9071, t = —934 MeV fm.?

In view of very recent theoretical fits’! of a measured>?
low energy M 1 state in 2°%Pb, which indicate that the ra-
tio between the coefficients of the isoscalar spin-flip and
the isovector spin-flip terms in the residual interaction is
very small, we chose x=0.5. The isoscalar spin-flip term
of the residual interaction, Eq. (2.5), is zero for this value
of x.

We should mention that the isovector spin-flip term in
our Vp, which is

23353132?1?28(?1—?2) ’

is close to that used by Bertsch et al.'® Also, our value of
t corresponds to a Landau parameter go =0.56 in units of
#ir?/m* kg, where m* is the effective mass and ky is the
Fermi momentum in nuclear matter. If the one pion ex-
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change potential*® and the p-exchange potential contribu-
tions to the zero-range part of the p-h interaction are in-
cluded, then the value of ¢ we used is equivalent to
g0 =0.95, which is close to values employed by other au-
thors. 213334

The distributions of strength are calculated for opera-
tors possessing the following general form:

A
QL =it fr)l YL (7)X 7()],0mu()

i=1

(u=0,+1) (2.6)

where

1
F—=(rxtity), p==1
ram | TV ) M
. 40 2.7)

and 7,,7y,7, are the Pauli isospin matrices. The strength
distribution can be characterized in terms of its moments,

my g (k)= ZE,{‘,‘ [{nu|Qruul0)|?,
i

(u=0,+1;k=0,1,2,...) (2.8)

where E,,“ is the energy of the state |n,) excited by the ,

operator @y ;, acting on the ground state |0). We will
also refer to the average excitation energy

_ (1)

Ldp™
# m,j,u(0)

, (u=0,%1). 2.9
All energies will be given with respect to the parent
ground state.

In the framework of the continuum RPA, the zeroth
order moments of the strength distributions corresponding
to the charge-exchange modes can be shown to satisfy the
following nonenergy weighted sum rule (NEWSR):

mhﬁ_go»-mhﬁ+¢0ﬁ=5%{N<f%n>f_z<f%n>d,

(2.10)

where (F(r)), stands for [ d>FF(rip,(r), (F(r)), stands
for f d3tF (r)py(r), and p,,p, are the neutron and proton
densities, respectively, in the ground state. In particular,
taking f(r)=r/, we get

rhs of Eq.(2.10) =51;[N(r2’),,——(r2’)p] . (2.11)
The relationship Eq. (2.10) is independent of the specific
form of the residual interaction and remains valid also
when its lhs is evaluated by using the continuum TDA.
We employed the NEWSR in Egs. (2.10) and (2.11) as a
check of the numerical accuracy achieved in our calcula-
tions.

III. RESULTS

We performed complete calculations for the nuclei °Ni,
%Zr, and °%Pb. We obtained the Green’s function in
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coordinate space?>2® using a radial mesh of 26 points with
Ar=0.45 fm for *Ni and 0.60 fm for the other two nu-
clei.

A. Results for L =0 states: The GT and M 1 resonances

The probing operator in this case is

4
Qo 1+,u= D [YoolF) X &(0)]1,07mu()

i=1
(u=0,%1). (3.1

Some of the results of such calculations were reported in
Ref. 11. (Note that we use here a probing operator that is
1/V/4r times the one used in Ref. 3.) Satisfactory agree-
ment with experiment was found concerning excitation
energies. Motivated by the recent investigations of the
mass dependence of the M1 and GT strength,%”37 we
also calculated several isotopes of Ni and Zr. In the Ni
isotopes, the two isospin components of M1, the lower
energy T'=T (the isospin of the parent state) component,
and the higher energy T'=T +1 one were identified.”
Although our calculations are not carried out in a good
isospin framework, we can approximately decompose the
theoretical M'1 strength into isospin components using
the o7, strength.'"!* The resulting excitation energies,
together with the ratio of the reduced strength, S, /S,
are given in Table I. The latter quantity should give an
indication about the expected ratio of the cross sections
for exciting the corresponding 1% levels. The strength of
the E:—H mode, Sr,, is almost entirely due to the
w1f+—v1fS transition. As A increases, this transition
becomes gradually blocked; at the same time, Sr de-
creases to a lesser extent, because it is only indirectly af-
fected by the 1f< neutrons.

Recently, (p,n) experiments on *Ni and on even Ni
isotopes from *3Ni through %Ni were performed in which
Gamow-Teller strength was observed. In Ref. 37 isospin
assignments of the T'+1, T, and T —1 components have
been made. The energy positions compare reasonably well
with the calculated ones although the splitting between
the T+1 and T component AE  is theoretically some-
what smaller than that measured experimentally. The
symmetry energy coefficient defined as V;=AE A/
(T +1) is theoretically around 70 MeV, while from the

36,37

TABLE I. Excitation energies and the ratio of Sy, ,/Sr (see
text) for Ni isotopes.

Er Ery,
Nucleus (MeV) (MeV) Sr4+1/Sr
SONi 9.4% 12.32 0.70
8.9+0.1° 11.7°
©2Ni 9.0 12.9° 0.49
8.8+0.1° 14.0°
54Ni 8.5 13.2 0.26
8.9+0.1° 15.6°
*Theory

*Experiment (Ref. 7).
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analysis of the experimental (p,n) data’’ it is about 85
MeV.

The theoretical decomposition into 7"+ 1, T, and 7 —1
components in the Ni isotopes is somewhat ambiguous be-
cause of the fragmentation in GT strength resulting from
the fact that one has two well separated distributions of
strength resulting from the splitting between, on the one
hand, the f- -Z— orbit and, on the other, the p% and f % or-
bits. The ratio of strength Sr_;/St . is calculated to be
about 3 in °Ni, 5.3 in %*Ni, and reaches the value of 12.5
in ®Ni.

As already discussed in our previous work,!! in the case
of the Ni isotopes the RPA correlations affect not only
the M1 strength but also the GT(B8~) strength and of
course the B+ transitions. It is the existence of the g+
transitions (which represent the “backward going” graphs
for B7) that makes the RPA correlations important in the
GT strength.*!! The reduction of strength due to RPA
correlations is for the M1 33% in Ni, 31% in ®’Ni, and
29% in %Ni. As for the GT strength, it is diminished as
one goes from %0Nii to %Ni, because of the increase of the
f% to f3 transition in the 8% branch. In fact, the transi-
tion strength in the RPA for B+ is about 15 in ®Ni, 9 in
2Nii, and only 4 in %Ni. The experimental results®’ indi-
cate that the quenching of strength in the GT transitions
in all Ni isotopes is close to a factor of 3 and certainly
cannot be accounted for by the RPA correlations alone.

In the Zr isotopes, the M1 is split into two states for
A >90 (due to the additional vd<>—vd+ transition) and
the GT resonance is split into four peaks (vid5 —wld5
and vld$ —w1d% in addition to the vigs —wlg+ and
vlg+—wlg+ configurations). The highest energy peaks
carry most of the strength, and we list them in Table II
together with experimental results.® The agreement with
measurements is good for the M 1 states; however, the cal-
culated GT peaks are higher than experiment by about 2
MeV.

In Figs. 1 and 2, we show the transition densities for
the GT states in *°Zr and 2°®Pb. For °°Zr, the transition
densities (properly normalized to the corresponding
strengths) for the two GT peaks are given, and for 2°%Pb,

TABLE II. Excitation energies of the M1 and GT states in
Zr isotopes.

M1 state GT state
Nucleus (MeV) (MeV)
NZr 9.22 17.42
8.9+0.2° 15.6°
27r 9.12 16.7*
8.8+0.1° 14.9°
HZr 9.05% 16.12
8.740.1° 13.8°
%Zr 9.0% 15.4
8.6+0.1°
2Theory

YExperiment (Ref. 6).

p
(x10-2 fm-3
3_x m-3)

r(fm)

FIG. 1. The transition densities for the two GT peaks in *°Zr.
The continuous line represents the lower energy peak and the
dashed line represents the higher energy peak.

the density shown corresponds to the 20.9 MeV peak and
it is normalized to the entire strength. We note that the
expected resemblance between the GT transition densities
and the excess neutron densities is spoiled mainly by the
spin-orbit interaction.

B. Results for L =0 states: The high energy states

Calculations of high-lying M 1 resonances were report-
ed in the past.3® The authors presented estimates of the
energies for these states, and their contribution to (e,e’)
cross sections at backward angles. Also, very recently,? it
was pointed out that L =0 strength in the continuum
might constitute a significant fraction of the background
in the °°Zr(p,n) reaction.

Because of the absence of radial dependence, the opera-
tor Q0,1+,p defined in Eq. (3.1) cannot excite high energy
L =0 states. To study them, we define, in analogy with
the electric monopole case, the following probe:

P
(x10-2 fm-3)
3L

L L 1

3 6 9 r{fm)

FIG. 2. The transition density for the main peak of the GT
distribution in 2°*Pb.
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rH Yoo 7i) X 8(i)]1,07()

_ A
Q0’1+,#= 2

i=1

(u=0,+1). (3.2)

The functional dependence on r of éo 1+, comes from
the long wavelength expansion of j,(gr), where g is the
momentum transfer,

2.2
jo(qr)zl—g—6r—+"' . (3.3)

The probe of Eq. (3.2) excites states of 1+, L =0 charac-
ter, which are built of 1p-1h configurations corresponding
to 2%iw transitions. We will refer to the high-lying
1%, L =0 resonances as the spin isovector monopole (SIM)
resonances.

Let us now discuss the results. The distributions of
strength of the operators Q0 o for u=—1 and 0 (and
for Ni, also u=+1) exhibit two main concentrations of
strength, which are well separated. At the lower energy
end there are the GT(u=—1) and M 1(u=0) states. For

%N, there is also the sharp low energy Ofiw state excited
by the u=+1 component of Qo,1+,;¢ while for the other
nuclei, 0% transitions of this kind are completely blocked
by the excess neutrons. These low-energy states carry a
large fraction of total transition strength of the operator
Q, 1+, the GT in %Ni and *Zr contains about 75% of
the total strength, and in 2%®Pb, the fraction is 90%. The
M 1 represents about 60% of the total strength of Q0 1+.0
in the three nuclei. As for the p=+1 mode in ®Ni, the
low-energy state carries about 60% of the total strength.

The high-energy concentration of strength represents
the SIM resonance whose distribution strikingly resembles
that of the electric isovector monopole:!* at its lower ener-
gy it is quite fragmented and at the higher energy end
there is a strong and wide peak, which contains about
70% of the SIM strength. In Fig. 3 are shown the distri-
butions of strength of the probes Q0 1 for the three
modes in °°Zr. We observe that because of the larger es-
cape widths the u =1 mode has a smoother shape than the
other two modes, with u=+1,0. In Table III we give the
following parameters for the SIM in the calculated nuclei;
the total SIM strength 77,(0), the average energy
E,=m,(1)/m,(0), the energy at maximum response,
and the full width at half maximum (FWHM) of the
strong peak of the SIM. We note that # ,;(0)>m_;(0),
although N > Z. This inequality is due to the fact that a
very large part of the excess neutron-transition strength
for the operator QO’IJF’_1 goes to the GT; hence, the

S(E)
(fm4 Mev-! )
24}
L (a)
16
8|
1 1 1 1 1
10 20 30 40 50
ENERGY (MeV)
S(E)
(fm4 Mev-)
24F (b)
16
sl
Mi
1I 1 1 1 1
10 20 30 40 50
ENERGY (MeV)
S(E) (c)
| (fm4 MeV-!)
st
4t
6T GT
l 1 1 1
20 30 40 50 60

ENERGY (MeV)

FIG. 3. Distribution of the SIM strength in *Zr: (a) the
pm=+1 strength, (b) the u=0 strength, and (c) the p=—1
strength. The locations of the GT and M 1 states are also indi-
cated.

pu=-—1 and + 1 SIM resonances are built mainly from
excitations of the core neutrons and protons, respectively.
Referring to the NEWSR of Eq. (2.11), and using

TABLE III. The SIM resonances: strength, average excitation energies, energies of the main peak, and FWHM.

p=+1 pn=0 =—1
m(0) E  Eju FWHM m(0) Epx FWHM  m2(0) E  Epa FWHM
Nucleus (fm%) (MeV) (MeV) (MeV) (fm%) (MeV)  (MeV) (MeV) (fm®) (MeV) (MeV) (MeV)
SONi 182.8 26.7 245 4.0 174.8 32.0 8.5 144.9 45.7 39.7 13.0
N07r 460.9 22.3 22.8 3.0 404.3 30.5 6.0 298.3 43.4 38.5 12.0
208pp, 1546.6 17.7 17.8 1.0 1920.5 27.7 28.7 4.5 1184.0 44.5 42.5 12.5
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P
(x10-2fm-3)

SIM T,

¢] 1 Rr]uc /\

3 6 r(fm)

-r SIM T_,

-3F

FIG. 4. The transition densities for the main peaks of the
SIM distributions in *°Zr.

f(r)=r?, we see that the difference 7 _,(0)—77 ,(0)
should be approximately proportional to the differences
between the core neutrons and core protons (r*) mo-
ments. This difference is negative due to the Coulomb
polarization phenomenon® of the core protons.

As a typical example, we show in Fig. 4 the transition
densities for the main peaks of the SIM in **Zr. The den-
sities are normalized to the total SIM strength, #,(0).
Again, the resemblance to the electric monopole transition
density'4 is striking.

To end the discussion of the SIM, we should mention
that this resonance may play a role in the scattering am-
plitude of nucleon-nucleus reactions even at forward an-
gles. As an example, we quote here the results of a calcu-
lation carried out for the following operator:

1037

A
Q6’1+’0= zjo(qr,)[Yoo(r,)X a(i)]l’oTo(i) ) 3.4)
i=1

where ¢ is the proton momentum transfer in the reaction
9Zr(p,p’) for 6=3.5° and for an incoming proton energy
of 318 MeV. This reaction was recently studied experi-
mentally.*! (Note that g depends on the nuclear excita-
tion energy.) The results, in the framework of the plane-
wave approximation, are that the SIM carries about 30%
of the total strength, and the rest is contained in the M1
state, which is theoretically!! predicted to be located at
9.15 MeV.

In view of this result we should point out that if addi-
tional L =0 strength is found at higher energies in the
continuum® it does not necessarily mean that GT
strength of the kind given by the operator QO’IJ,’_l is
recovered. It could be that the observed L =0 transitions
correspond to the SIM strength given by the operator

o,1+,—-1°

C. Results for L =1 states

The probing operators are defined as follows:

A
Qriu=—(=1" 3 nlYi(F)XFD]0or,() (3.5

i=1
and the possible excitations may possess the spins
J™=07,17,27. The resulting total strengths, m ;,(0),
and average excitation energies,

El,_],# =m1,J,,,( 1)/"11,1,#(0) ’

for all values of J are listed in Table IV. In Table V are
given the average excitation energies for the three isospin
modes with L =1. These energies have been defined as

2
2 (2T +1Dmy (1)
J=0
EL,y= 2 .

2 (2J +1)m 1,1,,4(0)

J=0
The results of Table IV were checked against the NEWSR
derived in Sec. IIB. In Table VI, we give the values of
the sum rules, calculated using HF densities. These sum

(3.6)

TABLE IV. The L =1, S =1 states: total strengths and average excitation energies for the different values of the angular momen-

tum J.
p=+1 pn=0 p=-—1

my,,4+1(0) Ey 41 my,5,0(0) Ey 0 my,j,—1(0) Eyj—1

Nucleus J" (fm?) (MeV) (fm?) (MeV) (fm?) (MeV)
0~ 26.9 18.9 31.6 26.0 36.6 32.7
6ONi 1~ 21.6 15.5 25.9 22.1 314 29.0
2~ 10.6 12.1 18.0 17.4 214 24.5
0~ 28.2 12.5 41.5 22.7 60.4 31.8
0Zr 1- 23.7 10.3 33.5 19.9 55.1 28.4
2- 12.7 9.1 24.9 16.6 429 23.5
0~ 19.2 12.5 130.3 20.3 266.1 32.1
208py, 1- 20.2 7.6 108.3 16.9 233.3 29.5
2~ 11.8 14.4 50.4 14.3 216.2 25.1
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TABLE V. The L =1, S =1 average energies.

p=+1 p=0 p=—1
E\ 1 Eo E,_,
Nucleus (MeV) (MeV) (MeV)
ONi 14.9 20.6 27.5
07y 10.2 18.8 26.5°
24.9°
208pp 11.2 16.6 27.5%
24.5°
2Theoretical.

YExperimental (Ref. 4).

rules are satisfied quite well by the RPA calculations as
indicated by the numbers of percents. We note that, for a
given J, the u=+1 transition strength is the lowest in
magnitude and the u = —1 strength is the highest. This is
due to the excess neutrons which, because of the Pauli ex-
clusion principle, block some of the Ar,= +1 type transi-
tions, and also increase the number of configurations con-
tributing to the g =—1 mode over that of the =0 or
+ 1 modes. The influence of the excess neutrons is, of
course, quite pronounced in the case of 2°*Pb. For this
nucleus, the 17, Ar,=—1 strength is about ten times
larger than that of the 1=, A7,=+1 mode. For the latter
strength, we quote only the contribution of low energy
states; the ones at higher energy add about 10% more
strength, which is centered around 28 MeV. As for the
2~ excitations in 2°°Pb, the u= —1 total strength is about
18 times that of the u=+1 mode. The 27, u=+1
strength is distributed as follows: two narrow states, one
at 7.0 MeV and the other at 9.7 MeV, carry together
about 70% of the strength; the remaining 30% is spread
over an interval of 25 MeV, and centered around 27 MeV.
(In view of this behavior, one should not attach much sig-
nificance to the average energy E 12, +1 in the case of
208pp.)

We also note that for L =1 transitions involving

TABLE VI. Sum rules for L =1, S=1 excitations. The
values of the sum rules calculated using HF densities are given
for each spin. The percentage figures represent the extent to
which these sum rules are exhausted by the RPA calculations.

Nucleus ONi 0Zr 208pp

JT 0~
Charge exchange NEWSR 10.0 324 241.1
97% 99% 102%

JT 1-
Charge exchange NEWSR 10.0 32.4 241.1
98% 97% 88%

JT 2~
Charge exchange NEWSR 10.0 324 241.1
108% 93% 85%

A7,=—1 and O, the average energy of 0~ excitations is
the highest, and that of 2~ excitations is the lowest. This
feature has been noted also in previous calculations.'®4
The authors of Ref. 18 attribute the fact that the theoreti-
cal energy of the 0~ excitation is the highest mainly to the
one-body spin-orbit potential; the configurations which
contribute most of the 0~ strength have larger unper-
turbed energies than those of importance for the 17, 2~
resonances. The above mentioned energy ordering does
not hold for the Ar,=+1 states in 'Pb because of the
Pauli blocking resulting from the excess neutrons. The
strength for J”=07,1" in all three nuclei is concentrated
in very few peaks,'® while the J"=2" strength is spread

H
18 s(E) :
(fm2 MeV-)
12+
8»._
a4l
1 1
20 30
ENERGY (MeV)
S (E)
(fm2 MeV-")
12r
(b)
sk
4__
L. .
10 20

FIG. 5. The L =1, u=+1 distribution of strength in *Zr.
(a) The strength distributions for the J =0~ (dotted line),
J =17 (dashed line), and J =2~ (continuous line) are shown.
(b) The distribution of the “average strength”

27 +1)SLs,
J
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FIG. 6. The L =1, u=0 distribution of strength in **Zr. See
the caption of Fig. 5.

over many states. The u=—1 strengths for all L =1
states have smoother distributions than the corresponding
p=0, p=+1 states, because of the higher energies and
thus larger escape widths. The L =1 strength, defined as

2
3 (27 +1)Sy,5,(E)
SI’M(E)= J=0

9 ) (3.7
where S ;,(E) is the transition strength for the operator
Q1,7 at energy E, is quite fragmented and spread over an
energy interval of 5—7 MeV for the u=+1 mode (disre-
garding the high energy strength p=+1, J"=17,2"7 in
208pp), and over an interval 15—25 MeV for the p=0,
p=—1modes. In Figs. 5—7 we show the J"=0",1",2"
strength distributions and the total L =1 distribution for
all three isospin modes in °°Zr. The above mentioned
features are well illustrated in these figures. In Figs.
8—10 are shown the transition densities for the main
peaks of the L =1 distributions in *°Zr. For reasons of
comparison, the transition densities are normalized to the
corresponding strengths. We note that the densities are
peaked at the nuclear surface.
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FIG. 7. The L =1, u=—1 distribution of strength in *°Zr.
See the caption of Fig. 5.

It is interesting to estimate the influence of the RPA
correlations in the L =1 excitations. As shown in Ref.
11, the RPA correlations are insignificant for the GT
states in *°Zr and '®*Pb, while the resulting reduction in
the GT strength for *Ni is 23%, compared to the TDA
strength. For L =1 states the RPA correlations are very
important. In Table VII, we give the results of TDA cal-
culations of L =1 states in *°°Zr. We note that the RPA
strengths of the u= —1 modes are smaller than the TDA
ones by about 20% and, for the u=+1 mode, the RPA

P
[ (x10-2fm-3)

n

r(fm)

FIG. 8. Transition densities for the main peaks of the L =1,
p=+1 distribution in °°Zr. The dashed, dashed-dotted, and
continuous lines represent the 0, 17, and 2~ densities, respec-
tively.
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FIG. 9. Same as Fig. 8 for L =1, u=0.

correlations reduce the TDA strength by about 50%. The
relative reduction in strength caused by the RPA correla-
tions is higher for u=1 than for u=—1 transitions.!*
Also, for the u=0 modes, the RPA strengths are only
about 70—80 % of the TDA ones. The TDA average en-
ergies are higher than the corresponding RPA ones by
1.5—2 MeV.

D. Comparison with experiment

The L =1, S =1 resonances were observed in (p,n) re-
actions with several targets,*3* including °°Zr and 2°*Pb.
The measured* L =1, u= —1 energy in *°Zr is 24.9 MeV,
while our calculations yield 26.5 MeV. In 2%8Pb, the ex-
perimental value of E; _,; is 24.5 MeV and the calculated
one is 27.5 MeV. The agreement between measurement
and theory is only slightly improved if we compare the
energies of the T _ =T —1 components,'® assuming that
the experiment includes only the T _ strength. The calcu-
lated values of the T _ centroid energies!* are 25.8 MeV
for Zr and 27.2 MeV for 2®Pb. There is additional data
concerning 2%°Pb: a low-lying 2~, u=—1 state at 6.3
MeV has been reported in Ref. 4. We also find a bound
state at 7.3 MeV which possesses about 5% of the total
calculated 2~ strength. In the very recent experimental
study of the **Zr(p,p’) reaction,*! a concentration of
strength was observed around an excitation energy of 18
MeV. The theoretical result of E;,=18.8 MeV indicates
that the observed strength could be of L =1, S=1 na-
ture.

TABLE VII. The L =1, S =1 strengths and average excita-
tion energies in **Zr, calculated using the TDA.

p=+1 u=0 p=-1
m,41(0) Eyj0 myge(0) Eyj0 my,_1(0) Eyj_y
J (fm?) (MeV) (fm?) (MeV) (fm?) (MeV)
0~ 43.3 14.2 57.2 24.2 73.4 33.6
1~ 36.2 11.9 50.0 20.8 64.9 30.3
2~ 23.0 9.9 31.5 17.4 52.4 24.8

P
(x 10-2 fm3)

© / 3 6 r(fm)

FIG. 10. Same as Fig. 8 for L =1, u=—1.
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FIG. 11. The L =2, u=+1 distribution of strength in *°Zr.
(a) The strength distributions for the J=17% (dotted line),
J =1— (dashed line), and J =3" (continuous line) are shown.
(b) The distribution of the ‘“average strength” (see Fig. 5).
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TABLE VIII. The L =2, S =1 states (see the caption of Table IV).

p=+ 1 2 =0 H=— 1

m3 g, 4+1(0) Ej i1 m;, j,0(0) E, ;0 my,5,—1(0) E,;

Nucleus J (fm* (MeV) (fm* (MeV) (fm* (MeV)
. 1+ 670.9 29.5 760.0 35.5 914.3 39.0
SONi 2t 587.8 23.4 743.6 26.6 849.0 335
3+ 429.6 17.0 508.4 23.2 656.7 27.1
1t 1047.3 229 1445.1 32.5 1852.3 40.1
07r 2+ 950.7 19.8 1283.8 27.7 1736.6 35.1
3+ 800.0 14.6 967.8 22.8 1563.5 28.5
1t 3343.8 20.2 7567.9 279 12733.6 36.8
208py, 2+ 2507.4 13.8 6113.1 239 11189.4 34.7
3+ 1419.1 13.3 4366.0 19.3 10236.5 28.9

E. Results for L =2 states

The operators inducing this kind of excitations are tak-
en to be

4
Q== 1 PAY,(F)XTD]yorulid),  (3.8)
i=1
and we have to deal with states of J”=1%, 2%, and 3%.

In Table VIII are shown the total strengths m, ;,(0)
and the average energies E, ;, for all possible values of J,
and in Table IX are listed the average energies of the
L =2 resonances [see Eq. (3.6)]. The NEWSR of Sec. II
are satisfied within 85—100 %. As in the previous case of
L =1 states, the magnitudes of the transition strengths
for a given J are affected by the excess neutrons. Howev-
er, here the Pauli blocking effect is considerably weaker,
because the L =2 states are composed of p-h transitions
essentially of 27w excitation energy, and not 17w as those
participating in the L =1 resonances. The largest ratio
between the Ar,=—1 strength and the Ar,=+1 one
occurs for the 31 excitations in 2%Pb, and its value is
about 7, compared to

m,,— _(0)/m (0)~18

1,2, 1,27, +1

for the same nucleus.
We also note that the energy ordering of the L =2

TABLE IX. The L =2, S =1 average energies.

E; Ejp E;,_,
Nucleus (MeV) (MeV) (MeV)

SONT{ 22.5 27.4 32.3
07Zr 18.4 27.0 33.32
31.0°
208pp 15.6 23.3 32.7*
31.5°

2Theoretical.

YExperimental (Ref. 4).

states involving A7r,=+1,0,—1 transitions is such that
the 1% excitation is the highest in energy and the 3% exci-
tation is the lowest. The explanation is similar to that
quoted!® for the energy ordering of the L =1 states. This
feature is weakened by the Pauli blocking in the case of
the L =2, u=+1 excitations.

The distributions of strength for the L =2, J =17 res-
onances are such that a few peaks carry most of the
strength, while the J =2%,3% distributions are very much
fragmented. The L =2 strength, defined in analogy with
Eq. (3.7), extends over a broad energy domain: For the
p=+1 mode, the strength is spread over about 25 MeV
and for the other two modes it covers an interval ranging

400k S(E)
(fm4 MeV-!)
3001
(a)
200
100
1
10
ENERGY (MeV)
300}
S(E)
(fm4 MeV-1)
200r (b)
100}
s |
10 20 30 40 50

FIG. 12. The L =2, u=0 distribution of strength in *°Zr.
See the caption of Fig. 11.
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FIG. 13. The L =2, u=—1 distribution of strength in *°Zr.
See the caption of Fig. 11.

between 35—45 MeV. The L =2 distributions of all three

isospin modes exhibit a wide peak at their high energy

end; this peak exhausts a significant fraction of the corre-

sponding strength. As illustrative examples, in Figs.

9101—13 are shown the L =2 distributions calculated for
Zr.

F. Comparison with experiment

The observation of the L =2, S=1, Ar,=—1 reso-
nances in the (p,n) reaction at E,=200 MeV has been re-
ported.* In °°Zr, the L =2 strength was experimentally
estimated to lie at 31 MeV, while theory yields

E, _1=33.3 MeV. In 208pp the agreement is even better:
the measured* value of E, _; is 31.5 MeV and the
theoretical one is 32.7 MeV.

The experimental findings*! in the *°Zr(p,p’)*°Zr* reac-
tion that a substantial amount of spin-flip strength exists
between 7 and 25 MeV excitation energy is completely
consistent with the present theoretical results. The calcu-
lated combined L =0, 1,2 spin-flip strength is spread over
that region of excitation and even beyond the 25 MeV ex-
citation energy.

IV. SUMMARY

In this work, we calculated the strength distributions of
all three isospin components of magnetic isovector states
in several N >Z nuclei. We employed the continuum
HF-RPA framework. The residual interaction was taken
to be of zero range.

The resulting strength distributions for excited states of
orbital angular momentum values L =0,1,2 were comput-
ed. The high energy L =0 type of concentration of
strength (the spin isovector monopole) was also studied.
The role played by the excess neutrons in N >Z nuclei
was investigated in detail.

A considerable energy splitting for the various J values
was found for L > 0 states. For a given L, this splitting,
which is due to the spin orbit interaction, results in the
lowest J state having the highest energy.

The calculated excitation energies are in reasonable
agreement with the experimental energies for levels that
were observed. More experimental data, particularly of
the kind in which L >0 states of A7,=0 and + 1 type,
are needed so as to make comparison with theory more
complete. It is of special interest to detect the spin-
isovector-monopole resonance. The (p,n) and (*He,t) reac-
tion could be used but the charge-conjugate reactions (n,p)
and (t,’He) seem to be even more promising.
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