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A hybrid quark-nucleon model of nuclei is developed in which nucleons merge into multiquark

bags at short distances. This model is applied to calculate mass differences between He and H and
a number of other mirror nuclei. For light nuclei we obtain a reduction of the discrepancy between

experiment and conventional theory. Probabilities for the formation of six-quark bags and nin-
quark bags in these nuclei are evaluated, and the consequences of our results are discussed. In par-
ticular we comment on the compatibility of conventional and the hybrid quark-nucleon results.

I. INTRODUCTION

In the last few years considerable excitement has been
generated by the idea that we may one day achieve a truly
unified description of nucleon and nuclear structure. '

For the present most attempts at such a unification are
necessarily based on quantum chromodynamic (QCD)
motivated phenomenology, rather than QCD itself. Given
the present diversity of models of hadron structure, it is
hardly surprising that there is no agreement on how to
deal with nuclei. Nevertheless, a number of attempts have
already been made to describe the short-distance N-N
force at the quark level.

Undoubtedly the most sophisticated calculations of the
N-N force using the quark model have been based on the
nonrelativistic (constituent) quark model. There, one
has the tremendous technical advantage that one can draw
on long experience in the application of resonating group
methods to light ion reactions. With the addition of a
long range interaction associated with pion exchange, this
approach has even achieved semiquantitative agreement
with S-wave N-N data.

The first application of the bag model (which has the
advantage of avoiding color van der Waals forces) was
similar in spirit to the nonrelativistic quark model. But
recently the P-matrix method' has been more commonly
used —again with considerable success. " ' The essential
idea is that inside some boundary radius the N-N system
should be described as a six-quark (6q) bag. By analogy
with the old R-matrix theory, one demands that the exte-
rior wave function vanishes at the boundary when the to-
tal energy of the system matches the mass of the internal
6q state.

There is no doubt that in order to be credible in nuclear
physics, any quark model must eventually provide a fit to
N-N elastic scattering data at least as good as that provid-
ed by the Paris potential. ' However, that day may be
some years away. In the meantime it is tempting to as-
sume that eventually such a fit will be achieved, and to
ask whether this new description of the short distance
physics may have other consequences. ' Examples of

such applications include the electrodisintegration of the
deuteron' and He, parity violation in the N-N sys-
tem, ' the EMC effect, and so on.

In this paper we address the theoretical question of how
to make consistent calculations in finite nuclei using such
a hybrid quark-nucleon model. As an example we investi-
gate the consequences for the systematic discrepancy in
the energy differences of mirror nuclei —the Nolen-
Schiffer anomaly. In particular, it has already been
observed that the mass difference between 6q bags formed
from two protons and two neutrons is not equal to twice
the proton-neutron mass difference. Similar arguments
apply to 9q bags if the overlap of more than two nucleons
is important. These mass differences amount to a some-
what different model of the charge-symmetry violating
N-N force, and therefore could contribute to reducing the
size of the Nolen-Schiffer anomaly.

The plan of the paper is as follows. In Sec. II we dis-
cuss the mass differences of 6q bags. In Sec. III we
develop the formalism for a hybrid description of nuclear
systems. For the present problem, where we deal only
with energy differences, the probability that two nucleons
are within the critical radius b is the essential quantity.
This probability is defined and calculated for several
values of b in Sec. IV. Because it is amenable to exact
treatment the 3N system is dealt with separately in Secs.
V and VI. The results for larger nuclei are presented in
Sec. VII, and a brief discussion follows in Sec. VIII.

II. MASS DIFFERENCES IN THE BACx MODEL

At the quark level the n-p mass difference must have at
least two sources. In fact, the Coulomb interaction
would make the proton heavier than the neutron—
typically by -0.5 MeV. ' Within about 10%%uo this re-
sult can be represented by

which yields m~ —m„=oA8 MeV with R =1 frn. In or-
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der to explain the observed mass difference one needs to
assign different masses to the quarks themselves. Within
the bag model the energy of a quark is E =co/R, with co

the eigenfrequency implied by the nonlinear boundary
condition. ' By numerical solution of the Dirac equa-
tion for a quark of mass m, in a cavity of radius R, one
finds for R =1 fm:

dco =0.49 . (2.2)

R3
(Eg E)6 ——(Ed E—)3—

6
(2.3)

[Here (Ed E„); is the dif—ference in the total energy of a
d and u quark in a bag of i quarks, and (R&,R6) are the
corresponding bag radii. ] It is interesting that an R-
dependent mass was phenomenologically necessary for
Deshpande et al. to reproduce the mass differences for
the strange members of the nucleon octet. We shall
adopt Eq. (2.3) here as a working hypothesis. However,
we stress that it is no more than that in the absence of a
deeper theoretical understanding of light quark masses.

Even worse, from the point of view of serious quantita-
tive predictions we note that there are other mass depen-
dent corrections to the mass of the MIT bag, for which
there is as yet no theoretical consensus on the sign.
Clearly we are at an early stage of understanding quark
dynamics, and one cannot expect high precision in the
predictions. Nevertheless, it is our belief. that Eqs. (2.1)
and (2.3) should provide at least an indication of the mag-
nitude of the charge-symmetry violation to be expected in
a quark bag model.

A quark mass difference of (md —m„)-4 MeV (Refs. 32
and 33) then gives the correct n-p mass difference, provid-
ed the difference in the color hyperfine interaction for a d
and u quark is taken into account as well. The hyper-
fine interaction term can approximately be accounted for
by using the value 0.42 instead of 0.49 in the left-hand
side of Eq. (2.2).

Let us now consider the region where two nucleons
overlap sufficiently to be considered a 6q bag—in the
boundary condition model this is when r & b. Clearly the
Coulomb interaction (2.1) will now involve a sum over
i H (1,6), which will, e.g., not be simply twice the value ob-
tained in the proton for a bag containing 4u and 2d. A
further correction arises because the radius of a 6q bag is
about 20% bigger than a 3q bag. For the Coulomb force
this is trivial to include, but for the quark mass effect it is
much more unclear.

If the quark mass m really was a scalar number in-
dependent of the environment, (co„—ai~)/R would not
change between a 3q and a 6q bag, because of Eq. (2.2).
However, we know that the light quark masses are still a
mystery. They are presumably the residual effect of re-
normalization due to interactions with a much larger en-
ergy scale, and in a cavity they may depend on the size.
For dimensional reasons it would be natural to set
m ~ R ' (the weaker assumption md —m„-R ' is in
fact sufficient), in which case we find

III. HYBRID MODEL OF QUARKS IN NUCLEI

Symbolically we represent the N-N system as follows:

ql=M+iq12pi2(r), ri2&b,

C@6(kl ' ' k6) r12 & b
(3.1)

In these equations O'I and 'P2 represent normalized nu-
cleon wave functions, i.e., nonrelativistic Pauli spinors,
while Pi@(r) is the relative two-nucleon wave function.
The six-quark wave function is written as a product of a
normalized wave function P6 and a probability amplitude
C. Larger nuclei are then described using conventional
models modified to account for the short-range behavior
implied by Eqs. (3.1).

Clearly this does not provide for a complete description
of the strong dynamics in nuclei; however, before develop-
ing the model in further detail we want to consider what
information is needed to calculate the mass differences ac-
cording to our prescriptions in Sec. II. Essential for these
calculations will be the six quark probability

~

C ~, the
transition radius b, the bag radii R3 and R6, and to a
smaller extent the radius R9. Obviously these five quanti-
ties are not independent, although their exact relationship
depends on the details of the model or theory. If we as-
sume that the quark density in the (3n)-quark bags is con-
stant, then R3„n' R——s. On the other hand, if we con-
sider a rnultiquark MIT bag with just a volume and a
mass term (-1/R), and assume that all quarks are in an
S state, then the nonlinear boundary condition leads to
R 3 ——n ' R 3 . %'e have used a conservative value for the
exponent between these two extremes, namely 0.27. In a
more detailed description one would also expect to find a
relation between b and the bag radii; however, we treat b
as a free parameter (within reasonable limits). The six-
quark probability

~

C
~

depends strongly on b and will in
general not be treated as a free parameter. In the follow-
ing we discuss various different approaches, all of which
give a unique determination of

~

C
~

for a specific b.
If $,2(r) in Eq. (3.1) is taken to be identical to the con-

ventional nuclear wave function, then
~

C
~

automatical-
ly equals the probability defect of this wave function for
r &b This is the . simplest prescription for the six-quark
probability. We also consider the following modifica-
tions. First, because of the different strong dynamics for
r &b, the probability to find six quarks with r &b does
not have to be the same as that of finding two nucleons
with r &b in the conventional picture. To accommodate
this change we could allow for a different normalization
of the external wave function, even though its shape
remains the same. Second, the effective potential for
r & b may have to be modified to accommodate the dif-
ferent dynamics for r &b. This would even lead to a dif-
ferent shape of the external wave function.

In order to decide which approximations are most ap-
propriate for calculating

~

C ~, we look for guidance in
the nonrelativistic quark potential calculations. All of
these calculations indicate that there is no sudden decrease
in the six-quark probability for small r. The sign change
of the S-wave phase shifts, which is usually explained by
short-range repulsion or equivalently by the vanishing of
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the short-range N-N wave function, can then be interpret-
ed as the absence of N-N components in the short-range
six-quark wave function or as a node in the conventional
wave function for small r. Therefore, if we want to deter-
mine the six-quark probability from the conventional
wave function defect, we should not use strongly repulsive
N-N potentials for the short-distance behavior. In nuclei
we can, therefore, use uncorrelated shell-model wave func-
tions rather than correlated ones, unless the correlation
function only represents a modest short range repulsion.
We thus see that the use of a hybrid quark-nucleon model
can even lead to a simpler description of nuclei. In most
of our calculations we have employed the uncorrelated
wave functions; however, to check the stability of our re-
sults against this particular assumption we have also per-
formed some calculations with correlation functions, and
some calculations in which

~
C

~

is basically treated as a
free parameter.

For the three-body system, where exact conventional
wave functions are available, we have also opted for a
simpler uncorrelated wave function. Because of the
quark-potential argument above it does not seem ap-
propriate to base the wave function on conventional po-
tentials; in addition the three-body calculations have been
rather unsuccessful in reproducirig the major physical
properties of the three-body system (the three-body bind-
ing energy and the charge form factor), so that the argu-
ments for using the "exact" wave functions are not partic-
ularly strong. %'e note in this connection that exact
three-body wave functions have been used for the study of
quark effects in deep inelastic scattering by Vary.

In a recent study, where a similar boundary condition
model was used for the description of continuum wave
functions in the two-body system, it was shown that
current conservation guarantees the identity of the six-
quark probability and the conventional wave function de-
fect for r &b as long as we do not change the interaction
for r & b. Thus it may seem that the six-quark probabili-
ty is independent of the internal dynamics. This is of
course not the case. It is simply that in Ref. 36 only those
descriptions for r & b are allowed which together with the
conventional potential for r & b lead back to the original
phase shifts. Whether there exists a model of the internal
dynamics which can satisfy such a constraint is still an
open question. While this identity was derived for the
continuum case, it has subsequently also been stated to
hold in the bound state case. ' This conclusion is clear-
ly subject to the same caution expressed for the continu-
um case. If true, it guarantees automatically the correct-
ness of our first prescription for calculating

~

C
~

For larger nuclei, where we have little information on
the normalization of the conventional wave function, we
do not have any strong constraints on the six-quark prob-
ability and we have to rely on our physical intuition to de-
cide which of the possible options for determining

~

C
~

are most reasonable.
Let us now describe in some more detail our hybrid

model of nuclei. Using the uncorrelated shell model wave
function we can easily write the conventional part of the
wave function of the (A +1}-nucleon system as the fol-
lowing:

A+1
0'~(1,2, . . . , A +1}=W g [1+fJ(rj)]

i(J
A+1

X g P (i) , (3.2)
i=1

where

%~(1,2, . . . , A)=W. g [1 0(b ——r~ ~, )]
a;(a

(3.4)

The radius r . should now be considered as an operator
J

defined by the following:

r P (m)P (n)=r „P (m)P (n) .

This notation has the advantage that M can operate
directly on the single-particle wave functions as it com-
mutes with r Since w. e are mainly concerned with the

J
state of the valence particle and do not care whether the
core particles form six-quark bags between themselves, we
define the new "conventional" wave function

g" (1,2, . . . , A)=M g [1 8(b r—)]-
a ~ (a„

(3.6)

which is constructed to guarantee that the valence particle
is not in a six-quark bag. In Eq. (3.6) we have represented
the core wave function by a single determinant, so that it
also includes the six-quark configurations for r & b

J
with a; & aJ & u„. This is why we put our "conventional"
in quotation marks. If we now define the full Slater
determinant by

A+1
+ (1,2, . . . , A)=M + P, (i) (3.7)

then we can interpret

(3.3)

and the P~ (i) are normalized single-particle states with

quantum numbers u;. For the correlated shell-model
wave function, fJ should be nonzero for r,j &b and the
wave function should be renormalized. The third possible
description is to change the normalization of Vz arbi-
trarily, and to maintain the correct overall normalization
by adjusting the six-quark probability.

Since the valence particle, in which we are interested
mostly, is characterized by its single-particle quantum
numbers a„, we prefer to represent P~ as follows:
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(3.8) single core nucleon. The corresponding probability

3+1
x gP.,()-, (3.9}

as the probability of the valence particle being part of one
or more six-quark bags. Since we have only discussed the
situation that two nucleons merge into a single six-quark
bag, it is convenient to define

(3.10}

can therefore be used in connection with our model of
mass differences between six-quark bags. Calculating Pg
implies calculating the expectation value of an (A+1)-
body operator for

~
1(to). This is only feasible for the

three-body case (A =2), as we will demonstrate in Sec. V.
For now we deal with the large A case, and we rely on an
expansion in the correlation function, observing that ma-
trix elements of 8(b r,J ) wi—ll be small if b is small. The
lowest order result in 8(b r,z—), which will be denoted by
Pb, is a sum of single particle terms:

which represents that part of the full wave function for
which the valence particle forms a six-quark bag with a

I

Pb= g P~ (b)= g (2j+1)P„,,g (b),
~m =~1 nlji

where

(3.11)

P .(»= & y „(1)y.(2}18(b—r i2)
l y „(1)y.(2}—y „(»y .(1)& . (3.12)

Notice that despite the fact that
~ gg, ) is first order in

8(b r,z ), the quad—ratic expression (3.10) is still first order
in 8(b r,J ) because o—f the identity

average properties, and one might just as well use the
average probability Pb/A. With this simplification we
can write

8(b ri)8(b r~—) =8(b —ri) . — (3.13) Pg, =Pb(1 Pb/A)—

The lowest order result (3.12) is identical to what we
would have obtained from Eq. (3.8) in lowest order. Al-
though it looks remarkably similar to the matrix element
of a residual short-range interaction, it would be wrong to
identify the operator g, 8(b r;1) this —way, since for
the higher-order terms such an interpretation breaks
down.

The calculation of higher order terms becomes more
and more difficult. We can avoid these complications by
giving a classical interpretation to (3.11), namely by inter-
preting P„~~; (b) as the probability for the valence particle

to be within a distance b of a specified core particle with
quantum numbers nlji, . Then, by assuming that the
chance for the valence particle to overlap with a core par-
ticle does not depend on whether it already overlaps with
other core particles, we can calculate all required probabil-
ities in a straightforward fashion. For example, the
chance for the valence nucleon to form exactly one and
only one pair with a core nucleon is given by the follow-
ing:

pb"

Pg —— (3.15)

Finally, the chance for the valence particle to form at
least one six-quark bag is

P" =1— 1—Pb
(3.16)

In the three-body case we can evaluate all of these
quantities explicitly using the quantum mechanical ex-
pressions and therefore we can test our semiclassical
model explicitly. Not unexpectedly, it will appear that the
model does not work very well in the three-body case.
However, the suggested modifications for the three-body
case, when applied to the many-body case, do not change
the results significantly, so that it appears that the semi-
classical model can be used with some confidence in the
many-body case.

Pg, ——g (2j+ 1 )P„i; (b)/[1 P„i; (b)]. —
njli

(3.14)
IV. THE PROBABILITY FOR OVERLAP

OF THE VALENCE NUCLEON
WITH A NUCLEON IN THE CORE

In Eqs. (3.11) and (3.12) we defined the overlap proba-
bility P„iJ; (b), which can also be written as follows:

(4.1)

In practice the dependence on single-particle quantum
numbers is completely insignificant in calculating these

I

„i; (b)= .. g &P (1)@ (2) (8(b —,) [P (1)P (2)—P (2)P (1)),

where the sum is over the magnetic substates. We assume that the differences between neutron and proton orbits can be
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TABLE I. Probabilities for the valence nucleon to form six-quark bags with one (PrJ ) or two core
1

nucleons (P~ ). The transition radius is b=0.95 fm. The values in parentheses are defined using
2

'

higher order correlations as described in Sec. V.

Core 12C 16O 32S

pg

pg

0.151

0.013

(0.014)

0.117

0.0074

(0.0081)

0.168

0.017

(0.018)

0.167

0.017

(0.018)

0.137

0.011

(0.011)

ignored, and will from now on suppress the isospin index where possible. For the direct term we obtain after some stan-
dard angular momentum algebra:

P„~ (b)= f dr&rf f dr2rz
I P„l,(r&)P„r, (r2) I' —,

' f, d cos8 8(b —r~z) . (4.2)

The exchange term is found to be the following:

P„~,; (b)=5;; f dr, rf f dr2r, eIJ~, (r„r2)p'„IJ(ri)p'„IJ(r2)p „I„„(i)p „I„„(r2)

where
2

(4.3)

1

—, f d cos8 8(b —r)2)Px(cos8) .—1
(4.4)

If b~ ao the angular integral reduces to a constant (5~o),
and the exchange integral vanishes because of the ortho-
gonality of the single particle states. In summary we have
the following:

Pb = g (2J +1)[2Pni~(b) Pni~(b—)] (4.5)
nlj

where the factor 2 stems from the identical proton and
neutron direct contributions. Using this average probabil-
ity, or the individual probabilities P„~~(b), we can evaluate
the probability for the valence nucleon to overlap with
any one (P|2 ), or any two (P~ ) core nucleons according

to Eqs. (3.14) and (3.15).
In Table I we show results for the nuclei ' C, ' 0, Si,

S, and Ca, which in the present investigation are con-
sidered as ideal magic nuclei. The results were obtained
for one particular transition radius (b=0.95 frn). Howev-
er, as Pb behaves very nearly like b, we can easily obtain
the results for other values of b We have als.o done cal-
culations of P~, and Pg, using the simpler Fermi gas

model. These latter results are somewhat larger (between
2%%uo and 10%%uo) than the shell-model results, but are other-
wise similar. In particular, comparison of both calcula-
tions shows that the A dependence of the six-quark proba-
bilities is due to the single particle nature of the valence
particle, rather than to the single-particle nature of the
core nucleons, as the Fermi gas model, which does not
take account of the single particle nature of different core
nucleons, leads to the same A dependence as the rnicro-
scopic calculations. Although not shown in the table, it is
worth noting that the Pauli exchange term (4.3) and (4.4)
is about 21%%uo of the direct term, and therefore leads to a
sizable reduction of the six-quark probability.

V. A HYBRID DESCRIPTION
OF THE THREE-NUCLEON SYSTEM

Given a simple three-nucleon wave function we can cal-
culate all six-quark probabilities exactly in the three-body
system. We can also exactly include the effects of the
core (a proton plus neutron in this case) and thereby assess
the consequences of our neglect of core effects in the
preceding section. For our calculations we use a simple
wave function without short-range correlations, namely
the wave function given by Wildermuth and Tang:

3 3

P = C $ A;exp —,' a; $ ( rz ——R) (5.1)

where R is the center of mass vector. Since this is a sym-
metric S-state wave function, the exchange terms in the
quark probabilities vanish. We define the basic matrix
element

and

Pg, ——2(p I
8(b —r)2)8(r)3 b)

I p), —

Pg, ——(p I
8(b —r)2)8(b —r)3) I p),

(5.3)

(5.4)

(y I
8(r]2 b)8(r13 (5.5)

with P& ——1 Pz. For all these p—robabilities the state of

(5.2)

so that Pb ——2p. Using Ps or p we can evaluate all other
probabilities with the approximations suggested in Sec.
III. We can also calculate these exactly, using the defini-
tions
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PN =
& 0 I @&12 ~)e(~13 ~)~(~23

Pg, = &41@&—~12)@~13 ~)@~23—»10 &

Pg, = &0 I
@&—112)()(~ 1'13)9(123—»

I 0 &

(5.6)

(5.7)

(5.8)

the core nucleons 2 and 3 is not specified. One easily
checks that the total probability P~+Pg +Pg ——1.

In addition we now define exclusive probabilities, for
which the state of the core is specified as well:

A
=A 1P (5.11)

them. We may also expect that these correlations are A

dependent, since the effect of one particle on another will
be less if there are many other nucleons around. The fol-
lowing formulae give the correct description of the proba-
bilities in the three-body system (A =2), and for larger A

give roughly the expected A dependence:

and

Pg, =
& y l@~ —~12)@I —~13)@~—~23)10 & . (5.9)

A

A —1

1 —p
(5.12)

and

P~ ——P~+Pg

Pg, ——2(Pg, +Pg, ), (5.10)

Pg ——Pg +Pg

Another useful identity is Pb Pg +2Pg—,—giving a com-

plete breakup of the valence six-quark probability in one
and two pair components.

In Table II we list these quantities for b=0.95 fm.
Again results for other b values can easily be obtained. In
this case Pg —b while Pg and Pg -b .

Let us analyze the results in Table II in some detail.
First compare the exact results with the classical approxi-
mations discussed in Sec. III. We see that the approxima-
tion for Pg is very poor. Clearly there is a very strong

center-of-mass correlation in the A =3 system. If two
particles are close together, then the chance for the third
particle to be close to one of them is enhanced by as much
as a factor of 2 (since the particles like to be close we
could have expected an enhancement, but the factor 2 is
somewhat of a surprise). To compensate for this effect in

comparing with our classical calculation for heavy nuclei,
the chance for two particles to be close should be reduced
if we know that the third particle is far away from one of

The physical meaning of these probabilities is the fol-
lowing: Pg is the chance for finding a specific pair close

but no other pairs close; Pg is the chance that two specif-

ic pairs are close but the third pair is not; and Pg is the
3

chance that all three nucleons are close. The completeness
of the wave function is now embodied by the identity

P~+3Pg +3Pg +Pg ——1 .

The connection between these inclusive and exclusive
probabilities is the following:

Here p & has been constructed to satisfy the requirement

+(1—p)p, =p, (5.13)

representing the fact that the average probability for find-
ing a close pair should still be p. We could also consider
higher order correlations in the three-body system, e.g. ,
we could consider the chance p« to find two particles
close together if they are both far away from the third
one. For A =2 this p « is then determined by the follow-
ing:

P„=(1—p)(1 —p, )(1—p „). (5.14)

However, we find that p «equals p & to within 3%, so
that we neglect these higher order correlations and set

~e can now give the general expressions for the corre-
lated probabilities Pg, Pg, and Pg.

Pg, ——Ap (1—p )(1—p)(1 —p )"

Pg, = pp, (1—p, ) (1—p)(1 —p, )
A (A —1)

(5.15)

(5.16)

PN (1 —p)(1 —p (——)" (5.17)

It should be obvious that the products on the right-hand
side (RHS) of (5.15) and (5.16) are truncated in the few-
body case, e.g., for A =2 we find Pg ——[A (A —I)/2]pp &

and Pg, ——Ap (1—p & ). Analogous expressions for other

probabilities in the three-body system are easily written
out as well. From Table II we see that we have succeeded
in giving an excellent representation of the exact three-
body results using these approximate correlated probabili-
ties.

Results for the many-body systems with these correlat-
ed expressions were already shown in Table I (entries in

TABLE II. Probabilities for quark configurations in the three-nucleon system for b=0.95 fm. The uncorrelated results are based
on the approximation in Sec. III. Correlated results are based on approximations suggested in this section.

Exact
Uncorrelated
Correlated

Pb

0.179

PN

0.836
0.829
0.837

Pg

0.148
0.163
0.147

Pg

0.0158
0.0081
0.0161

0.796
0.754
0.769

PE
Q)

0.0672
0.0743
0.0670

PE

0.0068
0.0073
0.0068

Pg

0.0091
0.0007
0.0093



30 MASS DIFFERENCES BET%'EEN MIRROR NUCLEI IN A. . . 1027

parentheses). The effect of the correlations on Pg is

negligible and the enhancement of Pg is quite minor,

amounting to only 8.7%, 6.5%, 3.7%, 3.2%, and 2.5%
for the successive nuclei. Obviously, correlations play a
much smaller role in the many-body system than in the
three-body system, in accordance with the independent
particle model of nuclei. Of course, we should keep in
mind that this result was obtained under the natural, but
ad hoc, many-body generalization of the three-body re-
sults. Notice also that the expressions for the correlated
probabilities can only be valid in a limited range, since
they will exceed unity if p becomes large (e.g. , if b ~ oo ).

3N . . 35
E =1.44 + ' +0.42 g

g(, R3n, .=) R3n
(6.1)

where we wrote m;=c;/R (cd —c„=4 MeVfm). This
leads to the following mass differences for R3 ——1 fm,
R6 ——1.2 fm, and R9 ——1.35 fm:

mpp m = —0.94 MeV; mpp mp 0 13 MeV

m —m „=1.18 MeV; m —m» ——1.30 MeV;

(6.2)
m —m „=0.35 MeV .

VI. MASS DIFFERENCE
IN THE THREE-BODY SYSTEM

According to the preceding discussion the three-baryon
wave function can be decomposed in a conventional com-
ponent P~ and the multiquark bag components P~, Pg,
and Pg . In Sec. II we discussed the evaluation of mass

3

differences for six-quark bags, i.e., for those parts of the
wave function represented by Pg . Since the components

1

P~, and P~, are not negligible, we now have to discuss

how masses for these components are to be evaluated. If
all three particles are close, as they are in P~, it is natural3'
to assume that the three six-quark bags have merged into
a nine-quark bag. But even in the case that only two of
the three pairs are close (i.e., have merged into a six-quark
bag), it seems natural to assume that the system is best
described by a nine-quark bag. If quarks can move freely
between bag one and two, and between two and three, then
they can also move freely between bag one and bag three.
This system of nine freely moving quarks is best
represented by a nine-quark bag. Simple geometrical con-
siderations also favor a nine-quark bag description of the
P~ components; however, we do not want to elaborate onE

2

these arguments.
Our next problem is then how to describe mass differ-

ences between nine-quark bags. For six-quark bags the
mass differences could not simply be expressed in terms
of the masses of the "originating" nucleons. Likewise, we
do not expect that nine-quark bag mass differences can be
expressed in terms of the underlying six-quark bag mass
differences. It is more natural to extend our model for the
three- and six-quark bag to the general (3n)-quark bag by
means of the following general equation (we omit terms
which do not contribute to the mass differences):

+(3Pg, +Pg, )m pp„+ Vc, (6.3)

where Vc is the conventional Coulomb energy reduced by
the exclusion of the short-distance contribution. In
evaluating Vc we assume that the Coulomb potential be-
tween two protons will not change if one of the protons
forms a six-quark bag with the neutron. The Coulomb
energy of two protons, when they are closer than b,
should naturally be excluded, because it is already includ-
ed in the six-quark bag mass. The components contribut-
ing to the conventional Coulomb energy are therefore P~,
2XPg, , and perhaps I XPg, . The sum of these com-

ponents exactly represents that part of the three-body
wave function for which the two protons are further apart
than b. In calculating quark probabilities we assumed
that we could represent the wave function for r & b by the
conventional one. If we now make the same assumption
for the proton-neutron wave function when we do the
Coulomb potential integration, then this integration can
be trivially performed. This assumption is not unreason-
able, since the neutron only plays a spectator role as far as
the Coulomb integration is concerned.

Although convenient, this Coulomb energy determina-
tion suffers from one problem. The Pg component, with

two protons not close, contributes both to the convention-
al Coulomb energy and to the nine-quark bag Coulomb
energy, since we decided to treat the P~ components as

2

nine-quark bag states. To correct for this one can sub-
tract the Coulomb energy of four u and two d quarks in
the nine-quark bag from the overall mass, or one can
suppress the contribution to the conventional Coulomb
energy which corresponds to two "distant" protons, both
of which are close to the neutron. Since the product sum

Q;QJ is unity, independent of whether the charges

Q; are proton or constituent quark charges, the numerical
value of this correction is not particularly sensitive to the
procedure chosen. We have calculated the correction us-
ing the former procedure, and included it in the Coulomb
energy Vc.

For the triton we obtain the following expression:

M3H —PQ(2m„+mz)+Pg (2m„+2m„~+mr +m„„)

+(3Pg, +Pg, )mp„„. (6.4)

By subtracting (6.3) and (6.4) we obtain the following:

m3H —m3 —(mp —m„)—p'c —Qg+Qc,

where

(6.5)

5g Pg, (m~z —m ——+2m„—2m )

verifies that the nine-quark mass differences cannot easily
be represented in terms of nucleon or six-quark mass
differences.

We can now write the masses of the three-baryon nu-
clei. For He we obtain the following:

M3H
——Pz(2m~+m„)+Pg (2m&+2m„~+m„+m~~)

All other mass differences follow trivially. One easily and
+(3Pg, +Pg, )(mph„—mp„„—mp+m„) (6.6)
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~c= Vc —~c . (6.7)

The mass shift b, g can now be calculated from the mass
differences in Eq. (6.2), and the probabilities P~, P~,
and P&, some of which were already listed in Table II.3'
The mass shift b,c reflects the reduction of the Coulomb
energy, due to the suppression of the interior, plus the
small correction term to prevent double counting. If we
use the three-body wave function (5.1), and account for
the finite size of the proton using the Auerbach et al.
form factor, then we obtain a Coulomb energy of
Vc ——749 keV. This value is substantially larger than the
value obtained with conventional three-body wave func-
tions, and would be larger yet, if we had considered the
protons as pointlike particles. This confronts us with a
certain problem in the presentation of our results: We
would like to single out the effect of the multiquark bags
in our description, however, our "conventional" results
(i.e., those for b =0) are already substantially different
from the usual ones, as they are based on a three-body
wave function tailored towards our model of the short-
range behavior. Therefore, we rather compare our calcu-
lation of Vc to the best conventional value of Vc (includ-
ing in this latter value other small conventional isospin
breaking corrections). We have taken the value
Vc ——683+29 keV from Ref. 40. Since Vc appears both
on the left-hand and the right-hand sides of Eq. (6.6), its
value is immaterial in determining the quality of our pre-
diction, and only plays a role in the interpretation of our
results for b,c. This choice for Vc implies that the left-
hand side of Eq. (6.5) represents the current discrepancy
between experiment and (conventional) theory; i.e.,
764 —683 keV=81 keV. Our model, therefore, could
claim a success if the sum of b~+bc lies in the neighbor-
hood of 80 keV.

In Table III we show the results for the quark probabil-
ities, the corresponding values for b,&, and the Coulomb
shifts bc. Our three-body wave function does not have
any short-range suppression, leading to the fairly large
quark content of the wave function (Pg = 18%%uo for
b=0.85 fm and 23% for b=0.95 fm). In order to have
some results with smaller percentage quark states, and
also to acquire some insight in the model dependence of
our calculations, we have also performed calculations with
a correlated three-body wave function. We follow the

procedure of Hadjimichael et al. ,
' rescaling the short-

range N-N wave function to the Reid soft core wave func-
tion with a correlation length of 1 fm. Obviously, we
have to renormalize the three-body wave function if we
introduce correlations; the results are given under the
heading type 2 in Table III. We can also put the wave
function defect, arising from the introduction of correla-
tions, directly into the total six-quark probability. In this
case our theory no longer dictates the division of the total
quark probability over P&, P~, and P~,' but lacking an

alternative we still follow the formulae presented in Sec. V
(type 3).

We see that in all cases considered b~+b, c is positive
and removes part of the original discrepancy of 81 keV.
In our main calculation (type 1, b=0 95 fm. ) we obtain
virtual agreement with experiment (the difference of 10
keV is not significant considering the uncertainties in the
calculation). Notice that our results are not particularly
sensitive to b, due to the strong cancellations between A~
and hc.

VII. MASS DIFFERENCES
IN THE MANY-BODY CASE

In the many-body case we express the mass differences
in terms of the valence probabilities Pz, P&, , and P&, ,
which were defined previously in Sec. III. The complete-
ness of the wave function is now given by

P~+Pg +Pg + =1, (7.1)

but since P& is already quite small, we have neglected
higher order terms in (7.1) and use the completeness in ap-
proximate form. The components P(J and Pg can be

1 2
further broken up into components for which the isospin
nature of the core nucleon(s), participating in the multi-
quark bags, is specified. Assuming that the core proton
and core neutron probabilities are identical —a reasonabIe
assumption considering that we deal with N =Z cores-
we can write the mass of the core plus one additional nu-
cleon as follows (we omit core contributions which are ir-
relevant for the mass difference):

TABLE III. Multiquark bag probabilities and their contribution (in keV) to the He and H mass
difference (4Q) and the reduction of the conventional Coulomb energy (A~). Uncorrelated (type 1), re-
normalized correlated (type 2), and correlated calculations with high quark content (type 3) are shown.
Agreement with experiment is obtained if the sum hQ+A~ equals 81 keV, cancelling the conventional
discrepancy (Ref. 40).

Type b (fm)

0.85
0.85
0.85
0.95
0.95
0.95

pE
Q)

0.0537
0.0272
0.0570
0.0672
0.0433
0.0687

PE
Q2

0.0041
0.0008
0.0045
0.0068
0.0022
0.0073

PQ

0.0051
0.0010
0.0057
0.0091
0.0030
0.0100

112
49

120
150
84

156

—44
—12
—94
—78
—42

—122

68
36
26
73
42
34
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+ —,Pg (mp —Zm„)+ Vc (7.2)

and

mx+t z Px——m„+ 2Pg, (m —m„)+ ,'Pg—,(mp„—mp)

+ —,'Pg (m p
—mp —m„)+ ,'Pg, —(m„„„—2m„)

+ 4 Pg (m pp 2mp) (7.3)

Note that we recover the conventional result if we replace
the multiquark bag masses by their conventional values
(e.g., mpp=2mp, etc.).

After subtracting these masses we obtain the following:

miv, z+i —mx +i,z —(mp —m„)—Vc=hg+bc,
where

bg ———,Pg, (mpp —2mp —m +2m„)
v+4Pg(mpp~m~p+mppp

—m~ —4mp+4m„)

and

(7.4)

(7.5)

(7.6)

To help the interpretation of our results, we will use
values for Vc listed by Nolen and Schiffer [these include
various corrections and are called h(calc) in Ref. 26].
Some of the more recent conventional results for the
Coulomb displacement energies are given in the discus-
sion. With this choice for Vc, the left-hand side of (7.4)
represents the original Nolen-Schiffer anomaly.

In Table IV we show our results for a transition radius
of 0.85 and 0.95 fm. We include the Coulomb energies
Vc for reference. The finite size of the protons in the cal-
culation of Vc is again implemented using the Auerbach
et al. form factor. In order to get agreement with ex-
periment, b,g+b, c should equal the right-hand side of
Eq. (7.4), which in Table IV is denoted by b, . A positive
kg+a, c represents a reduction of the Nolen-Schiffer
anomaly, whereas a negative value represents an increase

0 1 U v
mN z+&

——PNmp+ —,Pg, (mpp p)+ 2 g ( p„mp)

+ —,
'
Pg, (mpp„—mp —m„)+ —,

'
Pg, (mppp —2mp)

thereof. For light nuclei there is an improvement, in par-
ticular in ' C, where the discrepancy is cut in half. For
the two larger nuclei the anomaly has increased. In every
case the agreement with experiment improves if b in-
creases; however, the sensitivity to b is not sufficient to
get full agreement at some values of b, as the cancellation
between 6g and Ac is too large. These results will fur-
ther be discussed in the next section.

VIII. SUMMARY AND DISCUSSION

In this paper we have developed a hybrid description of
nuclei in terms of quarks and nucleons. The most de-
tailed description was given of the three-body system, and
some of the insights obtained for this system were used to
improve the treatment of many-body systems. This new
description of nuclei was applied to the calculation of
mass differences between He and H, and between mirror
nuclei, motivated by persistent problems in reproducing
the experimental Coulomb displacement energies. Unfor-
tunately, the assumptions made in Sec. II concerning the
dynamical description of mass differences of bags are not
(yet) on solid ground, and clearly require further QCD
studies of few-nucleon systems. However, they should
provide a reasonable indication of the charge-symmetry
violations to be expected in the quark bag model.

Originally we had expected that the mass differences
between protons and neutrons would reduce in the multi-
quark bag environment, thereby reducing the Nolen-
Schiffer anomalies. Although this effect is certainly
present (b,g & 0 in all cases) it is cancelled to a large extent
by the reduction of the (conventional) Coulomb energy,
represented by the quantity hc. Therefore, the sensitivity
to the value of the transition radius in b is not as large as
expected. Generally, our results improve if b is increased,
however, this improvement is so slow that we cannot use
the experimental mass difference to fix the value of b A.
remarkable consequence of this result is that, as far as the
mass differences are concerned, the conventional and
quark-nucleon description are largely compatible. If this
result survives further improvements of the model, and if
it also has validity for other nuclear properties, then it
would explain why conventional nuclear physics could
have been so successful despite the presence of large quark
components in the wave function.

TABLE IV. The shifts A~ and h~ in the mass differences due to the presence of multiquark bags.
The conventional discrepancy between experiment and theory (the Nolen-Schiffer anomaly) is represent-
ed by 6; the discrepancy in the present theory is 6—(A~+ Az). All energies are in MeV.

~c
Ag
~c
Ag+hc
Ag
~c
~g+~c

0.85
0.85
0.85
0.95
0.95
0.95

2.79
0.106

—0.029
0.077
0.145

—0.055
0.090
0.210

16O

3.23
0.076

—0.060
0.016
0.108

—0.080
0.028
0.310

28SI

5.53
0.118

—0.091
0.027
0.163

—0.128
0.035
0.200

6.11
0.114

—0.282
—0.168

0.162
—0.313
—0.151

0.240

4oCa

6.66
0.095

—0.212
—0.117

0.128
—0.235
—0.107

0.620
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Our results are most encouraging for the light nuclei.
For the three-nucleon system the anomaly is reduced from
80 to 10 keV, for ' C from 210 to 125 keV. For ' 0 and

Si there is still a small improvement; however, for the
larger nuclei ( S and Ca) our simple description of the
charge-symmetry breaking effects breaks down. In these
latter cases we clearly need a more detailed description of
the conventional wave function, and a better study of
various other contributions to the mass difference. In
Ref. 42 such a study was attempted for Ca, and in one
variant of their calculations the discrepancy was less than
150 eV.

A disturbing consequence of our present results is that
the strong cancellation between 6& and 6&, and the mod-
est model dependence indicated in Table III, precludes the
acquisition of accurate predictions. It also means that
even the hybrid results will remain sensitive to the de-
tailed treatment of the exterior wave function and to small
corrections, a situation which became most obvious in the

Ca case. The uncertainty of these corrections (again
there seem to be large cancellations between different ef-
fects ) adds to the uncertainty in the predictions. It
therefore appears necessary to test such hybrid descrip-
tions also in the context of other processes, a task which is
presently actively pursued' ' ' using similar models.
Ultimately we may be able to put sufficient constraints on
the models to exclude some of them, although the present

study also warns us that very different descriptions can
lead to similar results, thereby precluding discrimination
through experiment alone.

Finally we mention one spin-off of the present study
which seems particularly relevant at this time. The an-
nouncement last year by the European muon collabora-
tion4 that the structure function of Fe was not simply 56
times that of an isolated, isoscalar nucleon, has led to a
great deal of interest in the topic of quarks in nuclei.
Although there seems to be general agreement that this
ineasurement indicates a change of scale for quarks in a
many-body system, it is not yet clear whether one needs to
invoke explicit multiquark configurations or not. How-
ever, with respect to the recent calculations of Jaffe
et a/. , it is interesting to note that they estimated the
scale change by calculating the overlap of N-N pairs in
finite nuclei, but neglected the possibility of multinucleon
overlap. While not a rigorous proof of their approxima-
tion, our discussion in Secs. IV and V [especially near
Eqs. (5.11)—(5.17)] indicates that it is probably a good ap-
proximation for nuclei heavier than He. Further studies
along the lines introduced here seem worthwhile.
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