
PHYSICAL REVIEW C VOLUME 3, NUMBER 3 MARCH 1971

Problems Associated with the Fitting of Low-Energy Spectra
in a Truncated Vector Space*
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We show that it is possible to fit the low-energy spectrum in a truncated space using any one
of a variety of pseudo-Hamiltonians together with a suitable choice of a set of orthonormal
wave functions. Numerical examples are used for illustration.

I. INTRODUCTION

The concept of effective interactions has been
used for a long time in the fitting of low-energy
nuclear spectra. In its simplest and most direct
form the concept arises when a shell-model space
is truncated and an effective Hamiltonian intro-
duced to obtain a fit with the low-lying states of
given angular momentum and parity. ' It is usually
assumed, at least implicitly, that the eigenfunc-
tions of the effective Hamiltonian are sufficiently
close to the true nuclear wave functions to make
them useful in calculating nuclear properties other
than energy spectra. That this procedure has se-
vere limitations is now well known, e.g. , through
the use of effective charges radically different
from their nominal values.

Before discussing what the purpose of the pres-
ent paper is, let us discuss what it is not, in order
to avoid possible confusion. Our purpose is not to
formulate an alternative method to those already
employed in the problem of fitting low-energy nu-
clear spectra; nor is it to formulate a new theory
of effective operators. ' Rather our purpose is to
make explicit in a particular and perhaps dramat-
ic way what is already well known, namely, that
any method relying on the truncation of vector
spaces and the diagonalization of the correspond-
ing finite matrices for the system energy, is sub-
ject to large errors when these wave functions are
used in calculating other nuclear properties, such
as transition probabilities.

In practice, one is usually concerned with a fi-
nite subset of the total problem, e.g. , one might
be trying to fit the first 10 or 20 energy levels in
the spectrum of a particular nucleus. Taking the
experimental values for these energy levels to de-
fine the "exact problem, "one attempts to find a
Hamiltonian whose eigenvalues in a truncated vec-
tor space match those of the "exact problem. "
We point out in the present paper in a very explicit
way that there are infinitely many ways of choos-
ing a Hamiltonian and an associated set of wave
functions such that the matrix of the Hamiltonian

with respect to the set simulates the finite matrix
of the "exact problem. " We shall refer to such a
Hamiltonian and its associated set of wave func-
tions as "simulated. "

It is important in understanding our work to real-
ize that we are not dealing with a standard eigen-
value problem in which one has some approximate
or effective Hamiltonian with a known or presumed
spectrum. For our simulation, the wave functions
of the set associated with the simulated Hamilton-
ian are chosen in such a way that they reproduce
the matrix elements of the "exact problem, " i.e. ,
in the finite subspace, the matrix is diagonal with
values equal to those of the exact problem. How-
ever, as we have remarked earlier, these wave
functions are not the eigenfunctions of the simu-
lated Hamiltonian.

The importance of our work is that it deals di-
rectly with the problem as it appears in practice,
namely, it deals directly with the lack of unique-
ness of operators and wave functions in truncated
vector spaces. Our contribution is not so much
that we discover the problem —this has been done
before —but that we organize it in a way that we be-
lieve is illuminating and possibly even useful.

The importance of the present study can be seen,
for example, in the kind of problem which arises
when the nuclear moment of inertia for a rotation-
al band is calculated using the Skyrme formula:

As shown by Wong, Tienhaara, and Trainor, ' this
formula is exact provided that the spectrum is
known to be J(J+1) and lg) represents an arbitrary
linear combination (intrinsic state) of exact eigen-
functions in the band. In practice, one uses some
approximation to lP), e.g. , the deformed Hartree-
Pock state. The present study makes it clear that
once an approximate expression is used for l r/i), it
is no longer true that the exact Hamiltonian is the
best choice for calculating the matrices in the nu-
merator of the Skyrme formula; our present for-
mulation, however, does not tell us what is in fact
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the best choice of effective Hamiltonians —this is
the problem of constructing effective operators,
and goes beyond the scope of the present work.

We present the formulation of our problem in
Sec. II and give several simple examples in Sec.
III to illustrate the principles involved. In Sec.
IV we discuss briefly how effective operators other
than the Hamiltonian come into the picture. Con-
cluding remarks and discussions are summarized
in Sec. V.

II. FORMULATION OF THE PROBLEM

Let g„, E„be the eigenfunctions and eigenvalues,
respectively, of some exact Hamiltonian H. In ma-
trix notation, we have

&0 IHlks&=E 5 s (la)

and

&Pal ts& = 5 s. (lb)

The g form a complete, orthonormal basis.
Consider now an N-dimensional subspace of func-

tions g, n =1,2, . . . , N, and let K be a relatively
arbitrary (arbitrary in the sense to be specified be-
low) Hermitian operator (pseudo-Hamiltonian) de-
fined in the subspace. We raise the question wheth-
er it is possible to find a set of wave functions Q

such that the matrix elements of K with respect to
them correspond with the matrix elements of II
with respect to the t/r,

where K is the matrix with elements

~.s =&qal~lqs&.

Since K is Hermitian, it can be diagonalized by
some unitary matrix V; hence,

VKV~ =d, (5)

where d is the diagonal form of K.

Letting d ' ' be the diagonal matrix whose ele-
ments are the inverse square roots of the (diago-
nal) elements of d, and similarly E'I' be the diag-
onal matrix whose elements are the square roots
of the (diagonal) elements of E, then a solution
(3a) to the problem is given by the choice

where u is an arbitrary unitary matrix. This fol-
lows at once by substituting (6) into (4), using (5).

Thus we have found an infinity of solutions to our
problem (namely, those corresponding to the ar-
bitrariness in the choice of the elements of the
unitary matrix u), but most of them are not very
useful since they fail to satisfy orthogonality and
normalization conditions. In fact, we now impose
such conditions in order to select out the most
useful set of solutions.

First let us discuss the case where K is a real
symmetric matrix and the coefficients of C are
chosen to be real. (Later we generalize to Her-
mitian x and complex coefficients. ) The solution
can now be written

&e.l I us& =&a.lHI es& =E.5.„ (»)
C —7'd- &I20E&I2

4a = Z Csags ~

B=z

or in a matrix notation

4 =CC. (3b)

Substituting (3a) in (2a), we obtain the matrix equa-
tion

C~KC =E, (4)

i.e. , whether we can find a set of functions Q as-
sociated with K such that the matrix elements of K

produce the diagonalized Hamiltonian in the trun-
cated N-dimensional subspace. If we do not im-
pose any orthonormality conditions of the type

(2b)

it is straightforward to show that conditions (2a)
can be satisfied by an infinity of different choices
of the set Qa. [We return below to the question of
also imposing conditions of type (2b). ]

We proceed as follows: Let us look for solu-
tions to (2a) which can be expressed in the form of
an expansion in the N-dimensional subspace of
eigenfunctions P~.

where T is the orthogonal matrix which diagonal-
izes K and 0 is an arbitrary orthogonal matrix
which we would like to fix by imposing orthonor-
mality conditions of the type (2b). Now an NXN
orthogonal matrix has 2N(N l) independe-nt pa-
rameters. This gives us exactly enough freedom
to satisfy orthonorrnaltty condttions of the tyPe
(2b) on exactLy (N l) of the -N vectors P„, with a
proviso to be explained below.

In other words, given a Hermitian matrix 0 with
diagonal form E, and a real symmetric matrix K,

we are able to find a set of solutions &j& satisfying

(»)
for a, P=1, 2, . . . , N, and

&4 lds&=5 s

for n, P=1, 2, . . ., N-1. The Nth vector Q& is not
normalized nor is it orthogonal to the other N- l.
By judicious choice of the orthogonal matrix 0,
one can easily arrange that the unnormalized vec-
tor corresponds to the highest eigenvalue of H in
the set E„E„.. . , E~.

If we write the normalization and orthogonality
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conditions out explicitly, we have from (7) and (2a)

~ ~ ~ ~

(p @ )1/2
— Oq~o), g =6„8, n, P=1, 2, . . . , N-1.

()
For e = P, we obtain the conditions

vector P . If we do this, (11) becomes

d uxa~kn 1
X

if we now divide out by E and then sum on e, we
obtain

a=1, 2, . . . , N —1 . (9) (12)

Clearly, if we choose an energy scale which
makes all eigenvalues positive, we have

where dy is the lowest eigenvalue of the diagonal-
ized K matrix. Hence, for a given level n, one
requires that d, (E . If for a given matrix & this
turns out not to be the case, the method fails;
but it evidently works for a modified matrix K ob-
tained by subtracting, a constant value from z.
This is the proviso referred to above. '

If we take K to be Hermitian so that u is a uni-
tary matrix and the C ~ are complex expansion co-
efficients, we have the following situation. An N-
dimensional unitary matrix has N' independent
real parameters. On the other hand, N orthogonal
vectors require N(N 1) orthogo-nality conditions
and (N 1) vectors -require (N —1) normalization
conditions for a total of N' —1. Hence, if we limit
our unitary matrix to the class with detu =1, we
have exactly the right number of free parameters
to satisfy these conditions. Again the orthonormal-
ization conditions require

(E E )1/2
Xa XB as (11)

for e, P=1, 2, . . .,¹1,and by the same argument
as that following (9), we require x to be such that
d, lies lower than the lowest eigenvalue E, of the
exact Hamiltonian H. With this restriction we have
.again simulated the spectrum of H in the truncated
N-dimensional space using the matrix tc and a set
of N vectors P, (N —1) of which are normalized,
but all N are orthogonal.

One might ask, why not remove the restriction
detu = 1 and extend the normalization to the Nth

Hence, if we attempt to extend the normalization
to all N vectors Q, we end up with the require-
ment that the harmonic mean of the eigenvalues of
K must equal the harmonic mean of the eigenvalues
of H. Since this restriction is not likely to be sat-
isfied for an arbitrary choice of K, we chose to
relax the condition on normality of Q„and to im-
pose the condition detu =1 instead.

III. NUMERICAL EXAMPLES

In order to illustrate what happens in a practical
example, let us consider four nucleons moving in

P„, and d», orbits outside a "C core with the
choice &~ =-4.95 and &~ =-1.1 MeV for single-&112 5/2
particle energies. These single-particle energies
are taken from 'SC spectrum and have been used
in the Hartree-Fock calculations on light nuclei. '
For the exact Hamiltonian we choose a 50-MeV
Rosenfeld interaction and consider the subspace of
dimension N = 3 corresponding to the J'= O', T = 0
wave functions arising from the configurations
(P,») ~ and (P,/, ) (d»~)2. Exact diagonalization
yields the three eigenvalues E shown in Table I.
Also shown in Table I are the exact eigenfunctions

corresponding to the E„as expressed in terms
of the component configurations.

Regarding K as an approximate Hamiltonian, we
take it again to be a Rosenfeld interaction, this
time with a 60-MeV strength but with the same
single-particle energies. Constructing w in the
basis of exact eigenfunctions, we obtain the matrix
elements in Table II. Table III gives the eigenval-
ues d; of K, together with the elements of the ma-
trix T which diagonalizes it. The matrix elements
of the orthogonal matrix 0 are uniquely deter-
mined by requiring that the first two functions P,

TABLE I. Exact eigenvalues E„and the eigenfunctions g ~ expressed as a linear combination of the three J = 0+,
T = 0 wave functions obtained from the configurations {P~2), {Pgi2) {4512) .

Exact
eigenvalue s

En {Pu2i'o+, o

Exact eigenfunctions g~
{&u2~'{ s]2»'ao' o {Pu2»'«s]2»'~o+ o

-85.40042
-24.19305
-16.30820

0.87717
0.41361

-0.24392

-0.15315
0.72248
0.67427

0.45510
-0.55409

0.69704
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TABLE II. Matrix of the approximate Hamiltonian z
in the basis of g ~.

TABLE IV. Orthogonal matrix 0 determined from
the orthonormalization of P~ and Q2,

-38.87552
0.55871

-0.32949

0.55871
-26.34818
-0.15537

-0.32949
-0.15537

-17.05219

0.92928
-0.28754
—.023188

0.17623
0.89681

-0.40580

0.32464
0.33623
0.88406

and Q, are orthonormal. These matrix elements
are given in Table IV, and the components C 8 of
the expansion (3a) for P are given in Table V.
[These coefficients are easily calculated from the
matrix ()).j From Tables II and V, one can easily
verify that

&0 I x I4's& = E &~ s

terest, since it requires the knowledge of g .
Consider the operator

n~jr= Q (CnC)aslkn&(ksl I

where

(cnc) s-— g c ~(q, Inly, &cs, .

(9'a)

(9'b)

and that Q, and Q, are orthonormal.
We have repeated the calculation assuming com-

plex coefficients for the C„g instead of real coeffi-
cients and using a unitary matrix with detu =1 in
place of O. The solution for I is given in Table VI,
and the corresponding solutions for the Q are giv-
en in Table VII in terms of the complex coefficients
C 8. In this case one can arrange all of the vec-
tors to be orthogonal, and all but the last one to be
norm aliz ed.

As a second example, we used the same Ham-
iltonian for the exact problem (with eigenvalues
and eigenfunctions as given in Table I) but for the
"approximate" Hamiltonian & we chose

e;+Qh;), (9')

where E~ =-6.20 MeV, &„=0.65 MeV, and the
h; are the single-particle Hartree-Fock Hamil-
tonians for the 50-MeV Rosenfeld interaction. The
calculation proceeds in the same way as in the
first example (assuming real coefficients C s) and
the results are expressed in Tables VIII-XI in
parallel to Tables II-V, for example I.

IV. EFFECTIVE OPERATORS

Formally it is easy to construct effective oper-
ators which give the same matrix elements with
respect to the P as do the exact operators with
respect to the correct eigenfunctions g„. This
construction is, however, of limited practical in-

From the definition of n, ff in (9'a) and (9'b) and
from the expansion for P in (3a), we can write,
for a, m=1, 2, . . . , N-1,

(Coin, (fly~&= g C,cs~(cnc)~s
n, 8=1

= Z p c..c,.c„,c„&y,inly. &

CXo ~ l ~s V=1

=(I.Inly &, (IO )

V. REMARKS AND DISCUSSION

We have shown in Sec. II that for any choice of
Hermitian operator x (which we may regard as a
simulated Hamiltonian), it is possible to find an
associated set of wave functions Q such that

&y. lxl ps & =E.f.s, (2a)

where the E are the eigenvalues of the Hamilton-
ian of the system in the N-dimensional truncated
space defining the "exact problem" referred to in
the Introduction. Further, we have shown that
(2a) can be accomplished with sufficient freedom
left over to require (N I) of the P„ to b—e ortho-
normal. We can formally convert (2a) into a, re-

where we have used the orthogonality relations for
the first N-1 vectors Q . In other words, the
transition operator between exact eigenstates g
can be replaced by an effective transition operator
between the states &It), if we exclude the Nth state.

TABLE III. The orthogonal matrix T which diagonal-
izes the matrix z. TABLE V. Wave functions ft) „ in terms of the exact

set g„.
Diagonalizing matrix T

T5 52 T53 C C C

-38.90512
-26.32639
-17.04422

0.99891
0.04399

-0.01554

-0.04426 0.01475
0.998865 0.01830

-0.01763 0.99972

0.87599
0.18415
0.20813

-0.36639
0.86110
0.23975

-0.32712
-0.46555

0.87233
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TABLE VI. Unitary matrix u with detu=1 determined from the orthogonality of Qi, Q» fIt&3, and normalization of Qi
and P&.

Imag. Imag. Heal Imag.

0.49135
0.0
0.0

0.87096
0.0
0,0

0.0
0.51974
0.47568

0.0
0.68803
0.31068

0.0
-0.03687

0.30033

0.0
-0.56695

0.76617

TABLE VII. Wave functions Qn with complex expansion coefficients.

Heal Imag.

0,46818
0.01311

-0.00584

0.82990
0,02115

-0.08127

-0.02075
0.48768

-0.08416

-0.03677
0.60441

-0.45885

0.00691
0.57568
0.29312

0.01225
0.88123
0.74096

strieted eigenvalue problem by multiplying on the
left by l &f&~) and summing over n. This yields

Zle. &&4.l~le8&=~'lya)=&. lya&. (11')

This eigenvalue problem is restricted in the sense
that it holds only in the space of Ã dimensions.
Moreover, if we restrict o. , P to the (N 1) dimen--
sions where orthogonality holds, we see that &

an'd z' have identical elements in this (N 1)-di--
mensional subspace.

We now ask what would happen if we chose for w

the proper effective Hamiltonian for the N-dimen-
sional truncated space, say in the sense of Harvey
and Khanna. ' In this ease v is again diagonal, but
this time the P„ form a set of N-orthonormal func-
tions rather than a set of only (N 1)-orthonorm—al
functions, as obtained in the general case. In oth-
er words, the true "effective Hamiltonian" is se-
lected out by the additional requirement that all N
vectors form an orthonormal set.

In Sec. II we have expanded the functions Q in
terms of the exact eigenfunctions g;. So far as the
fitting of energy spectra is concerned, we ean
easily show that it is not necessary to choose this
particular set but any other convenient orthonor-
mal set of functions g; can be chosen for this pur-
pose.

TABLE VIII. Matrix of the approximate Hamlltonian
I~ defined in terms of single-particle energies and
Hartree-Pock single-particle Hamiltonians.

%e would now like to discuss some of the possi-
ble applications of the formulation of See. II. The
constrained solution of Sec. II tells us that for
each choice of the pseudo-Hamiltonian a' we can
find a set of wave functions Q such that the ener-
gy spectra ean be fitted with them. We now ask
whether there is some way of telling which of the
mixed configuration set of wave functions Q is
better for calculating other nuclear properties.
This question can be answered to some extent by
choosing some operator 0 and calculating its ma-
trix in (It) representation. The representation
which gives the values of the matrix elements Qna
closest to the experimental values of ~ ~ then
provides us with the best mixed configuration wave
functions. As an example we have taken & to be
the octupole-octupole operator'

(P in~'0+, 0 0

(p„,)'g„,)2, -0.289

(p«&) (d&&2) b — 0.508

-0.289

-0.191

-0.279

0.508

-0.279

0.141

Using the expansion coefficients of Table I we find

TABLE IX. Orthogonal matrix T which diagonalizes
v of Table VIII.

the matrix of which in the representation of Table
I is given by

(P in~'O+, O (P in~'«5n~'a (P igg)'(dsg2)'b

-38.68611
-5.76026

3,39704

-5.76026
-24.18611

1.60180

3.39704
1.60180

-22.41463

-37.34688
-21.46998
-21.46998

0.87717
-0,42649

0.22063

0.41861
0,90449
0.10403

-0.24892
0.0
0.96979
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TABLE X. Orthogonal matrix 0 for the second ex-
ample of approximate Hamiltonian ~. It is determined
from the orthonormallzation of Qg and $2.

TABLE XI. Wave functions Q~ in terms of the exact
set g„ for the second example,

1,0
0.0
0.0

0.0
0.28

-0.96

0.0
0.96
0.28

0.85401
-0.35160
-0.30295

0.40269
0.16282
0.78203

-0.23748
-0.98828

0.23662

that the "exact" value of ($,~II~ g,) =0.,547.
use the two different operators v of the previous
example (Sec. III) and the associated sets of wave
functions Q given in Tables V and XI. Ca,lculating
the matrix element (Q, ~ &(P,) for each of these two
sets, we find that (Q, ~Q~Q, ) =0.589 using Table V,
while it has a vanishing value using Table XI.
Clearly, in a choice between these two sets of
wave functions, both of which fit the energy spec-
trum, the mixed configuration wave functions of
Table V give much better agreement with the "ex-
act" case.

Finally, we remark again that in problems whex'e

only a finite number of matrix elements enter the
calculation, like the application of the Skyrme
formula referred to in the Introduction, one can
simulate the final result with endless pseudo-Ham-
iltonians and associated sets of wave functions.
By this same fact, once an approximation has been
entered into for the approximate wave functions in
the problem, it is no longer clear what the best
choice of operators is without solving the whole
problem of effective operators.
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The spectra of neutrons emitted following muon capture in carbon and oxygen are presented
with a resolution of 6.5% at 5 MeV and a precision of 5%. The carbon spectrum is dominated

by a broad peak at 4.2 MeV, while the oxygen spectrum is dominated by a narrower peak at
5.1 MeV. Partial transition rates for these two peaks are given. This structure supports
theoretical predictions of the excitation of the giant resonance in the capture process.

1. INTRODUCTION

Early attempts to calculate the total muon cap-
ture rate in complex nuclei in the context of either
a I"ermi-gas model or an independent-particle
shell model' led to values about 1.5 times as high
as the experimental rate. In order to explain this,

Barlow et ai. and Balashov et al.3 independently
postulated that the capture process proceeds
through isobaric analogs of the photonuclear giant-
resonance states. This raised the theoretical es-
timate of the average nuclear excitation from
about 13 to about 22 MeV. The resultant reduc-
tion in neutrino momentum was sufficient to re-


