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Given a finite many-particle vector space, which may be of large dimensionality, and a
Hamiltonian which operates inside it, we may investigate the general properties of the system
by a method of expanding preselected basis states in terms of the Hamiltonian eigenfunctions.
The corresponding intensity„considered as a function of the Hamiltonian eigenvalues, is a
spectral distribution which may be studied via its energy moments; we consider such distri-
butions averaged over subsets of basis states. The properties of these averaged distributions
are discussed, as well as methods for applying them in general studies of coxnplicated sys-
tems; methods are given for evaluating the moments in some significant cases. Detailed
formal results are given for configuration distributions in the spherical shell model.

l. INTRODUnION

There has been steady progress in the attempt
to give, in the domain of the conventional shell
model, a microscopic description of nuclear struc-
ture. But there remain great difficulties. For one

thing there are severe limitations on the dimen-
sionalities of the vector spaces in which one can
work, and it is clear that, in many or all nuclear
problems, much of the interesting physics will
"lie outside" the spaces which can be handled in
the most conventional way. Qne attempts to get
around this by introducing effective Hamiltonians
(and effective transition operators for various
processes), determining such operators either di-
rectly, from experimental data' or by theoretical
considerations, usually grounded in perturbation
theory, which begin with the free nucleon-nucleon
interaction. ' Besides this problem, and of course
related to it, one often does not know how to
choose the subspaee, compatible with a given di-
mensionality limit, which is optimal for consider-
ing a problem at hand, and an a posteriori re-
course to comparison with experiment is often not
satisfactory. There has been much progress here
too, especially via Hartree-Pock theory and its
various extensions' which achieve a degree of self-
consistency in the choice of single-particle states
which underly the subspace in which one works.

The aim of the theoretical considerations men-
tioned above has been almost exclusively that of
simplifying a nuclear many-body problem so that
a detailed ("microscopic" ) solution becomes fea-
sible in the domain of conventional spectroscopy.

In this pair of papers, and in others to follow, we

suggest methods in which conventional spectrosco-
py plays a much less prominent role, and in which
some of the limitations and ambiguities of the
standard methods are missing. These methods do
not, for the most part, consider the detailed spec-
trum of the Hamiltonian operator or the detailed
strengths for various processes. They deal in-
stead with certain distributions associated with
these quantities, examining these in terms of
their low-order moments ("spectral" or "strength"
moments) with respect to energy, isospin, angular
momentum, and so on. 4 They are not limited by
the dimensionalities of vector spaces, since they
involve neither complete matrix-element calcula-
tions nor matrix diagonalization. They do not
solve the problems associated with detailed spee-
troseopy, but deal instead with more general ques-
tions. An essential feature of these spectral-mo-
ment methods is that, at the beginning when we
deal with very low-ordex moments, we throw away
almost all the "information" implicit in a given
problem; then as we proceed (taking higher and
higher moments, or more or less equivalently, as
we shall see, dealing with finer and finer group
structures) we gradually regain the lost informa-
tion. While it is m prineipze possible by proceed-
ing in this way to reproduce exactly the results of
a conventional microscopic calculation, that would

in fact be feasible only in quite trivial eases and it
does not at all represent our view as to a reason-
able way of proceeding.

It is in fact our belief that, in many cases, low-
order moments of various distributions are more
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significant quantities than the individual energies
and transition strengths which come from detailed
calculations. The low-order moments depend es-
sentially on interactions between small numbers
of particles, interactions which we can indeed ex-
pect to be reasonably treated by our nuclear mod-
els; the moments, being defined as averages over
sets of states, are properly insensitive to minor
variations in the model or interaction parameters.
On the other hand, the experimentalist usually
deals with and measures detailed quantities, so
that the use of spectral-moment methods would
then, in many cases, inhibit a direct comparison
of experiment and theory. We will see in fact that
a low'-moment spectral distribution can sometimes
give a surprisingly good account of the detailed
spectra; and when we deal later with excitation
strengths rather than Hamiltonian spectra it will
turn out that the moments of the appropriate dis-
tributions are much more closely connected to ex-
perimental measurement. Nonetheless, there will
be a burden upon us to demonstrate how, direct
comparisons with experiment being often ruled out,
we can still make progress via spectral-moment
methods.

From the mathematical standpoint, the calcula-
tion of spectra moments can make good use of a
number of concepts and methods of linear algebra
together with elementary notions borrowed from a
less familiar domain, in particular the theory of
partially-ordered finite sets. These are combined
with the usual second-quantization procedures
used in many-fermion problems. It will become
clear that representations of groups or chains of
groups are essential ingredients, and indeed the
entire method has everywhere a group-theoretical
foundation. Parenthetically then it will turn out,
because of this, that spectral-moment methods
are ideally suited to a study of the goodness of
group symmetries in many-particle systems, an
important subject in which progress has been very
slow. Although group theory underlies the whole
thing, we can consider several important distribu-
tions without explicit reference to groups, and in
order to make things as clear and simple as possi-
ble, we shall, in the first two papers do exactly
that. We shall, moreover, discuss the essential
ideas in considerable detail even though they may
already be familiar to many people.

All the present work concerns itself with the be-
havior of an m-particle system, described in
terms of a finite vector space, a basis for which
is given by the states of m fermions distributed
over a finite number of single-particle states. We
shall describe such a space as a spectroscopic
space, a term which will remind us that the things
we do are still related to the standard operations

of spectroscopy. However, we shall ask questions
of such a sort and answer them in such a way that
the dimensionality of these spaces will not be lim-
iting. And eventually we would in fact hope to
deal with spaces which have a more complicated
basis.

In Sec. 2 of this paper we introduce the idea of
spectral distributions and the moments which
characterize them, and give also a brief account
of the way in which they may be used. Section 3
will deal, as an illustrative example, with the
"scalar" distribution in which one averages over
all the states for a fixed number of particles. The
theory of spectral moments leads to the discus-
sion of averaging over sets of states as given in
Sec. 4. Section 5 contains derivations of certain
trace operators and the law of propagation of aver-
ages of the configuration distribution. In Sec. 6
the centroid energies and dispersions of the com-
plete scalar and configuration distributions are
derived in terms of the one- and two-body matrix
elements of the nuclear shell-model Hamiltonian.
Various properties of the resulting moment formu-
las are then investigated in Sec. 7.

2. SPECTRAL DISTRIBUTIONS

Suppose that the problems in which we are inter-
ested are describable in terms of a finite set of N
single-particle states: For the nuclear (ds) shell
in an isospin formalism we have, for example,
N=24. These N states form a basis for a vector
space which we shall call the orbital space and de-
note by (Ã].. The states for m fermions distributed
over these states' form an ("„)-dimensional vector
space [( ) being a binomial coefficient] which we
shall label as m or (m) or (¹m), the last of
these when we need to indicate N explicitly. The
vector space for any number of fermions (m =0,
1. . .N) distributed over (N) we shall indicate
as/. We have then st=pm. The dimensionality
of & is g",(")= 2". More generally, we may de-
compose + in other ways, introducing subspaces
a or (m, n), the latter symbol indicating that a is
also a subspace of m. We assume that the Hamil-
tonian H is a linear operator in 9t, this implying
that H operating on any vector in% yields another

!

vector in 9K. Then of course H~ is the pth power'
of a transformation of X and is itself a transforma-
tion of R, .

Let Q& (m)j denote an orthonormal basis set in
m. The standard spectroscopic problem is to com-
pute and diagonalize the g-matrix representation
of H, thus producing the eigenvalues E; and eigen-
vectors g;(m) as linear combinations of the basis
functions P (m).
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o'(m, n)={& (m)[H —$(m, n)]'P (m))

=M, (m, n) —[M, (m, n)]' .

FIG. l. Schematic representation of the spectral
distribution of a vector Q„over the eigenvectors of H.

Hy;(m) = E;y;(m),

q, (m) = QC,.y„(m) .

(I)

(2)

Equally well, one may consider the basis vectors
to be expanded in terms of the eigenvectors of H

y„(m) =QC, *q,(m).

Figure 1 gives a schematic picture of the distribu-
tion of the intensity of the vector g„(m) over the
eigenvectors of H. %e refer to this as the "spec-
tral distribution" of p (m). Such a distribution is
completely characterized by its energy moments
where the pth moment M~ (m, n) is defined by

M, (, n) =Z(E,)'I~..l'.
Using the definition of the expansion coefficients it
is easily seen that M~ (m, n) may be rewritten as

M, (m, n) =(y.(m)H'y„(m)),

where H~ denotes the pth power of the Hamiltonian.
Equation (5) tells us that the distribution of p„over
the eigenvectors of H is completely determined by
expectation values of powers of II in the state g,
and that knowledge of the detailed eigenvalues and

eigenvectors of 0 is unnecessary for this purpose.
The zeroth moment M, (m, n) is unity, which

merely expresses the normalization of the P .
The first moment M, (m, n), which we shall also
call S(m, n) is the centroid energy of the distribu-
tion. Going beyond this it is more convenient to in-
troduce either the pth central moment [defined for
p ) 2 as the Pth moment of H —$(m, n)], or the Pth
cumulant, which we shall turn to later. The non-
negative-definite variance of the distribution. is de-
noted by a'(m, n) and is defined as the second cen-
t-I --nt, '-,

The positive square root of the variance is the
"width" o(m, n) of the distribution. The skewness
or asymmetry of the distribution about its centroid
is measured by the third central moment (g (m)
x[H —h(m, n)]'P (m)), and similarly for higher
moments,

In the event that/ (m) is an eigenvector of H
then $(m, n) is the corresponding eigenvalue, and

all central moments of order two or more will van-
ish. A nonvanishing value for o(m, n) may be
called a pure "mixing" width, since it implies that

g, (m) is actually distributed over a number of ei-
genvectors of H. In general, the smaller the value

of o(m, n) the better is the approximation that

Q„(m) is an eigenvector of H with ~(m, n) the ap-
proximate eigenvalue.

There are as many single-state distributions of
the kind discussed above as there are vectors in
the vector space, and thus, of course, no individu-

al one is, on an apxiori basis, of any particular
interest. So we next proceed to the notion of dis-
tributions averaged over a set (m, n) -=n of the m-
particle states. The moments of this distribution
are then defined as

M (tfi, n) =d '(m, n) Q M (m, n)

=d '(m, n) Q (y.(m)H'y. (m)), (7)

where d(ifl, n) is the dimensionality of the n sub-
space of (N; m).

From the purely formal standpoint now, the set
must be chosen in such a way that its moments

(at least as far as p = 2) can be evaluated. We rule
out evaluation by means of an explicit construction
of the individual matrix elements, since our major
interest is in large spaces where such construction
is not feasible; hence we require new techniques
which are not to be found among those of conven-
tional spectroscopy. Not surprisingly, it will turn
out that to produce such techniques it will be advan-
tageous for the subsets to define representations
of groups or chains of groups.

From the standpoint of physics it should be clear
that if the resultant averaged distributions are nar-
row then they are interesting, and, besides that,
the groups which define o. then correspond to ap-
proximately good symmetries for the problem.
But, as we shall see, there is much more to it
than that, and, in particular, wide distributions
are not necessarily uninteresting. Among the
groups which we shall study in detail in early pa-
pe1'8 are 'tile U(N) gl'oup (w111cll don1111ates alIIlos't

everything), the direct-sum unitary group which
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defines configurations, and the isospin, angular
momentum, symplectic, and space-symmetry
groups.

It follows immediately from Eq. (7) that the n
centroid energy is simply the average of the cen-
troid energies for the individual states,

$(m, n) = d '(m, n) Q $(m, n) . (8)

Things are different for higher-order quantities;
in particular we have for the variance

a'(m, d) —= M, (m, n) —[M, (m, n)]2

= d '(m, n) Q o'(m, n)

+-,'d-'(m, n) Q [$(m, n) —$(m, a')]'
n, a'ca

=d '(m, a) Q (o'(m, n)
Q6 6f

+[$(m, a) —$(m, n)]'] .

M;(-) =d-'(a) Z &nlHIV&&elHln&

=d '(n) Q &njH[l —P(n)]H~n&,

The energy term in Eq. (9) expresses a new contri-
bution to the width which enters when averaged dis-
tributions are considered. Thus, even if every
state of n were an eigenstate of H, in which case
there would be zero mixing widths for all the
states, the width of the averaged distribution would
still not vanish, since, in general, the eigenvec-
tors would not be degenerate. We remark also
that Eq. (9), applied to the Hamiltonian eigenstate
representation [in which o'(m, n) =0], informs us
that o'(m, h) is a measure connected with the spac-
ing distribution of the eigenvalues of H. Thus,
though we make no statistical assumptions, we do
have here a first contact with the statistical theory
of spectra. '

The distribution moments M~ (m, n), for a basis
subset (m, a), of the space m which we have intro-
duced above are not really adequate for our pur-
poses. In dealing with second moments, for ex-
ample, it will be important to know what part of
the width comes from intermediate states in (m, n)
and what part from states outside (m, n). There-
fore we should divide the width into an intevnal, or
self-width, and an external width, according to

M, (n) =M,'(a)+M;(a),

Ml(n) =d '(a)
GiCX Eo.'

= d '(n) Q &n IHP(n)H
l
a&

o'(n) = o';(n) + o',(n),

v', (n) = M,'(n) —[M,(n)]',
o',(n) =M;(n) . (10)

M. (a; p) = d '(n) Z &nlHI p&&plHln& .
ACCT

Then it follows easily that

c'(n) = Eo'(n; 0),

o', (n) = o'(7f; n),

d(n)o'(n; P) =d(P)c'(tj; a) .

We see that o'(n; P) is the average over the states
of e of the squares of the matrix elements connect-
ing the two subspaces. A corresponding (but more
complicated) decomposition can be made also for
higher moments.

What now can one learn from spectral distribu-
tions? The simplest thing is about the general
eigenfunction structure, for example, about which
representations contribute significantly in a par-
ticular range of energy. This would follow in an
obvious way from the centroids and widths of the
representations, which we could regard for this
purpose as defining the distributions, assumed,
for example, to be normal.

If the distribution for a particular representation
is then found to span an energy region which con-
tains the centroid of another representation, we
would naturally suspect (unless that is forbidden
by the exact symmetries) that the two representa-
tions would be strongly admixed. But we might be
misled in assuming this; for it could happen that
the width of the representation is predominantly a
self-width, in which case the admixings would be
small, we would have a peaceful coexistence of
the states of the two representations, and sepa-
rate transformations in the separate subspaces
would produce good eigenfunctions; and of course
similarly if many representations are involved.
Thus we see the need for the partial-width de-
composition of the total widths.

Here we have written P(n) for the projection opera-
tor onto the set e.

The separation above is that of m into two parts,
m= 5+ (m —n). If we have a group in mind, for
which m supplies a reducible representation, a
more complete decomposition into irreducible rep-
resentations may be relevant; thus m = a+t)+y
+. . . . In terms of this, or any other decomposi-
tion into disjoint parts, we then define partial
sekPA, s by

g'(n; @=M,(n; p) —6 8[M, (n)]',
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For more detailed results, if, for example, our
interest is with the low-lying states, we may use
the partial widths and centroids to supply a basis
for a truncation of the original space to produce a
resultant space small enough for detailed calcula-
tion. These quantities might, for example, indi-
cate a, small number of representations strongly
coupled to a low-lying o. (or set of such 5's) in

which case we might discard the other representa-
tions and make a more detailed calculation in the
reduced space. The criterion for weak coupling of
two representations is, of course, that the partial
width' be small compared with the difference be-
tween their centroid energies.

We have, of course, been assuming here that the
distributions are decently represented via moments
of order p ~2. We shall, in fact, go beyond that
and assume that they are close to "normal" or
Gaussian, an assumption which has been found val-
id in the various examples, calculable in detail,
which we have studied; we hope, in a later paper,
to discuss the theoretical basis for it. It is, of
course, possible to consider higher moments,
which would measure departures from normality
and would enable us to judge the validity of the en-
tire moment procedure for studying the eigenfunc-
tion structures; at present, in the cases which we

consider, it is feasible to go as far as the fourth
moment. Besides the sequence of higher and high-
er moments for a given decomposition of m, there
is also the sequence in which we restrict the order
(say to p = 2) but take a nested set of finer and finer
subspace decompositions. This technique is suc-
cessful if, as we proceed along the sequence, the
widths, or better the partial-width matrix, indi-
cate a structure of weakly interacting subspaces.
When it works, the second technique is superior;
on the one hand, the low moments of the finer dis-
tribution do carry information about the high mo-
ments of the coarser, while, on the other hand,
since the finer decomposition will always corre-
spond to some group structure, we learn at the
same time about the group symmetries. It is im-
portant in both cases to study some examples
which we can calculate in detail.

Going in the opposite direction we can study what

happens when we enlarge a space by including
more single-particle states both above and below
the Fermi surface, i.e., proceeding to an enlarged
orbital space (1P) 0 {N). Not only do new distribu-
tions enter but the original distributions will
spread. Thus, one can study the stability of the
makeup of low-excitation spectra to changes in the
size of the vector space. One may also introduce
variational methods to study, for example, the way
distributions involving deformed orbitals vary with
the deformation parameters.

It is also clear that such distributions can pro-
vide information about the localization of interest-
ing wave-function components at excitation ener-
gies appropriate to nuclear reactions exploring
single-particle resonances and intermediate struc-
ture. They supply also, in an obvious way, a
foundation for the microscopic theory of level den-
sities, and in a less obvious way, perhaps also a
basis for a statistical theory of reactions. ' And as
mentioned above it should be possible, by averag-
ing over states corresponding to exactly good quan-
tum numbers, to make contact with the statistical
theory of spectra.

The considerations above give a method for study-
ing group symmetries, involving as they do the
question of the admixing of different representa-
tions. As an alternative method one may use mean-
squared energies as an orthonormalization mea-
sure in terms of which one can decompose H' into
orthogonal parts, some of which preserve the sym-
metry while the others violate it. Then, roughly
speaking, the relative weights of these parts give
us a criterion for the goodness of the symmetry. "

Going beyond the spectral distributions, we can
study also the strength distributions for various ex-
citation operators, "making thereby much more
immediate contact with experiment. This would,

for example, supply a way of studying cascade
processes in highly excited systems, a subject al-
so of direct experimental interest.

We mention also the possible extension to the
case where the orbital states form a continuous,
rather than discrete, set and to the case where
the basis states have intrinsic correlations going
beyond those supplied by any restricted orbital
space.

These general remarks should indicate the utili-
ty of spectral distributions and show that partial
widths of representations (and their extension to
higher-order quantities) are the really essential
ingredients of the subject. We now must proceed
to methods for calculating such quantities. Let it
be said at the outset that there does not as yet ex-
ist a general theory which can be applied to an
arbitrary group structure. However, several im-
portant structures are well understood, as are al-
so some features of the general case. It will turn
out to be convenient to deal at first with total
widths of representations, leaving until a little
later the decomposition into partial widths (and
similarly for the higher moments).

In the next section we consider, by the most ele-
mentary methods, a very simple case: that of
averaging over all the states of m particles. In
Sec. 4 we give a more general discussion introduc-
ing various concepts which will be of importance
to us in later papers. The later sections of this
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paper and all of the next (and these will not draw
heavily on the results of Sec. 4} will be devoted to
configuration distributions in the spherical shell
model.

3. SCALAR DISTRIBUTION AS A SIMPLE
EXAMPLE

By the m-particle scalar distribution we mean
the spectral distribution averaged over all rn-
particle states. The appropriate decomposition of
R is then ft =pm. Let us first derive an elemen-
tary result for the average over m of the expecta-
tion value of a k-particle operator. This average
we write as (0(k)), and the corresponding trace
as ((0(k))) . The particular k-particle operator
which gives unity on states in which the single-
particle states Nos. 1. . . k are filled and zero on
states in which any of these are empty, obviously
has a trace (" 22), that number being the number of
ways in which the (m —)),) "free" particles can be
distributed over the (N —k) "free" single-particle
states. Other operators which differ only in speci-
fying a different k subset have the same trace.
The set of all such operators, supplemented by the
set of nondiagonal k-particle operators [which, for
example, convert (1. . . m) into (1. . . m —1, m + I)]
gives a basis for the general 0-particle operator.
These latter operators being traceless, we see
then that, for the trace and the related average,

The operators which we enounter will not in gen-
eral have a specified particle rank; e.g. , 0'(k) has
ranks k, k+ I, . . . , 2k, as long as k ~ 2N. Rather
than carry out the explicit decomposition by parti-
cle rank we can recognize that, since (, ) is a 0th
order polynomial in m, (0) for an operator of
maximum rank u will be a uth order polynomial in
m. Writing such a polynomial as a linear function
of its own values at m =0, 1, 2, . . . , u, we have
then, for an operator of maximum rank u, that'"

(14)

where the first form involves the usual Lagrange
polynomials, and the other forms follow immedi-
ately from the first. " The last form demonstrates
that for m ~ u the result is simply an identity.

As a trivial application of Eq. (14), we have for
the angular momentum,

(z') = -m(m —2)(J*)~~
( ) (J*)*,

the first term then correcting for the fact that J' is
not a pure two-body operator. For the usual case
where the orbital space supplies a representation
of the angular momentum group (defining there-
fore a set of spherical orbits), we have (J') =0;
then e1iminating (J2) from Eq. (15) we have

(~2) m — ( ) (g2)1
(N -1) (16)

The result of Eq. (16) could have been written
down immediately by using the fact that (J2} is a
second-order polynomial in m which vanishes at
m =0, N. More generally, Eq. (14) is, as we have
said, the equation which expresses the value for
arbitrary m of the uth order polynomial in m as a
linear function of its values at m =0, I, . . .u; but
from the linear independence of the m polynomials
(,) (or of the corresponding trace operators) it is
obvious that we could choose any other (u+ 1)-
dimensional set of m values (which we shall speak
of as a "net"} with which to define the polynomials.
The solution for the new net is simple. If the net
points are t» t». . . , t„, then the new Lagrange
polynomial for the net point t is

and with these we can express the trace of any u
operator in terms of its traces for any (u+ 1) par-
ticle numbers. We may say, incidentally, that the
simplification in going from Eq. (15) to Eq. (16)
has resulted from our choice of a net (0, 1, N) sim-
pler than the "elementary" net (0, 1, 2). In general
there is special interest in a net which is most eco-
nomical with respect to the number of holes or par-
ticles involved; this is because the calculations re-
quired for the input quantities become increasingly
complicated as the number of particles or holes
increases. We achieve this economy by taking a
two-segment net, one part proceeding upward from
the origin, the other downward from the "plenum"
state. " Taking these segments to be, respectively,
(t &u, ) and (N-u2 &f &N) where u, +u2+ I =u, we
find as the extension of the third form of Eq. (14)
t at"
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(18)

which gives (0) as a linear combination of traces with (t &u,) particles and (t &u,) holes. If u is odd, then
for maximum economy we would take u, =u, = —,'(u —1), while if u is even we would take one of the limits to
be m, the other —,'(u —2).

We have stressed that the scalar averaging results follow in a simple way from the properties of polyno-
mials in particle number. Since the product of polynomials is itself a polynomial, it follows that the prod-
uct of averages propagates by the same rule as does the average of a product, it being only necessary to
take u ~ (sum of particle ranks of factors). Thus we can deal with central moments or with cumulants in
the same way as with the corresponding moments. We have then, for example, for the scalar centroid en-
ergy $(m) and the dispersion o'(m) the results"

g( )
m(m —1) g(g)

(N-m)(m —1) g(-) (N-m)m
N(N —1) N (N —1)

o'(m) = m (m —1)(m —2) (N —m) (N —m —1) o'(N —1) (N —3), (N —1)
(N —1)(N —2) (N —3) (N —m —1) (m —1) 2 (m —2)

o'(I) + & '(2) .

(19)

In the first of these we have taken Q]=1 Q2=0,
while in the second we have used u, = 2, u, = 1,
along with the fact that the vacuum and plenum
states are dispersion free. Both results could
have been written down at sight.

As a simple example, consider the centroid ener-
gies in the (ds) shell, (N= 24). Reasonable inter-
pretations of the low-lying level structure for A
= 16, 17, 39, 40 enable us to evaluate the centroid
energies for these cases (m =0, 1, 23, 24) and, on
the assumption" that H is of maximum rank 2, the
question is whether the four centroids reasonably
well satisfy Eq. (19). With the exception of the A
= 39 d», -hole energies (K", Ca") the assignments
are all unambiguous. In each of the A =39 nuclei
three —,

"states are found" within a spread of 1
MeV centered at about 6-MeV excitation; we make
the assumption that the d», -hole strength is equal-
ly distributed among these. Then we find $(23)
= -326.8 MeV to be compared with the value -324.8
MeV found, via Eq. (19), from the other centroids.
We would interpret this as satisfactory agreement
(even though no convincing formal criterion for the
goodness of agreement suggests itself). It is clear
that this kind of simple analysis should precede
any attempt to calculate, for example, effective in-
teraction matrix elements by fits to empirical en-
ergy levels.

4. OPERATOR AVERAGING

We have used a simple combinatorial method to
produce the results of the last section. While this
kind of procedure would be adequate to deal with

configuration distributions, that would not be so
for more complicated cases. We therefore devote

0(R) = (0(k))" +traceless parts . (21)

We then identify (™„)as the (k - m) propagation co-
efficient for the average of a k-body operator, and

(„") as a propagation operator For a qua. dratic
trace we have seen that we need (k+ 1) pieces of in-
formation to distinguish the squares of k-particle
operators, and similarly for other cases. It will
be up to us, then, to calculate the traces which de-
fine, for a given moment, a complete set of pieces
of "input" information.

The group structure involved in the trivial exam-
ple of Eq. (14) is that of U(N), the set of unitary
transformations in the orbital space, and the m
spaces are those which supply irreducible repre-
sentations of U(N). What is implied by the remark
that 0(R) is a k-body operator? For one thing 0(k)
vanishes in m spaces with m &k [consistent with
this, so does (,)]; beyond this the structure of
0(k) in spaces with m &k is determined completely
by its structure in the (m = k) space. Recalling now

that an algebraist thinks of an operator as a trans-
formation on a space, we see that the notion of a

this section to a more formal (though still elemen-
tary) discussion in terms of operators, introduc-
ing thereby a nulnber of important concepts.

We can interpret Eq. (13) as giving, for the
trace of a k-body operator, a rule for propagation
through the various subspa, ces m of X. It tells us
first that linear traces of k-body operators do prop-
agate in a simple fashion and that, if we are inter-
ested only in such traces, only one significant
piece of information distinguishes one k-body oper-
ator from another. Indeed we have, where n is the
number operator,
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k-body operator involves more than this. It im-
plies specifying an algebraist's operator in the
(m = k) subspace together with a rule for propagat-
ing it into the other subspaces of %. This general
idea of propagation along a line (or more generally
on a lattice) of representations is also of major im-
portance to us.

For 0(E) the representation given by the sub-
space R is special and we might call it the defining
representation of 0(k), this going along with the
idea that the information about 0 is given to us in
the k space. This would clearly be inade(luate for
an operator which is not number conserving. But
in general we can think of any operator 0 as having
a quadratic structure, since it may be expanded in
terms of operators which connect one particular
subspace with another. Thus we have, for the U(f(l}

case, O=g-„(-, ,0(k, k'), where 0(k, k') produces a
transformation k'-k and is defined in the sub-
space pair (R, k'). Its behavior, when acting on a
state of m4 k', is given by a propagation rule.
Both the quadratic structure and the nature of the
propagation rule become particularly clear in sec-
ond quantization. For a general decomposition of
'JE =pc(, corresponding for example to some given
chain of groups, we have the corresponding opera-
tor expansion

0= Q 0(n, d'), (22)

and we would say that 0(o., T(. ') has the defining rep-
resentation pair (n, o.'). For the diagonal case we
shall continue to speak of tbe defining rePresenta
tSOS Q.

A separate decomposition of 0 is by its tensorial
behavior with respect to the groups under consider-
ation, O=Q 0&. We combine the two decomposi-
tions to get

0= g 0&(Z, a') . (23)

2, . . . , E but the general idea of ordering is not
trivial. For the U(N) case tbe representations
form a tully ordered set (or a chain), the ordering
operation being that n ~ e' if every operator de-
fined in o, vanishes in 3'. We see now that propaga-
tion proceeds in order along a chain. When we
come to more complicated group structures we
shall encounter the more subtle notion of a partial-
ly-ordered set, with a correspondingly more com-
pl. ated p opag t

Equation (13) may be rewritten as

(24)

Thus, while for k &0 we cannot propagate from the
vacuum representation (since tbe operator vanish-
es there), we can propagate from the plenum rep-
resentation, which is just as simple and is indeed
the hole-vacuum representation. The significant
fact is that the plenum representation, giving only
a highly nonfaithful representation for 0(k), is still
useful, since it does carry the information about
the linear trace of 0(k}. We shall see later how a
set of nonfaithful representations may be used as a
sieve to decompose the moments of an operator.

Via a trivial example, we have introduced above
the nontrivial notions of propagation, propagation
coefficients and operators, defining-representation
pairs, the linear and quadratic structure of opera-
tors, ordered sets of representations, and sieves.
All of these are going, eventually, to be of impor-
tance to us.

We proceed now by introducing second-quantiza-
tion forms for the operators and states of the sys-
tem. This is not strictly necessary but it is highly
advantageous. Corresponding to the N single-par-
ticle states which define the orbital space [f((]we
introduce creation operators A„and destruction
operators B„=A„~, where r= 1, 2, . . . , A'. These
satisfy the usual anticommutation relations,

Since 0(Z, 8') has the direct-product structure h
&& a', the allowed y's are determined by the combi-
nation rule for 3, 7y'. For example, if we are deal-
ing with U(J(l), a k-body operator has n= e' =k and
then it is well known that there are (k+ 1}different
representations y, those in fact with one- and two-
columned Young shapes, [N-x, x], with X =0,
1, . . . , k. As another example, for the Coulomb in-
teraction (defined in the isospin-one two-particle
space) y could define the isospin ranks 0, 1, 2;
E(I. (23) then giving the usual scalar-vector-tensor
separation.

Observe next that in the U(N) case there is a natu-
ral ordering for the representations, defined by
the fact that a k-body operator vanishes in m with
m &k. The ordering is the trivial one m =0, 1,

[x„,ff, ],= n„, ,

[X„,X,],= [Il„,a, ],=0.

The normalized operator for m particles in state
c( is represented as Z (m). In a, product (or Har-
tree-Fock) representation, a basis state Z (m) is
a product of m A operators; more generally, it is
a linear combination of such products. The opera-
tor Z„(k)Z t(k) is a 0-body operator which is de-
fined by the single nonvanishing 0-body matrix ele-
ment (AP~Z (k)Z&t(k) ~kP') =5 &5~&, . Moreover,
as a, n' run through the states of jt, the set of such
quadratic objects gives a basis for the k-body op-
erators. It follows then that the general expansion
of a k-body operator Og) is



i02 J. B. FRENCH AND K. F. RATCLIFF

(26)o(Q = Q &kP ~o(Q ~kP'&z, (k)z, , '(k) .
8, 8'

A general matrix element of O(R) in m-particle
states is

&mn[o(k)(rnn'&=2 &kPIO(k) lkP'&
88'

x &Z t(m)Z8(k)Zq t(k)z„(m)&0,

(27)

where &), denotes a vacuum expectation value
(v.e.v. ) which, of course, is entirely independent
of the operator O(k). Such a second-quantized rep-
resentation makes explicit the defining properties
of a k-body operator and its propagation, which we

have discussed above; and similarly for more gen-
eral operators.

The commutation rules (25) are invariant under
the involution

A„-B„—=A„(h),

B„-A„=-B„(h),
(28)

which, as indicated, defines holes to be fermions.
This operation (applied in every element of the or-
bital space) we denote as ( ). Thus we have

A„=B,=A, ~=A„(h),

(A A,)'=B„B,= -(A„A,)i =A„(h)A, (h),

and for general state operators

Z (I) = (-1)' ' Z „~(m) =—Z „(m~),
Z ~(m)=(-1)' ~ '~z„(m)—= Z„~(mh),

(29)

(30)

these equations then defining for us a correspon-
dence between hole and particle state operators.
The essential equivalence between the operations

(r) and t when applied to state operators with a
definite number of particles is not maintained with

more general operators and we have

Z (k)Z8~(k')= (-1)i "" ' "' Z ~(k)Z8(k')
(31)

= Z„(k„)Z8~(k'„) .
We see that in general 0 may be said to be an oper-
ator with the same representation in the hole states
as 0 has in particles. If for example 0 is a k-body
operator [as it would be if k= k' in (31)] then we
shall call 0 the corresponding k-hole operator.
Then, reexpressing 0 in normal form with respect
to particles, we get a k-body operator which, to
within a phase (-1)', is simply the adj oint" of 0,
along with terms of lower particle rank arising
from commutation. In other words a k-hole opera-
tor is the sum (from l =0. . . k) of /-body operators.
The l = k term does not vanish and is trivially re-
lated to the original operator. The l &k terms
may vanish; we shall see later the significance of

p(m, n) = Q Z„(m)z,~(m) . (36)

This self-adjoint operator is the operator exten-
sion of the (m, n) trace of the density matrix. It
has the defining properties:
(i) p(m, n) is an m-particle operator and therefore
gives zero on all k-particle states with k &m.
(ii) p(ni, n) gives unity on all m-particle states in

(m, n) and zero on all states in (ni, n') with n'& n
In terms of these operators we have from Eqs. (32),
(34) that'g

«o(k;)»™~= Z &k,plo(k;) ~k, p &

88'

x &Zs (k)t7(m, o')ZB, (k)&0, (36)

which gives the trace for an operator which is in
antinormal form.

A simple and well-known device now enables us
to do the same for a normal form operator, which
is more interesting. It is clear that Z applied to
the particle vacuum and Z applied to the hole vac-
uum (the plenum state for particles) give related
states; these we define as complementary. Then

Z. (N -m) (0&
= Z„(m) [Ã& = Z.(m)z (iv) (0&,

(37)
(O~Z ~(N-m)=&N~Z„~(m) =&O~z~(N)Z t(m),

where we have chosen n;, the ( -N)-rpnrtialee
basis set, to coincide with the complement of n,
the I-particle basis set."

The relationship between hole and particle
v. e.v. 's

such vanishings.
Since two state operators essentially commute, "

as do their adjoints also, we have the result that

&Z "(m)Z ~(k)z (k)Z .(m)&,

= &ZB~(k)Z ~(m)z, (m)Z8, (k)&o,

(32)
which tells us that to an m-particle matrix ele-
ment of a k-hole operator, there corresponds an
equal k-particle matrix element of an rn-hole op-
erator (and similarly for non-number-conserving
operators). Writing now, in correspondence with

Eq. (26), the expansion of a k-hole operator, O(k)

=O(kp), viz. ,

o(k„-) = g &k„P~O(k„)~k„P'&z,t(k)z, ,(k), (33)
88'

we have for the (m, n) trace

«o(k&)» ' = Z &k~plo(R~;)lk&p'&
O. G C(
88'

x &Z„~(m)zst(k)Z8 (k)Z (m)), . (34)

Let us now introduce the trace operator for the
set (i5, o.)



(q&.= &q&.„,
which follows from Eq. (28), when applied to the
integrand operator of a matrix element, then leads
to the result

&Z„t(m)SCZ„{m')&,= &Z. i'(fV -m)SCZ„(N -m')), .

Thus, for a k-particle operator, we have

«o%)»'" = Z &kilo(~) lkz'&

88'

x &Z„~(m)Z8(k)ZB "(k)Z„(m)),
= Q &kp~o(k))kp'&

so'

x &Zz~(k)p{N —rn, a.)Z~.(k)&,

= «P(N —m, n)O(Q»",

where in the first step we have used the operator
expansion of Eq. (26), in the second have used Eqs.
(32), (35), and, in the last, either the reality of
the matrix elements of 0 or the Hermiticity of p.
Note that this result is derivable also from Eq.
(36) via Eq. (39). For the corresponding compact
form of Eq. {36)we use Eq. (39) and then

«o(kf)» ' = « p(m, n) o(kp)»' "

We can think of the subspace (m, n) as one mem-
ber in a subspace decomposition of X. There are
important decompositions of X for which it turns
out that the trace operator for each subspace is di-
agonal with respect to subspaces and behaves like
a multiple of unity in each one. If R= Q(m, n) is
such a decomposition, we have then from Eq. (40)
that

«O(k)»-'=2&k 'Ir(N-m, &)lk '&«O{k)»"

=Q&P(N-m n))" ~(&O(R)&&" " (42)
n'

where, in the first form, n' is any state in 7y'. %e
see that in this case a subspace trace of O(R) prop-
agates from its defining representation throughout
the entire lattice of subspaces with a propagating
coefficient given by the matrix element indicated.
An operator, then, which is traceless (or a multi-
ple of unity) in each of the defining subspaces is
traceless (or a multiple of unity) in all the sub-
spaces. %'e shall describe this general situation,
which is characteristic of the decomposition, as
one of s&qble propagation. For the scalar distribu-
tion of Sec. 3, it should by this time be obvious
that

(43)

so that simple propagation does pertain in this
case (as it will also in the case of configurations
to be discussed in Sec. 5). The general reason for
this should also be clear, namely that all m-parti-
cle states have equal standing, no preferred axes
being specified in m by the operations considered.
In these first papers our interest wiQ be solely in
cases which admit simple propagation, and in the
discussion which follows here we make that as-
sumption also.

The propagation coefficients have a symmetry
which follows directly from Eq. (32), viz. ,

d{k, n')&p(N-ifi, n))" '=((p(N-m, n)))"
= «p(k, &')» '

= d(ni, 8)(p(k, 5'))

where, as always, d(y) is the dimensionality of y.
Using this we have" (for the average instead of the
trace)

&o(k)&™a~=Q &mn~p(k, n')[mn&(o(R)&~
C

o{k)-=+&op)&& "p(k, r'),

(45)

(46)

(k n
~ p (R, n') ~k n& = 1 if n g n'

if ega' . (47)

If the operator with which we deal is not of defi-
nite particle rank [e.g., 0'{k) which we would need
for the second momentt, we could decompose it in-
to operators of definite rank, each part of which
would then propagate via Eq. (45). Though we shall
sometimes use this procedure, it is basically un-
economical to carry out a microscopic transforma-
tion of an operator solely for the purpose of evalu-
ating a few traces. %e may alternatively proceed
as follows, which will be recognized as a natural
extension of what we have already done in Sec. 3.

Suppose that the operator has maximum particle
rank which is not greater than u; e.g. , we would
take u=4 for the square of a (0+1+2)-particle
Hamiltonian. Then those terms in the defining ex-
yansion of the operator which are nondiagonal in
representations cannot contribute to traces, be-
cause we are dealing with cases of simple propaga-
tion. Therefore the operator is defined on a net of

where Eq. (46) displays a linear-trace equivalence.
The operator p(k, n') is then, in the sense of the
discussion following Eq. (21), a propagation opera-
tor. It functions like a net-point Green's function
in propagating, throughout the lattice, trace infor-
mation given in the defining subspace (%, n ). Alter-
natively it may be regarded, for fixed k as a (k, n')
projection operator, since it satisfies the condition
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rePresentatfons (k, n) with 0=0, 1, . . . , u. Now,
while a density operator p(k, n') does give
5(m, k)5(n, f), ) in any representation (m, n) vith
m ~k, it cannot vanish in all those representations
of the defining net which have m &k. This follows
from the fact that p(k, n'), being a k-body operator
whose defining trace does not vanish, must neces-
sarily have a nonvanishing trace in states with
m &k. Thus p(k, n') does not behave on the defining
net like a Green's function. We therefore intro-
duce a new set of density operators p„(k, n'),

where, as always, n is the number operator. The

n factor, being then a product of linear factors
which give zero on all representations with k &m

~u, forbids propagation from the "source point"

(k, n') to any representation of the defining net.
The p„(k, n') are operators of maximum rank &u

satisfying

p„(k, n')- 5(m, k)5(n, n') on (m, n) if m, k &u (49)

and act collectively as a Green's function on the
defining net. "

In terms of these operators we have, as an ex-
tension of Eq. (46),

o=- Q &o)" "p (R z')
( k,a')

(50)

the sum being over the defining net, and the opera-
tor being of maximum rank &u. The equation is
valid for linear traces and follows from the fact
that the right-hand side is of the correct maximum

particle rank and, via Eq. (49), reproduces the de-
fining traces of O. Then, corresponding to Eq.
(45), we have

(O&
"= Q (mn~p„(k, n')~mn&&O&" "'. (51)

( k, Z')

o (K ~')=.
( )o%, ~')=(-()' '( „„)o("o')

(48)

p versus P„) which come from applying the opera-
tion ( ) to these equations.

It is worthwhile to have the inverse of Eq. (52),
which would express a trace operator which acts
as a Green's function on the net, in terms of trace
operators for single representations. We can in-
vert the equation by a process which will be recog-
nized as that of an elementary sieve. Remember
that, by construction, p„(k, n) and p, (k, n) (k &r
&s &u) coincide in the (m &r)-particle representa-
tions; p, (k, n), however, has higher-rank terms
(r &rank &s) whose function is to cancel the

p„(k, n) traces which propagate into the (m &r, m
&s)-particle domain. Then we have

p„(R, n)=p(k, n)+ Q O(r)
r= k+1

=p(R n)-Q&p (k m)&"' & p(K+I n;)
a~

1

r= 0+2
(55)

where the last step comes from the vanishing of

p„(k, 5}in (k+ 1)-particle states (if k+ 1 &u}. The
first two terms on the right-hand side of this equa-
tion give p~„(k, n); proceeding in order we find
the desired inversion,

p. (k, n) =p%, n) - Z &p& i(k, n)&' ' p(~, 3)
t= k+1

(56)

0 = Q Q A(k, n)p (k, n),
k=0

Combining Eqs. (50) and (56) yields a trace expan-
sion of an operator 0, of maximum rank &u, in
terms of t-particle operators; with the aid of this
we can make the trace decomposition of an opera-
tor whose traces are given on the elementary net
into a set of operators each defined in a single sub-

space of that net. The result is

We may use Eq. (50) to expand the density opera-
tors themselves. Then for t &u we have Ag n)=&0) ' Q Q(p -)(t tm)& '"&O)

t=O
(57)

(52)p(f'y)=Z Z&p(t y)&" p (k n)

and since &p(t, y)&' & =5-„we may rewrite this
~24

p(~ y) 1 — = Q Q&p(t, y)&""p.(k, n).
k=t+1 a

which we can recognize as the natural extension
(for the more general lattice) of the usual trace
separation of an operator according to its particle
ranks. For that case, Eq. (57) gives immediately
the result (easily derivable also by other methods)

Similarly we find

t
P(t, y)= Z Z &P(f;y)&""p.(k, n),

k=O n
(54)

and we have also the expansions (P versus P and

(58)

As a minor application we find the trace expansion
of an E-hole operator to be
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(59)

where we have used a combinatorial identity. A

different derivation of this result is worthwhile.
Since (p(k})@=(f), it follows that p(f) —(»)p(6) van-
ishes in (N); it gives ("»') —(„")= -(» ', ) in (N —1);
thus, p(R) —(»")P(5)+ (~»,)p(I), which = (", ',) in (N
—J), and vanishes in (N) and (N —I}. Continuing
in this way, we have that

(60)

since the difference between the operators on both

sides, being an operator of maximum hole rank k

which vanishes in (l ~k)-hole states, must neces-
sarily vanish. The hole-particle adjoint operation

( ) applied to Eq. (60) will give the density-opera-
tor equivalent of Eq. (59). These combinatorial re-
sults are elementary and, in fact, are not of very
great interest; but their extensions for more com-
plicated lattices are not trivial at all (a point
which, in a more general way, has been made by
Rota" ) and, in some cases, will be of considerable
interest.

When there is simple propagation, we are now

able to propagate the trace of an operator of mixed
particle rank without recourse to the normal-form
decomposition. To do this via Eq. (51) we need to
calculate the input traces over the entire defining
net, but for high k in particular this may be very
difficult. We can, however, proceed to a new net
for which the required input calculations are sim-
pler; in particular, one which discards the high-
number members of the defining net in favor of
representations involving only a few holes. An ele-
mentary way to do this is to use Eq. (51) to elimi-
nate elementary-net points on the right-hand side
in favor of simple representations on the left, as
we have already done for the simple scalar case in
Sec. 3. W'e shall see later how this works out in
practice for more complicated cases. We shall
give also more elegant ways of proceeding which

get around difficulties arising from the fact that
not every net of the correct dimensionality carries
all the necessary input information, this because
of a failure of linear independence. " It might be
noted that the defining net gives the simplest faith-
ful array of representations for the operator being
considered and that the simpler net does not then
define a faithful array. But for traces of limited
order, such faithfulness is not required and, as
we shall see, the use of a nonfaithful array makes

things often very much easier.
Finally, we mention a different way of looking

at some of the things discussed above. We have
in Eq. (27) written the matrix elements of an
operator in terms of the vacuum expectation val-
ue of a quartic object. We can consider this v.e.v.
as measuring the overlap of two quadratic objects.
For example, the nonnegative quantity
(Z t(m)Z()t(k}Z()(k)z„(m)), determines the normal-
ization of the state produced by combining an m-
particle and a 0-particle system as indicated,
while (Z t(m)Z@(k)z()t(k)z (m)), measures the am-
plitude with which the state (k, P) can be found in
the state (m, n). It is easy to see that in each case
we have () & 1 (consider the evaluation in a Har-
tree-Fock basis).

We are really interested in the combination of
subspaces instead of states. A natural measure
then of the "strength" with which two subspaces
combine is

+(ill, o(;k, Q=d '(m, n)d '(k, t})

x Q (Z t(m)Z&t(k)z&(k)Z„(m)),

=d '(k, @(P(k, b)) ',
which incidentally gives us an upper limit on the
propagation coefficients (since a & 1). The depar-
ture of 8 from unity represents what is commonly
called a "blocking effect. " For the simple U(N)

case, Eq. (43}gives, for combining an m particle
and 0 particle subspaces, that

(62)

where m, is the larger of (m, k) and m, the smaller.
The "blocking effect" measured by (1 —8) is seen
to be small, as expected, if we combine two sub-
spaces each small compared with the total space
available.

In the same way a measure for the probability of
finding a subspace (k, t}}in (m, o.) is

d(rfi, o,)(a(ni, n;k, @

=d '(k, tI) Q (Z '(m)Z, (k)Z, '(k)Z„(m))

=d(rn, o.)d '(k, tl)(p(k, P))

The measure adopted here ensures a unit value for
the measure of a space within itself and leads to
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the simple result of Eq. (65) below. The normali-
zation of S is such as to give the simplest form
for the symmetry properties which follow from
Eq. (44); they are

6~(e n k P) = ~(N —e ~ R P) = e(k P N —m n)

=e(N-lr, P;N-m, o) . (64)

S of course vanishes if k &rn, and 8 if m+ k &Ã,
and both quantities are bounded by unity. Indeed,
they satisfy elementary sum rules arising from the
the fact that P-„p(f, y) = p(t).

If we have simple propagation, then, on combin-
ing two spaces (i.e. , taking the product of an ortho-
normal basis set in one space with a set in anoth-
er), the states of an orthonormal basis for the re-
sultant space appear with equal intensity; and, sim-
ilarly, for the operation measuring one space in
another. In this case, also, we have a very sim-
ple picture of the trace propagation. For an oper-
ator defined in a subspace (k, P), we have

Trace of 0 in (i5, n) = [Trace of 0 in (k, P}]

x [Measure of (k, P) in (dI, n)] .

(65)

In the configuration or fixed-partition distribu-
tion we imagine a partitioning of the orbital set
(ÃJ into l subsets, (Ã] - (N„X„.. . , N, f= ([N]],
say, "in which QX; =N, N~ being then the number
of single-particle states in the kth subset. Such
partitioning is naturally suggested by the orbitals
of spherical or deformed shell models, but we may
in fact have no shell model in mind at all. Corre-
sponding to this partition we may distribute parti-
cles according to m —(m„m„. . . , m, ) = [m], with

gm; =m, this arrangement defining a configura-
tion and [rn] then standing for a basis set for that
configuration.

We observe that even a number-conserving oper-
ator may not conserve the separate numbers m;.
Operators which change configurations are of
course traceless in m,' among the m-conserving
operators the simplest are those of the type O([k])
which have definite particle ranks with respect to
each subset of (lV). For these operators we have
an immediate extension of Eqs. (13) and (43), viz. ,

(O([k])&' = (O([k])&'"' ll k.

(68)

The Q., S quantities correspond to looking at the
quartic object, whose vacuum expectation value is
of interest to us, according to its [(12)(34)]struc-
ture rather than [1(23)4]which is natural when we

think of density operators. When later we replace
the scalar multiplication of the four objects by a
tensor coupling, with subspaces and tensors de-
fined by the group structure being considered, we

shall be led naturally to decompose e and S ac-
cording to the intermediate subspaces, viz. ,

e(e, ~;R, P) =g~(m, n;R, P;m+I;y),
(66)

~(m, ok, ))=QB( Ir,In;k, p;8i+k, y).
'y

The resultant quantities, as we shall see later,
are vital for the decomposition of widths into par-
tial widths. They have a considerably extended set
of symmetry properties and sum rules. The rela-
tionship between the two kinds of decompositions
of the quartic structure will be that of a Racah
transformation involving, of course, the Racah
algebra of the relevant group or set of groups.

5. CONFIGURATION DISTRIBUTIONS

The scalar distribution of Sec. 3 is always of in-
terest, since it has to do with the distribution of
the eigenstates themselves, but it tells us essen-
tially nothing about the structure of the eigenstates.
We thus turn to a more detailed decomposition of
the R, space, that corresponding to configurations.

which will give the averages and trace equivalents
for a general operator as long as its decomposition
O= QO([k; R']) is available.

%hat now is the extension which, mi.thout re-
course to normal-form expansions, mill enable us
to deal with operators of indefinite (vectorial) par-
ticle rank'7 Just as we did before, in the transi-
tion from Eq. (13) to Eq. (14) or (46)- (50), we

may introduce a set of Lagrange polynomials or
trace operators orthogonal on a defining net. If
me wish to deal with an operator 0 whose vectorial
rank &[u] (i.e., rank in the ith orbit &u, ), then it
follows from the direct-product nature of the sys-
tem that the density operator on the u-net factors
according to the orbits, and me have

p ., ([k])= ~p.,(&;)

( ~).;,. (n, -a, —
1)(m,)

the average of 0 being then given by the natural ex-
tension of Eq. (14).

This in fact is not very useful, for usually we
shall deal with operators 0 which have a specified
maximum Scalar rank u. Then the maximum ranks
in the separate orbits are also restricted to ~g but
there is a correlation between them. With a
(0+ 1+2)-body Hamiltonian in a two-orbit configu-
ration, we have for example [k]= [5, 0], [1, 1],
[0, 2], but [5, 1] and [K, %] would be ruled out. ln
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the t =2 case, then, we should take the (" ) dimen-
sional t urngular net (t, + t, ~u) rather than the
square net (t, &u) appropriate to Eq. (69); this con-
stitutes a major simplification, since the new net
has fewex and simpler elements; and similarly for
arbitrary /. %e shall indicate the new density op-
erators as p„([t]).

Consider as an example l = 2, u = 5, [t ]= [1,2] as
shown in Fig. 2. We need an operator of (mixed)
rank ~5 which gives zero for all points on the net
except for unity on (1, 2). Then noting that there
are three varieties of linear factors [(0+ 1)-parti-
cle operators] which annihilate along a line we see
that

p, ([1,2]) = ~,n, (n, —1)(n —4)(n —5) .
A little consideration will show that the same kind
of linear factoring is valid for all points of the net,
for arbitrary u, and finally for an arbitrary dimen-
sionality /. The result then, as may easily be
verified, is

which gives for the average

x ' ~ ~ ~ ' (0)r'~, (t-u), (72)

where t=Qt, , m =+mt i The [m] dependence of
(0)™is, of course, that of a uth-rank polynomial
in the I variables m, . . . m, .

Once again, just as in the scalar case, the ele-
mentary net (the triangular net about the origin
which constitutes the defining space for 0) will usu-
ally not be convenient to deal with, because of the
complexity of the necessary input traces. In the
scalar case a "most economical" net and the corre-
sponding density operators were easily found but,
because of a failure of linear independence, this is
not at all true in the present case. It has been
shown by Kim" that a "most economical" lattice in
the l-dimensional case derives from the elemen-
tary net by a kind of reflection-contraction process
111 W111cll [t l- F*l whel e ti*-

(imari
—2ti + 2) rf ti ls

odd, f, =—,'t,. if t,. is even. This replaces the tri-
angulax elementary net by a set of triangular nets,
one at each corner, the largest of which corre-
sponds to ~2 or 2(u —1) according to whether u is
even or odd. The general solution for p„ for this
net is very complicated but in any ease of interest
we may numerically invert Eq. (72) to express the
old input traces in terms of the new ones.

Instead of using this method we shall in the next
sections use a normal-form decomposition of II'
[propagating the separate parts via Eq. (67)] to ex-

, press the configuration widths in terms of the
Hamiltonian matrix elements, and shall give also
a decomposition into partial widths. In a later
paper a quite different solution for the width prob-
lem will be derived by use of a unitary-group de-
composition of the Hamiltonian and expressed in
terms of physically significant quantities. The en-
tire structure of the width expressions will then
become transparent.

6. SCALAR AND CONFIGURATION MOMENTS
IN THE SPHERICAL SHELL MODEL

In this section we derive and discuss expressions,
in terD18 of the HaxQiltonlan matrix eleD1ents for
the centroids and widths of the scalar and configu-
ration spectral distributions. %'e are particularly
interested in the case where the set of single-parti-
cle states corresponds to a number of spherical or-
bits and we work, therefore, in the usual shell-mod-
el or spherical-tensor representation in which both
states and opexators carry definite angular mo-
mentum (and isospin where that is relevant). Actu-
ally, since we do not now consider distributions
for fixed angular momentum, this choice of repre-
sentation is not at all essential and it is, in fact,
a slightly restrictive one since, at first sight, it
precludes a consideration of nonspherical orbits.
This restriction however is more apparent than
real, because it is clear from the discussions
above that the eentroids and widths must be ex-
pressible in terms of linear and quadratic traces
in the matrix-element space, and the translation
of such quantities from one representation to
another is not difficult. %e choose the explicit

FIG. 2. Hepresentation of the density operator in
Eq. (Vo).
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spherical basis because that will be particularly
convenient for future work. In dealing with the
propagation of the quadratic traces we shall use
the normal-form method, leaving until later the
application of other methods. The essential for-
mal problem is then that of decomposing H and II'
ln an appropriate way and evaluahng the N-state
expectation value of the various parts.

We adopt a notation" which emphasizes the ten-
sorial properties of the various quantities arising
in the spherical shell model. Single-particle or-
bitals are characterized by principal quantum num-
ber, parity, angular momentum, and, where rele-
vant, the isospin {whose value is t= —,'). We can for
most purposes describe all these by a composite
label x which, among other things, then defines
the tensorial ranks. In the isospin formalism, the
2(2j„+1) single-particle states corresponding to
such an orbital are distinguished by their projec-
tion quantum numbers (p.„p.,) —= p. . The basic crea-
tion operator is A& which creates a normalized
single -particle state

a"„~0)-=q"„.

The destruction operator 8" is related to the Her-
mitian conjugate of A"„as

B"„=(-1)"'"(A" „)t, (74)

the phase being chosen to cause 8"„ to transform
as the I[L component of a spherical tensor of rank z.
The notation is a direct-product one so that in a
(j, f) formalism we have, for example,

(-1)"= (-1)'""" = (-1)'"

But we can also interpret the equations via a j for-
malism in which isospin does not occur (at least
not as a tensorial rank) or even via a t formalism.
In some cases it will be found advantageous to in-
troduce more explicitly some of the single-particle
state labels.

The normalized two-particle state is

-g„(~"x~')„'(0)-=~~, s;r, ~),
@4',

g„, =1/W2, r=s,

where {r~ p, ) =—(eljq /I~Jr) ln an lsosplQ formalism
and the indicated (x) product defines the usual angu-
lar momentum coupling. The coupled commutation
rules for the basic operators are then

(~» x g s
) I+ ( \ )» + s I'(g s -x g» )

r = 0

(p» x ga)I'+ ( 1)»+s 1(mls x fp-)1 —0

(~" ~ )"(-1)""-'(~"~")'-[.1 ' ~,.~,
where [x] denotes the statistical weight of orbital y,

[r]= X„=(2j„+1)(2f„+1)= 2(2j„+1)

in the (j, f) formalism. 5„,=0 unless r, s define
the same orbital. It will be found convenient, al-
loming for the fact that there may be active orbits
differing only in radial quantum number, to intro-
duce the symbol g„, which distinguishes between
orbits only according to their tensorial rank

5„,=5(j„,j,) [in j or (jt) formalisms] .

For the Hamiltonian we take a (0+ 1+2)-particle scalar operator, the separate parts of which via Eq.
(26) have the form

If(o) =a„
ff(1) = g.„.[~]'~'(~ xa ), (80)

ff(2)=--," g [r]''K -'l -'g „[(~ xg') x(g x&")']' .
ratul

The one- and two-body matrix elements of II, denoted by e and 8', respectively, have the following symme-
try properties:

e „,=—(r ~rf (1))s) = e,„=5„e„,
(rs, r

f I(I-)2ftu, r) = (-1)""r W,"„,„=(- 1)"" 'Wr, „, = ( 1)'"-~- g r, = g r (82)

We shall sometimes write the diagonal single-particle energies e„„as ~„.
Similarly, H'=—K is a (0 —4)-particle operator"

H'= Qz(f)
N=O

and on carrying out the commutations required to put E into normal form, we find
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K(0) = (H,)',
K(1) =Q (2H, [r]'"e„,+g (r]" c„gag }(A x B )',

rs

K(2) = Q [I']'"( 2H—, r.„, 'g, „'W„„„—E„,E „—-Q»f„, 'g W„
rstur

-lg -I& WI' I g g -&g -&
g

-&Wr WI' )[(Ar x A» )
I'x (Bt x Bu) I']0

(84)

(85)

(86)

K(8) — Q [~]l/2( &

g lg -1~ WI' 5 ( 1)»+ I'-6 y &+ g
-lg -lg -lg -1[F]1/2

rstuef E
rr'z

xW' W' (-I)/'"- W(r'&fr;ga)H[(A" xA')rxA']~ x B/ x (B' x B") ']~}' (87)

K(4) = Q & [g]&/2~ -&~ -&~ -&~ -&Wr Wr' J[(Ar x A )rx(A» xA/)r ]&x[(B& x B")rx(B' x B»)r ]&}o
rstuefgh
rr~

(88)
All orbital summations are unrestricted. The sumbol W(F efI".gA) in Eq. (87) is the usual Racah coeffi-
cient. It is clear a priori, and demonstrated in these equations, that the product H(E)H(k') (for k ~ k') con-
tributes to K(R), K(k+ I), . . . , K(k+k'). Note also that the matrix elements of the k-particle part of H(R)H(k)
are those which arise from the usual matrix product in the k space, this coming about because the k space
supplies a representation of K(k) as well as of H(k). Examples are the e' terms in K(T) and the W' terms
in K(%). The matrix elements of K(k+k') arising from H(k)H(k') are those of a kind of direct-product ma-
trix, examples being the»Wterms in K(S) and W' in K(4). These terms, of course, arise from transform-
ing the product to normal form but ignoring all the commutator contractions.

For the scalar centroid and width we use Eq. (24) for which the necessary input is the set of N-state val-
ues of H(t) and K(t). These we evaluate by the standard methods and we find

«(5))"=H, ,

«(I))' = Q N„~„, ,
r

«(&)&"= lZA, .„,
rs

(K(5))"= H, ',
(K(1))"= Q (2HP „~„„+gN„~„„~,„),

r k

(K(5))"=Q[Hg„,„,+N„N, e„„e„—N, e„e,„+P(A„,„e»+»e„g„„,)+ ,QB„,»], —
rs

(K(&)&"=~[N»&~A-- '~N» 'A-, A~»~.~.» -A-.~&~. —&~A-~* '&B-i»] ~—
(K(4))"= Q (4A„,„Q,„,„+4B„„„—N, 'A„,„+,„,„5„),

rstu

where the orbital summations are all unrestricted.
We have introduced here the quantities

A„„„=l„, 'r, „'Q[F]W„„„,
r

B„„„=g„,-'g,„'2[r](w„'„„)',
r

(89)

(9o)

(91)

(92)

(93)

(94)

(95)

(98)

(97)

which to within normalization may be regarded as deriving from a 1" averaging of the matrix elements of
H(K) and [H(2)]' between the two-particle states (r, s) and (t, u). In terms of these it is clear that

W„, = (N„N, )
' Q [JT]w~r„, =(N„N, ) A„,„,, xmas (98)

is the average two-body interaction between two nucleons in different orbits, r, s. When they are in the
same orbit the average is

~rr ~r ~~ ~rrrr +r +r +rrrr
JT

(99)
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Then, considering all the two-nucleon states, we have (for the trace instead of the average), writing % for
the two-particle matrix of H(2) and W for the over-all average interaction energy

((8( )))' =Tr(W)=(&)IV =+ N SW„,,+g(2')1V, = —,'pA„„,
r os r r,sr(s

(100)

(([H(f)]'))' = Tr (m x W) = —,
' Q g„„„.

rstu

Finally, the following symmetry properties for the A's and 8's follow immediately from Eq. (82).

rsrs srsr

A„„„=A,„„,= (-1)""' "A,„„, ,

rstu +srtu ~rsut ~srut turs

The centroid of the complete scalar distribution now follows via Eq. (24) and is

(101)

(102)

(103)

(104)

(106)g(m) = Qf) =If, + —gN„~„„+
( )

—.'gA„„, .
r rs

For the dispersion we may do the same for (H')~ and then subtract the square of the centroid polynomial.
Or equivalently we can recognize that o'(m) is the second moment (and similarly for the pth central mo-
ment) of

2

II-g(ff(t))" =H H, ~n--W"
k ' 2 (106)

the subtracted term being simply the linear trace equivalent of II. The result is

o2(m) (tf2) m ((@%)2

(107)
m m (m —1)

)
m (m —1)(m —2) m (m —1)(m —2) (m —3)

N N(N —1) N(N —1)(N —2) N(A —1)(N —2) (N —3)

which, as will be recognized from the m polynomials, exhibits separately the dispersions from the (1 —4)-
particle parts of II'. Here

Q = Q N, (e„)'——(QN, e,„)
rs r-

1 2
= Tr(e xe) ——Tr(e)

x=2PA „„.„-'(gN, ,„)(g~...,),
2

4 ~ """ 2N(N —1)rstu rs

N= Tr(VP x VP) —
2

(Tr&)',

(108)

(109)

(110)

~@s rsru tuts ~su
rstu rs

where, in correspondence with% as used in Eqs. (101) and (110), e in Eq. (108) is the one-particle matrix
of ff(7). The terms Q and y then have a simple significance, being the one- and two-particle matrix dis-
persions, i.e. , the dispersions of the one- and two-particle Hamiltonians, each considered as a matrix op-
erator in its defining space. The parameters X, Z involve less familiar "partial" matrix products. Ob-
serve that each of these four separate terms propagates in its own characteristic way, the Q and Y poly-
nomials, for example, being proportional to (,")("„)with &=0, 1, respectively. The significance of the

new forms and of the partial products will become clear when we consider the unitary-group decomposi-
tions of the widths.

%'e turn now to configurations. In this case we need a further decomposition of 0 and H' in order to iso-
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late those parts which are number conserving and have a definite rank in each orbit separately. The R-
state expectation values of these operators are then the input [see Eqs. (24) and (67)]. The decomposition
follows by inspection in Eqs. (80) and (85)-(88). Using H(r's t'. . . ) to indicate that part of H which has
particle ranks a, b, c, . . . in orbits r, s, t, . . . , respectively, we see for example that

H(rs) = -+[I ]v»~r [(A~ xA»)rx(B~ x B»)r]o
r

it being understood of course that x4 s. The relevant N-state expectation values are then

(H(o))"= H, ,

(H(r))" = N„e„„,
(H(r'))" = —.'A„„„, ,

(H(rs))"=A„,„, ,

(K(o))"= (H,)',
(K(r))"= 2''„e„„+N„Q(e„»)

(112)

(113)

(114)

(115)

(116)

(117)

(118)

(K(r'))"=N„(N„—1)(e„„)'+HP„„„„+2+a„»A„„„»+ —,'Q B,„», (119)

(K(rs))"= 2N„N, e„„e„—2N„(e„,)' 2+HQ„,„,+ 2+(e„»A,„,» + e,»A„,„» + 2Q B„,»,
(K(r'))" = (N„—2) eA„„„,+N„'Q (A„„„,)'5„» —2Q B„,„»,

(120)

(121)

+N. '+(A;,»)'5.» -+B-.» —2~ B-»» (122)

—Q (B„„»+B„»,»+B„„»)+2N„'QA»,„,A», „,5»„+2N, 'QA»„,„A»„,5»»+2N, 'QA»„, „A»„,5»,
k

(123)

(K(r'))" = ~B„„„„+(-,' —N„-')(A„„„„)',

(K(r's))~ = B„„„, (1 —2N„')A„„„„A„„,—2N„'(A„„„,) 5„,
(K(r's'))"= 2B„„„+B„,„,+ gA„„„„A„„+(1 N„' —N, '-)(A„„,)' —4N„'A„„„,A„„,5„,
(K(r'st))"=B„„„+2B„,„, +A„„„„A„„+2(1—N„')A„,„,A„„, —2N, '(A„,„,)'5„

-4&r 'A„rsArtst &rs -4&r '&-rtArsts&rt ~

(K(rstu))" = 2(B„„„+B„„„+B„„„)+ 2(A„,„,A,„,„+A„,„,A,„,„+A„„„„A„„)—4N„'A,„„A„„,„5„,
+r AsrsuArtut ~ru ~+r trts rusu ~rs +s +rsrt sutu ~st

A

s +rsru+stut ~su ~t rtruAtsus ~tu

(124)

(125)

(126)

(127)

(128)

The centroid and dispersion polynomials are now formed just as in the scalar case. The terms in Eqs.
(113)-(116)propagate via Eq. (65) to give the energy polynomial for the configuration [m]= [m„m„. . . m, ];

g([m]) = (H)™=H, ++M„(1)xN„e„„++M,(2) x»A „„,+Q M„(1)M (1) x 3A„,„, (129)
rs

where

m„(m„—1)~ ~ (m„—k+ 1)
k k N„(N„—1)~ ~ (N„-k+ 1)

I (130)

with these polynomial quantities varying in value from 0 to 1 as the orbit fills. Equation (129) would follow
immediately from our definitions of the average energies. For the dispersion we may similarly propagate
the terms in Eqs. (117)-(128)and then subtract from the resultant polynomial the square of the centroid
polynomial [Eq. (129)]. Alternatively, we may subtract from H its linear trace equivalent
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which is equivalent in matrix elements to
I r0,-0, ~„„-0, V„„„„-m"„„„„-W„,

r rO'„,„, S'„„,—8"„,
(132)

The forms here, if not obvious, are derived from Eqs. (97) and (129). The second moment of the new op-
erator is then simply the variance. The result is

&'([m]) = Q M„(1)[N„g (e„,)'(1 —5„,)]++M„(2)(-,'Q B„„„—,'[N„(N—„—1)] '(A„„„„)'+2Q e„„A„„„,(1 —g„,))

+ Q M„(1)M, (1)(-.' Q B„.„--,'[N„N, ]-'(A„,„,)'+ 2Q ~„A,„„(1—f„,) -N„(~„,)']

+ Q M, (3)([N„(N„-1)]-'(A,„„„)'——.
' Q B„„„+N„-'Q(A„„„,)2i„,(1 —C„,)j

++ M„(2)M, (1)([N„N,]-'(A„.„,)'-QB„„,——,'QB„„„-4„,A„„„,+2N„-'QA„„„,A,„,„i„,(1 —S„,)

+N, 'g (A„„,)'i,„(1-V„))+Q M„(1)M, (1)M,(1)[--,'P B„„-2~„,A,„„

+N, -'QA„,„,A„„i„(1-S,„)]+ Q M„(4)(-,'B„„„„-—,'[N„{N„-1)]-'(A„„„„)']

+Q M„(3)M, (1)[B,„„,—2N„-'(A„,„,)2i„,] +Q M„(2)M, (2)f
—B„„,+ —B„,„,

p[N N ] (A, , ) 2N, A„, A, 5 3+Xi M( )2M(1) Mg(1)[ 2B„,) + B, ,g
N (A„,„g) &,g

—4N„'A„„„,A, „„5„,]+ Q M„(1)M, (1)M, (1)M„(1)(-,'B„„.—N, 'A„,„„A„,„5,„) . (133)

The summation Q indicates that terms with any two summation variables eciual must be omitted; otherwise
the summations are unrestricted. The product 5„,(1 —5„,) designates a term which survives only when or-
~:"'tais x and s are distinct from each other but differ only in their principal quantum number, such as the
1s and 2s orbitals. The origin of each term in Eg. (133) is clearly indicated by the polynomial factors.
Thus terms M„(2)M, (1)M, (1) arise from that four-body part of H' which is a two-body operator in orbit r
and a one-body operator in orbits s and t. The ciuantities B„„„—(",~) '(A„,„„)'and B„,„, —[1V„N,] '(A„,„,)'
which appear in Eci. (133) are proportional to the variance of the two-body interaction between a pair of nu-
cleons in the same and different orbits, respectively. The configuration widths. do not depend on the diago-
nal single-particle energies e„„-=c„,as is clear formally from Eqs. (132) and (133) and otherwise from the
fact that an operator which is a multiple of unity in a subspace does contribute to the energy but cannot, con-
tribute to the dispersion. The same is clearly true of the partial width. There is an incipient paradox
here; a partial width connecting two subspaces is unchanged if we move one of them so high up in energy
that its effects on the other subspace become negligible. But the paradox disappears when we remember
that the admixing intensities depend in the limit inversely as the square of the centroid differences.

A decomposition of the width into partial widths, whose importance we have already stressed, is
achieved via an intermediate-state expansion

'{[ ])=Z '([; '])= Z l&[ ] I3'l[ ']p&l'.
[ ih']

6. e. [m]
8 ~ [m']

We may think of [i5'] as generated from [m] by the excitation of a particular number and type of particle-
hole pairs; [m, +1, m, -I, m„. . . , rn, ] is a particular 1p-1h excitation, and so on. We see easily they
that, in Eg. (133), the terms B„„„„,B„„„(A„„„,)', and (A„,„,)' are due to the internal mixing of Op-Oh

states; the terms (e„,)', e„A„„„„e„,A„~, , B„,», B„„„(A„„„,)', (A„,„,)', A„„„,A„„, and A„,„„A„,„are
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due to the admixing of Op-Oh states with lp-1h states; the terms B„„„,B„„„,and B„„„aredue to the ad-
mixing of Op-Oh and 2p-2h states.

We may thus decompose the variance into terms each of which involves intermediate states of a unique
configuration. We now list these partial variances using the notation that, for example, o'([m]; r 's "I"')
arises from the process

[m]- [m„m„. . . , m„—f, m, + 1, m, +1, . . . , m, ]- [m],
where, of course, the orbits r, s, t are distinct. We find

v ([m]:0)=Q [M„(2) —2M„(3) M, (4)] 4B„„„„—4 2" (A„„„„)'
1

r

+ g'[M„(1)M, (1) —2M„(2)M, (1)+M„(2)M, (2)] B„,„, -— (A„,„,)'
rs

(135)

o'([m]:r 's") = M„(1)[1-M,(1)]xN„(c„,)'+M„(2)[1-M,(1)]x2e„,A„„„,

+M„(1)[M,(1) -M, (2)] x2m„gA„,s, + [M„(2) -M„(3)]/1-M, (1)]x 2 B„„„,
+M„(1)[M, (1) —2M, (2) + M, (3)] x 2 B „,+M „(2)[M, (1) —M, (2) ] x 2N„'A„„„,A„„,5„,
+ M„(3)[1-M,(1)]xN„-'(A„„„,)'5„,+M„(1)[M,(2) -M, (3)]xN„'(A„„,)'5„,

+M„(1)[1 M, (1)]Q [M-, (1) -M, (2)]xB„„,+M„(1)[1-M,(1)]Q M, (1)x2e„,A„„)
t t

+M„(1)[M, (1) -M, (2)]Q M, (1) x 2N„'A„„,A„„,5„,+M„(2)[1-M, (1)]Q M, (1)
t

x2N„'A„,„,A„„,5„,+M„(1)[1 -M, (1)]P M, (2) xN„'(A„„,)'5„,

+M„(1)[1-M,(1)]g M, (1)M„(1)xN„'A„„,A„„,„-5, , (»8)

cr'([rn]:r 's") = M„(2)[1—2M, (1)+M, (2)]x-,'B„„„,
o'([m]:r 's "I")=M„ (2)[1 -M, (1)][1—M, (1)]x —,' B„„„,

o'([m]:r 's 'I")=M„(1)M,(1)[1—2M, (1)+M, (2)]x-,'B„,«,
o'([m]:~-'s-'t"~") =M„(1)M, (1)[1-M,(1)][1-M„(1)]xB„„„.

(137)

(138)

(139)

(140)

The summation symbol Q in Eq. (136) indicates that the summation variables are distinct from x and s.
If we add together the terms from Eqs. (135)-(140)we reproduce the results of Eq. (133). The separate
terms have certain obvious vanishings; for example, any r ' term vanishes for a configuration with less
than two particles in orbit r It shou.ld be clear that the widths are unaffected by the (H- K) transformation
of Eq. (131). The (r 's") and (r"s ') terms involve the same matrix elements of H but are not equal, be-
cause of an asymmetry arising from different occupancies; a way will be described in a later paper in
which this can be used to give an inductive method for partial widths when we deal with more complicated
group symmetries.

A familiar result emerges if one asks for the change in the centroid energy due to the addition of a nucle-
on in the rth orbit. Calculating the difference b S„between $([m„m„. . . , m„+1, . . . , m, ]) and

$([m„m„.. . , m„, . . . , m, ]), one finds via Eqs. (98), (99), and (129) that

68„=e„„+Qm, W,„,
t

(141)

a result entirely to be expected. Similarly, on adding a pair of particles in the same or different orbits we
find, in an obvious notation,

~8„„=2~$„+W„,

~8„,=~8„+~8,+ W„, .

7. MOMENT RENORMAI. IZATIONS

Shell-model calculations being feasible only in rather small spaces, we are forced to restrict ourselves,



114 J. B. FRENCH AND K. F. RATC LI F F

usually, to dealing with a small set of configurations, a particular class of particle-hole states, or to a
set of representation subspaces of a group which defines an approximate symmetry of H (this latter being
an extension of the notion of configurations). In this section we cast the configuration polynomials into
forms relevant to the first two types of restriction. " The idea is to consider the subspace embedded in a
larger one, whose effects on the widths we then take account of by permitting transitions to intermediate
states which lie outside the smaller subspace, this then generating a width external to the original sub-
space.

As a minor example, if we consider (d„,), firstly as a subspace with variance v'(m), and secondly as a
complete space with variance o'([m, 5]) [the zero occupancy being for the (d„„s»,) orbits], we have

v'([m, 0])= v'(m) + P'(m) .

Since the external-width polynomial must involve at least one particle in (dz„s,&,), it can have no quartic
terms in m, being then a third-order polynomial as indicated. In fact, since v'(m) and o'([m, 5]) are both
known, the explicit form of the external-width polynomial can be easily written down.

For the general case we should take account also of orbits which are inert because they are filled. Then
dividing our / orbits into l„active orbits, l~ inert empty orbits, and /„ inert full orbits, we may rewrite
the polynomials of Eqs. (129) and (133) for configuration centroids and dispersions. Depending on whether
orbit r belongs to class A, Z, or F, the single-orbit polynomial M„(m„) is unchanged, zero, or unity; the
dependence in Eqs. (129) and (133) on the occupancies of the inert orbits is thereby eliminated and the poly-
nomials originally in l variables become polynomials in l~ variables. The algebraic form of the resulting
renormalized width polynomial is complicated and we do not write it here. The energy polynomial becomes

h ([N~~m„~0~]) =H, +QN~f —gQA„~~~++M„(1)Xiv„e„„++M„(2)X 2A„„„„+QM„(1)M, (1)X 2A„,„, .
r rs

(144)

Here the symbols r, s, range over the active (A) orbits, and o., P over the inert filled (E) orbits. The e

quantities are given by

e, , = (e;,. + N; 'Q A8;8,)5;, ,
8

(145)

where i, j refer to any of the orbits.
The energies defined by Eq. (144) may be regarded as "renormalized" in the sense of the above discus-

sion, and similarly for the variances. If, in them, we put to zero all the coefficients which make refer-
ence to the inert orbits (F, E) we are left with the unrenormalized quantities which take no account at all of
the inert orbits. The renormalization effects on the centroid energies are, of course, trivial but this is
not at all so for the variances.

The single-particle e parameters enter in the renormalized quantities only in the e quantities of Eq.
(145), which are obviously the Hartree-Pock energies (as defined by the original orbits, no variation hav-
ing been made to produce the optimal results). The condition that a closed-core state [M~~5„~0E] can be an
eigenstate of H is that

(145)

where the explicit form comes via the operation defined above. Since each term here is positive definite
[see Eq. (97) for B], it must vanish separately. The vanishing of the ~„, implies zero single-particle non-
diagonal energies involving an occupied and an unoccupied orbit (the usual Hartree-Pock condition) while
the vanishing of 8», would imply the absence of two-particle-two-hole excitations in this representation.
The energy of the HF state is then the centroid energy

(147)

the usual result. Thus, if a HF calculation has been performed the quantity (-,'Q„S„,B z»)'" computed in
the HF basis is the width of the distribution of the HF ground state over the actual eigenstates of the sys-
tem, and thus represents a measure of how close the HF ground state is to an eigenstate of the complete
Hamiltonian. The HF energies also have the expected interpretation, as single-particle and single-hole
energies, in terms of the differences between centroids. We have
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e„=h([&r lr" IOs]) —h ([&~1410m]),

~..= h([&~lo~los]) —h([~ 'lo„lo ])

(148)

(149)

in an obvious notation.
Finally we turn to the particle-hole truncation scheme in which one treats a subset of normally filled or-

bits as a vacuum whose excitations give the various particle-hole states. We could go back to the original
Hamiltonian, make p= h transformations for the orbits filled in the vacuum, and then proceed just as
above. It is often simpler, however, to introduce polynomials for holes instead of particles. The basic
transformation (for the density operators) is given by Eq. (60) and this in turn gives for the polynomials
of Eq. (130) the result

M„)s) = g )-))'(, )
M g), .

t=o

where
-

(,) (h.) (N.)-'

(15o)

(151)

= (N —m ) being the number of holes in orbit o.. We then find for a configuration [Elm], with h holes
distributed over the hole orbits and rn particles over the particle orbits, that

h(elm]) = h([0lo])++M„(1)xA'„e„„-QM (1)xA e ++M„(2)x-,'A„„„„
r CY r

++M (2)x 'A +Q—M„(1)M, (1)x—'A„,„,++M (1)M8(1)x—'A„B ))
—QM„(1)M (1)xA„„„„,

(152)

where the particle-hole vacuum energy h ([Olo]) is given in terms of previously defined particle matrix ele-
ments, by Eq. (148). In particular, we find for the (1p-1h) and (2p-2h) configurations, written in terms of
the average interaction energies of Eqs. (98) and (99),

h([n-'lr"]) —h([olo]) = e„„-e..—w„. ,

h ([o. 'lr "])—h ([0 lo]) = 2e„„—2r„„+W„„+g 4g „
(153)

These intuitively obvious results, when coupled with the corresponding results for widths (which derive
in the same way b«whose explicit forms we do not give) will be of consequence in studying the structure
of nuclei near closed shells. Renormalizations, as discussed in the first part of this section, will also be
significant here.

8. SUMMARY AND FINAL REMARKS

We have discussed the essential ideas involved
in the application of spectral-distribution methods
to nuclear structure (and, indeed, to other many-
particle systems). The distributions are charac- .

terized by their moments, expectation values of
powers of the Hamiltonian averaged over. subsets
of states, and these become the central elements
of the theory. A new technique, that of propaga-
tion throughout the lattice of subsets, has been in-
troduced for the evaluation of moments in a cer-
tain class of cases, and in particular to write the
configuration moments as polynomials in occupa-
tion numbers. These have been rearranged in
ways corresponding to common vector-space trun-
cations used in spectroscopic calculations, this
focussing attention upon the difference between
truncations of the operator whose moments are be-
ing considered and truncation of powers of the op-
erator; the first of these is equivalent to a restric-

I

tion of the space in a detailed calculation, while
the second goes beyond that. Having explicit poly-
nomials whose coefficients are Hamiltonian inte-
grals, we shall be able, for example, to see which
parts of the interaction are dominant in various
parts of the total space. We have indicated a num-
ber of domains in which moment methods may be
usefully applied; the following paper and others in
the future will be concerned with that. It may turn
out that a valuable use of these methods will be in
the development of a kind of perturbation theory,
based on moments, which will permit the exten-
sion of finite-space calculations.

Since we cannot look forward to dealing with high-
order moments, it will be a requirement on the
subspaces and operators with which we deal that
the distributions be well described by a few low-
order moments, this in turn requiring that they be
close to normal. The experience has been that
this is liable to be an excellent assumption, al-
though a satisfactory theoretical justification for
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it is not presently available. We rely instead on
detailed study of examples, some of which have al-
ready been given" and others of which are given in

the next paper. A very important aspect of the mo-
ment methods is that they display the explicit de-
pendence of the quantities of interest on the Hamil-
tonian parameters and structure, at the same time
reducing a highly nonlinear matrix problem to one
whose nonlinearities are of low order; basic to
this procedure is the assumption of near normality

which in turn implies that the higher cumulants
(which, for example, determine fluctuations in the
distributions) carry only little of the interesting
physics.

We mention finally that besides giving applica-
tions of the methods above, future papers will de-
scribe new methods which are particularly rele-
vant for dealing with group symmetries and more
complex representation subspaces, and will also dis-
cuss strength distributions for various processes.
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The energy moments of spectral distributions are used to investigate the structure of spec-
troscopic calculations. Eigenvalue distributions are used to predict energy spectra, which
are compared with the results of matrix diagonalization. The nature of the corresponding
eigenvectors is similarly analyzed. The propagation of moments for scalar and configuration
distributions is illustrated throughout the sd shell. These scalar moments are then used to
estimate the trend in theoretical binding energies for these nuclei and in turn are compared
with empirical data. Finally, we investigate the dependence of the energy and wave function
of the ground state of 0'~ upon the vector space underlying a theoretical calculation. The un-
renormalized Kuo-Brown matrix elements are employed in this analysis, and the role of
multiple particle-hole excitations is discussed.

I. INTRODUCTION

The concepts of spectral distributions, of opera-
tor averaging, and the propagation of such aver-
ages through a sequence of subspaces have been
the subject of recent investigations. ' ' In this pa-
per we apply these ideas to a number of examples
that are closely related to conventional nuclear
spectroscopy. The techniques which we develop
below are founded on the moments of spectral dis-
tributions, i.e. , the averages of powers of the Ham-
iltonian over various subspaces of the complete
many-particle space. One may adopt various atti-
tudes towards these moments. They may be re-

garded as measures of the average behavior of the
Hamiltonian in various subspaces and then be used
to study various formal problems. Alternatively
they may be used in a fashion that is complemen-
tary to conventional spectroscopy in which one sets
up and diagonalizes the Hamiltonian matrix in a
representation generated by a finite number of sin-
gle-nucleon states. This latter attitude is adopted
in this paper. The spectral moments are used to
make predictions of spectroscopic details for
spaces that are too large for conventional matrix
analysis. The general quality of these predictions
may be assessed by working in smaller spaces in
which comparison with exact diagonalization is


