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We examine the binding energy of nuclear matter for exactly phase-shift-equivalent poten-
tials. We generate these potentials by applying a short-range unitary transformation to the
Reid soft-core potential. All potentials have a one-pion-exchange tail. We find that, for the
potentials studied, variations of up to 9.5 MeV in the binding energy and 0.33 F in the satura-
tion density occur. The variations in binding energy Are linearly correlated with the wound

integral K for those potentials that give nearly the same deuteron electric form factor. An in-
crease in K leads to less binding in nuclear matter. The sensitivity of the binding energy is
somewhat greater to the S&+ D& contribution to K than to the So contribution to K. We give a
theoretical explanation, based on the modified Moszkowski-Scott separation approximation,
to account for the sensitivity of the binding energy to the So and S&+ D& contributions to K.
We also discuss the relation of K and the binding energy of nuclear matter to the off-shell ele-
ments of the T matrix. We discover that far-off-shell elements (q 6 F ) play a significant
role in nuclear matter.

I. INTRODUCTION

The two-nucleon elastic scattering data and cer-
tain bound-state properties provide the only direct
experimental criteria one can apply to the two-nu-
cleon interaction. The scattering data only fix the
asymptotic form of the two-nucleon wave function;
the wave function at short distances, aside from
meson-theoretic constraints, ' ' is undetermined.
Equivalently, the scattering data determine the on-
energy-shell matrix elements of the transition (T)
matrix; the off-energy-shell T matrix is undeter-
mined by the two-nucleon data. The question aris-
es —how sensitive are the properties of three- and
more-nucleon systems to the short-range part of
the two-nucleon wave function or to the off-energy-
shell T matrix~ This paper considers this ques-
tion for infinite nuclear matter. The investigation
of off-shell effects in nuclear matter is especially
important in view of the disagreement between the
binding energies obtained from "realistic" local
potentials (10 to ll MeV/A) ' 8 and the semiem-
pirical mass formula prediction of 16 MeV/A.

Recently a number of investigators have studied
off-shell effects in proton-proton bremsstrah-
lung. ' The results of these studies indicate only
small off-energy-shell effects. Investigations into
the off-shell effects in the three-nucleon bound-
state problem are still in the preliminary stag-
es.""On the other hand, several investiga-
tors''3' "have suggested that off-shell effects in
nuclear matter are definitely very important.

In a previous paper' the present authors report-

ed variations of up to 20 MeV per particle in the
binding energy of nuclear matter for potentials
that give nearly the same fits to the two-body data.
These variations were principally attributable to
drastic off-shell alterations in the tensor force.
Coester et al. ' found similar variations in the S-
wave potential energy contribution in nuclear mat-
ter for exactly phase-shift-equivalent potentials.

This paper investigates, in detail, the binding
energy of nuclear matter for exactly phase-shift-
equivalent potentials. The potentials we consider
are generated from the Reid soft-core potential"
by a special case of the rank-two unitary transfor-
mation described by Coester and co-workers. "
Our potentials differ from those in Ref. 14 insofar
as we start with a potential that fits the experi-
mental two-body data. Also, we transform the
wave functions in the coupled Sy+ Dy state as well
as the uncoupled 'S, state. For the '8, +'D, state
we classify our potentials according to their deu-
teron electric quadrupole moments and electric
form factors. All potentials have the required
one-pion-exchange (OPE) tail. Furthermore, the
wave functions of the potentials studied differ
mainly inside a distance of 1 F. Within this dis-
tance (1 F) the ambiguity concerning the two-nu-
cleon wave function arises from both experimental
and meson-theoretic considerations. '

Two goals motivate our study. First, we wish
to determine how important off-shell effects are
in nuclear matter. Second, we wish to discover
how variations in binding energy are related to off-
shell matrix elements. Several workers'' '" have
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suggested that the binding energy of nuclear matter
is related to the "wound" integral v."'" We study
the ~ dependence of the binding energy of nuclear
matter in Sec. III of this paper. We find that the
binding energy, at a fixed density, is a linear func-
tion of ~. In Sec. IV we discuss the theoretical
foundation of this linear relation on the basis of
the modified Moszkowski-Scott (MMS) separation
approximation. " In Sec. V we discuss the sensi-
tivity of nuclear matter results to the off-shell T
matrix. We concentrate on the relation of x to the
"half-shell" T matrix, which is determined by the
two-nucleon scattering wave functions. ' Our con-
clusion is that the binding energy of nuclear mat-
ter is sensitive to a large region of the half-shell
T matrix. Far-off-shell effects are important.
In Sec. VI we summarize our results and suggest
how nuclear matter can be used to help pin down
the two-nucleon interaction.

Before we present the results of our nuclear
matter calculations, we describe our phase-shift-
equivalent potentials. We also briefly discuss our
solution to the Brueckner equation. To these two
topics we devote Sec. II.

II. PHASE-SHIFT-EQUIVALENT POTENTIALS
AND THE SOLUTION OF THE BRUECKNER

EQUATION

Phase-shift-equivalent potentials may be gen-
erated by the application of a short-range unitary
operator U to the two-nucleon scattering solutions
to the Schrodinger equation, ' "' ' i.e.,

4"(r) = U4" (r) and 4"(r) ~4"(r) .

If we consider the special case, U= 1 —2A, where
A is a Hermitian operator, the requirement of uni-
tarity reduces to

A =A

i.e., A is a projection operator. If we further re-
quire that (r~A~r') „~0 faster than I/r, then the
scattering solutions 4"(r) give the same scatter-
ing cross sections and phase shifts as q" (r). Since
U is unitary, orthonormality and completeness of
states is assured. Also, the eigenvalues of the
two-body system remain invariant under the trans-
formation U.

To relate U with phase-shift-equivalent poten-
tials, we consider a Hamiltonian P=T+ V, where
T is the kinetic energy and V the potential energy.
The transformed Hamiltonian f(I) becomes

P= U PU.

If 4 is a solution to P4 =E4, then 4 is a solution
to H4=E4. The transformed Hamiltonian (3) may
be written

P= T+ V —2A V- 2VA+4A VA —2AT —2TA+4ATA .
(4)

We define a "transformed" potential V by

P—= T+ V.

The transformed potential V is given by

V= V —2A V —2VA+4A VA —2AT —2TA+4ATA .
(6)

The transformed potential, V, if substituted into
the Schrodinger equation, gives the same two-
body cross sections and two-body eigenvalues as
V. The transformed potential V, however, does
not correspond to a unitary transformation of the
wave function for a many-body system; therefore,
we should not expect V and V to give the same en-
ergy spectrum in finite nuclei or infinite nuclear
matter.

In this paper we choose {r~A~r') to have the par-
tial-wave decomposition

{r~A~F') = Q g,"(r)g,",(r')y,"""(r)y,"'"'(r')X,",
LL '&M T3

(7)

The quantum numbers L and L' refer to orbital
angular momentum, n refers to the quantum num-
bers J (total angular momentum), S (spin), and
T (isospin), while M and T, are the projections
of J and T. The 'g~"~3 are normalized eigenfunc-
tions of the indicated quantum numbers. The form
(7) is not the most general choice of A. The choice
(7), however, retains all of the required symme-
tries of the N %interaction -[providing g~(r) is
real], and is particularly convenient for numer-
ical calculations.

Unitarity requires that g~(r) be square integra-
ble. If we normalize all the g~ to unity, the uni-
tarity requirement (2) becomes

A» = 1 for uncoupled channels,

J-J sin 8 sin8cos 8
or

J+j sin8cos8 cos 82 (8l

for coupled channels. The parameter 8 in Eq. (8)
is real but otherwise arbitrary.

The operator A defined by Eq. (7) is a projection
operator onto the space spanned by the states
g~ JL, ' for A~J. . = 5~~., or onto sin 8g J,g J",

cos 8g J' j g J j . The operator A has a separable
form in either configuration or momentum space.

In momentum space

"g,"(&)g," (+')
&M~~ nMr 3

x ~asTS($)cy&NTsf (y &)g&
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where g~(k) = f r'drgL, (r)j~(kr). While A is sep-
arable and, in the case where V is the Reid poten-
tial, V is local; V, by Eq. (6), is neither local nor
separable. Therefore solution of the Brueckner
equation" in the momentum space provides the
most convenient method of calculating the G ma-
t;rix in nuclear matter.

The solution of the Brueckner equation in mo-
mentum space is given in detail in Ref. 7. To
solve the Brueckner equation we write the Brueck-
ner G matrix in terms of its partial-wave contri-
butions

x,G» (q, k', &u).
(d —g

(10)

The V-matrix elements and the normalization used
in Eq. (10) are given in Ref. 7. The Pauli Q opera-
tor projects out occupied states, and u is deter-
mined from the self-consistent single-particle en-
ergies given by the prescription in Ref. 19 by
Bethe, Brandow, and Petschek (BBP). In Eq. (10)
we have employed the usual angle average and ef-
fective mass approximations in which Q/(&u -q')
depends only on q, k', and the magnitude of the
center-of-mass momentum (K). We have also as-
sumed a free-particle spectrum for unoccupied
states. We solve the one-dimensional integral Eq.
(10) by replacing the infinite integral by a finite
summation. We solve the resulting linear equa-
tions by matrix inversion.

The binding energy per particle (E) of nuclear
matter, in the Brueckner approximation, is given
by

35 k 4SE= + Q(2J+1)(2T+I)
gCf

1 ko'

(11)

2h2
(k~G((u)~k') = Q i

'
G~~, (k, k', (u)

I ~ "»s
x cy era(k)cynNrst (k t)

The G matrix thereupon is a solution to the partial-
wave Brueckner equation"s

OO

G». (k, k', &u) = V~~ (k, k')+ —g q'dq V~, (k, q)
W 0

According to Eq. (10), the essential input infor-
mation necessary to calculate G and E are the ma-
trix elements of V in momentum space. The ma-
trix elements of the Reid soft-core potential have
been accurately calculated previously. The sep-
arable form of A allows the rapid evaluation of the
matrix elements of V.

We have calculated G and E for various poten-
tials V. The G matrices (G) were calculated for
values of ~ corresponding to the self-consistent
single-particle energies for the Reid soft-core po-
tential with all partial waves. ' The binding ener-
gies so obtained were then corrected for self-con-
sistency by a method we describe in Sec. IV. We
now present the results of our calculations.

III. RESULTS AND DISCUSSION

In employing the transformation (7) we choose

go (r) = C, e 0"(1 —P,r)
for the 'S, state, and

g,"(r) = C, e "o"(1 —P-or),

g,"(r) = C, re "2"(1 —P,r)
(14)

for the S,+'D, state. We also consider the case

g,"(r) = C,'r'e "'"(1—P,'r) (15)

Potential
Qp

(p-i)
Pp

(p-1)

for the 'S, +'D, state. The C~'s are determined
from the normalization requirement fo r'dr ~g~(r)~'
= 1. In Eqs. (13)-(15), ga transforms the L=O
component of the wave function, while g, trans-
forms the L = 2 component.

In the transformations (13)-(15), g~(r) approach-
es zero more rapidly than e ""/r as long as a~ & p. .
Therefore, as long as n~ is greater than the pion
mass (about p, =0.70 F ') the transformed poten-
tial V is asymptotically local and has an OPE tail,
providing that V has these properties. Table I
lists the parameters no and Po for the transformed
Reid soft-core 'So potential. In Table II we list
the parameters eo, Po, n~, P» e,', P,', and 0 for
the sSy+ Dy transformations. Note that, in all cas-

TABLE I. Parameters used for transformed ~Sp

potentials.

K»- ok~ 1
k 1+3 2+k k

(12)

In determining the values of m to be inserted into
Eq. (11), we assume that the center-of-mass mo-
mentum is given by an "average" center-of-mass
momentum. For two particles in the Fermi sea
with relative momentum ko, this average center-
of-mass momentum is given by~

R (Acid)
1
2
3

5
6
7

3.00
4.00
3.00
4.00
4.00
3.00
3.00

1.20
1.60
1.00
1.00
1.04
0.90
0.95
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TABLE II. Parameters used for transformed 8&+ D& potentials.

Potential
EX p

(F-1)
Pp

(F-i)
G2

(F-1)
P2

(F-1)
0.'g

(F-') sine

R (Reid)
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

2.40

4.00
2.40
2.70
2.70
2.20
3.00

0.80

1.25

1.30
0.83
0.88
0.91
0.80
1.20

8.00
3.00
2.40
8.60
8.60
3.60
3.00

0.88
0.85
0.72
0.93
1.00
0.90
0.78

3.50

3.50
3.50
4.20

0.80

0.50
0.00
0.00

~ 0 ~

1
0

0
0
0
0
0
0
1
0
1
1
1
1
1
1
0
0
0

TABLE III. Bound-state observables for potentials 8-26 and the Heid potential. Potentials that do not give the same
electric form factor as the acid potential, to within experimental error, are marked with x.

Potential
PD

(%) (F2) q2= 1.0 3.0
100Eel (q~)/(G&& +G& )2 a

6.0 9.0 12.0 16.07 24.25

R (Ree)
8
9

10
11
12
13

15
16
17
18
19
20
21
22 x
23 x
24 x
25 x
26 x

Approximate
experimental
error (%) b

6.47
6.47
6.47
6.47
6.47
6.47
6.47
6.47
6.47
6.47
6.47
6.47
6.47
6.47
6.47
6.47
6.47
6.47
6.47
6.47

0.282
0.282
0.281
0.279
0.282
0.281
0.278
0.282
0.284
0.282
0.278
0.282
0.282
0.282
0.282
0.281
0.277
0.274
0.234
0.259

1%

87.88
37.81
37.89
37.93
37.87
37.89
87.95
87.88
37.83
87.90
37.94
38.01
88.01
37.93
38.04
38.16
88.96
37.94
38.26
88.18

11.20
11.12
11.21
11.25
11.19
11.22
11.29
11.20
11.15
11.24
11.27
11.36
11.35
11.25
11.39
11.57
12.74
11.25
11.56
11,46

6%

3.198
3.131
3.203
3.227
3.188
3.204
3.251
3.191
3.163
3.221
3.231
8.323
3.302
8.226
8.341
3.467
4.557
3.160
3.269
3.264

8%

1.268
1.227
1.270
1.279
1.263
1.270
1.287
1.265
1.258
1.284
1.280
1.354
1.832
1.285
1.359
1.434
2.319
1.149
1.163
1.180

0.6446
0.6229
0.6448
0.6451
0.6430
0.6445
0.6418
0.6445
0.6402
0.6542
0.6451
0.6969
0.6799
0.6589
0.6968
0.7388
1.434
0.4695
0.4714
0.4663

10% 10%

0.3569
0.3504
0.8560
0.3512
0.3564
0.3552
0.3328
0.3586
0.8574
0.8595
0.3511
0.3749
0.8689
0.3599
0.3751
0.3920
0.8958
0.1451
0.1894
0.1328

10%

0.1982
0.2017
0.1974
0.1928
0.1972
0.1962
0.1731
0.2001
0.1961
0.1936
0.1939
0.1810
0.1938
0.1966
0.1891
0.1908
0.4928
0.0057
0.1513
0.0170

25%

0.0054
0.0188
0.0316
0.0012
0.0172
0.0610
0.0004
0.0282
0.0282
0.0296
0.0804
0.0364
0.0200
0.0524
0.0606
0.2586
0.2402
0.8618
0.2912

Gz and Gz„are the proton and neutron form factors, respectively.
Approximate experimental errors are for E~&(q ) and are taken from Ref. 26 and references listed therein.
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es, a~& p, ; therefore, a11of the transformed po-
tentials represented in Tables I and II have local
()PE tails. Since a~~ 2.2 F ' in all cases, the
transformations in Tables I and II leave the wave
functions past 1 F relatively unaffected. Meson
theory' leaves the wave function arbitrary at dis-
tances within about 1 F. Therefore, the potentials
represented in Tables I and II, along with the Reid
potential, are equivalent on the basis of the two-
body data and meson theory.

We also classify the potentials in Table II ac-
cording to the electric quadrupole moments (Q)
and electric form factors [F„(q')]they yield. "
Table III lists the bound-state observables for the
potentials in Table II. We use the approximate ex-
perimental errors, "listed on the last line iri Ta-
ble III, as the basis for classification. Those po-
tentials (22-26) that do not give the same electric
form factor as the Reid potential, to within exper-
imental error, "are marked with an "x" in Table
III. We notice that all the potentials with approx-
imately the same form factor (potentials 8-21)
also have approximately the same electric quad-
rupole moment (to within 0.004 F'). Since we de-
sired that all of the potentials give the same D-
state probability, we chose sino=0 or 1. These
choices of sin8 leave the S- and D-wave norms in-
dividually invariant. '

The question now arises —given a set of poten-
tials that are equivalent on the basis of the two-
body bound-state and scattering data, what varia-
tions in nuclear binding energies may we expect~
We answer this question by Figs. 1 and 2. In Fig.
1 we give the saturation curves for several of the
cases in Table I. In Fig. 2 we give the saturation
curves for several of the cases in Table II. In
Fig. 2 we also give an example of a saturation
curve (1+ 11) for a transformation that alters both
the 'So and S,+ D, wave functions. In Fig. 1 we
find variations up to about 6.5 MeV in the satura-
tion energy and 0.17 F ' in the saturation Fermi
momentum (k~). Variations up to 6.3 MeV in the
saturation energy and 0.29 F ' in the saturation
Fermi momentum occur for the cases where the

Sy + D j potential is transformed in Fig. 2 ~ If we
include the combination of transformation 1 in the
So case with transformation 11 in the 'S, + 'D,

state, as in curve 1+ 11, a 9.5-MeV variation in
binding energy and a 0.33-F ' variation in satura-
tion Fermi momentum occurs.

Two interesting patterns manifest themselves in
Figs. 1 and 2. First, variations in energy at a
given density are greater at higher densities. For
instance, the maximum variation in energy at k~
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of density. The broken lines represent the 3S&+ 3D& con-
tributions as functions of density.

= 1.1 F ' is about 6.6 MeV; at k~ = 1.4 F ' (approx-
imately the empirical saturation density) the max-
imum variation is about 17 MeV; at k~= 1.7 F ',
the variation increases to about 29 MeV. Second,
potentials with larger binding energies give great-
er saturation densities. This second characteris-
tic is, no doubt, a consequence of the first. The
reasons for the density dependence of the satura-
tion curves in Figs. 1 and 2 will become evident
in our later discussion.

The saturation curves in Figs. 1 and 2 indicate
that off-energy-shell effects are important in the
Brueckner theory of nuclear matter. The varia-
tion in binding energy observed is greater than the
current 5- to 6-MeV disagreement between the
binding energies of "realistic" local potentials
(e.g. , Reid) and the binding energy predicted by
the semiempirical mass formula (16 MeV). Fur-
thermore, the variation is probably greater than
the contribution attributable to the "three-body
diagrams" (1-3 MeV)"" for "realistic" poten-
tials. We now investigate how these off-energy-
shell variations are correlated.

Several authors'' '" have suggested that the
binding energy of nuclear matter is related to the
"wound integral" w, where K is defined'7

&=(2&)'p(h„.lh„.—t.„&. (16)

The defect wave function $„,is simply given by

$„,=4„,—4"„,. The wave function C„,is a 6-func-
tion normalized plane wave for two particles (p,

and v) in the Fermi sea, and '0&„is the correlated
nuclear wave function for two particles in the Fer-
mi sea. Because of the so-called "healing" prop-
erty, (»(r) asymptotically vanishes. Therefore,
~ is a measure of the "wound" or "healing dis-
tance" of the two-nucleon wave function in nuclear
matter. The wound integral ~ is a particularly im-
portant quantity because its average value is es-
sentially the expansion parameter of the many-
body cluster expansions'7' ' of the Goldstone
series ' for the ground-state energy.

In Fig. 3 we illustrate, as functions of k~, the
'So contributions to K for the potentials in Fig. 1.
(All wound integrals referred to in this paper rep-
resent average values of z for two particles in the
Fermi sea. ) We also illustrate in Fig. 3 the '8,
+'D, contribution to ~ for the cases in Fig. 2. We
notice that potentials with larger wound integrals
give greater repulsion in nuclear matter. We also
observe that z is an increasing function of density.
(This property results from the definition of v [16]
which includes a factor p. ) Previous investiga-
tors"4' "have noted the aforementioned relation
between the binding energy of nuclear matter and

We now proceed to study this relation quantita-
tively.

In Fig. 4 we present a plot of the 'S, potential
energies in nuclear matter versus the 'So contri-
butions to the wound integrals (v» of Ref. 7) for
the potentials in Table I. Figure 5 is a similar
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O
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K
0

5
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O -20—
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& hEp ~ 78 MeV

~4

7 r

3MRr
l I

O. I 0 0,20
WOUND INTEGRAI K { Sp)

FIG. 4. The ~SO potential energies E~o versus the So

wound integrals w~. The dashed line indicates the approx-
imate linear relation between E~o and )70.
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and &

plot for the 'S, +'D, state for the potentials in Ta-
ble II, where ~ = ~Do+ ~02+ ~,",+ a22 of Ref. 7. For
both Figs. 4 and 5, the Fermi momentum is kz
=1.6 F '. The G matrices are calculated with
starting energies (v) determined from the self-
consistent single-particIe energies for the Reid
potential. Accordingly, we denote the energies
as Eo to differentiate them from the self-consis-
tent binding energies (E).

Figure 4 indicates a nearly linear dependence of
Ep on ~ for the 'S, state. This linear dependence
holds very well for k ~3az„d. The dotted line in
Fig. 4 indicates a slope of AEO jn. v" = 78 MeV. For
larger values of ~, as in potentials 1 and 2, the
slope becomes somewhat greater,

If we examine Fig. 5, we note that, again, for
most of the cases in Table II, Eo is nearly linear
in a'. The slope (bEO jAP) is 103 MeV compared
to 78 MeV in the 'S, case. The S,+'D, potential
energies are more sensitive to changes in ~ than
the 'So potential energies. Disturbingly, a few po-
tentials fall several MeV from the dotted line in
Fig. 5. However, if we examine Table III, we find
that, for each potential that deviates from the lin-
eax pattern, the deuteron electric quadrupole mo-
ment and jor the electric form factor deviate sig-
nificantly from the Reid values. Since these poten-

tials can be distinguished from the others on the
basis of two-body bound-state observables, they
should be rejected from our study. Accordingly,
they appear as ~'s in Fig. 5. The conclusion here
is that, for a fixed density, Eo is linear in x for
potentials that give the same two-body elastic
scattering and bound-state observables.

Another interesting feature shown in Table III
and Fig. 5 is that potentials with nearly the same
deuteron wave functions may give widely varying
energies in nuclear matter. To show this, we list
in Table IG the "difference norm, " defined by N~
=[(4s —@s~4s —+s)]"', as a measure of the dif-
ference of the transformed (4s) and untransformed
(4's) deuteron wave functions. We see from Ta-
ble III and Fig. 5 that some potentials with very
small difference norms (e.g. , potentials 9, 11,
and 14) give very large variations in binding en-
ergy (up to 40 MeV in Eo at k~ = 1.6 F '). Also,
potentials with larger difference norms generally
deviate more from the dotted line in Fig. 5 than
those with smaller difference norms. Henceforth
in this paper, we will deal only with potentials
that cannot be easily distinguished on the basis
of two-body observables (e.g. , potentials 1-21).

%'e have seen that potentials that give exactly
the same two-body scattering data and nearly the
same deuteron properties may give large varia-
tions (up to 9.5 MeV) in binding-energy results for
nuclear matter. The binding energy of nuclear
matter for these potentials is nearly linear in z,
with an increase in repulsion being associated
with larger ~. %Ye now describe a theoretical jus-
tification of this result.

IV. THEORETICAL EXPLANATION,
EVALUATION, AND EXTENSION

OI'" RESULTS

,In their study of local and velocity-dependent po-
tentials, Preston and Bhaduri'6 concluded that po-
tentials that give the same wound integral, K,

should give about the same binding energies in nu-
clear matter. Coester et al. '~ suggested that the
saturation curves for phase-shift equivalent po-
tentials form essentially a one-parameter group.
This one parameter, I in Ref. 14, we shall see
shortly, is closely related to ~. Both Preston and
Bhaduri, and Coester et al. base their arguments
on the separation appxoximation. "" We shall
base our explanation on the MMS separation ap-.

proximation. '9 Our discussion is based on Sec. 10
of BBP. Our arguments resemble the arguments
given by Coester et al. ' %Ye evaluate and extend
these arguments in light of the results in the pre-
vious section.

According to the separation approximation'9'32

G(ar) =G,((u)+ V, ,
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where G is the Brueckner reaction matrix, and G,
is the reaction matrix due to the "short-range"
part of the interaction (V,). The long-range part
of the interaction, V„is treated as a perturbation.
The "separation" distance (d) is chosen in the
Moszkowski-Scotts' (MS) method such that V,
gives zero phase shift. In the MMS method, "the
separation distance is chosen such that the defect
"reference" wave function, X(r), vanishes for x
~ d. In either case, the approximations to the
"nuclear" wave functions have the desired "heal-
ing" property. The separation distance is usually
1 to 1.5 F.

The reaction matrix, G„canbe related to the
reference spectrum reaction matrix, G~ by
means of a Pauli correction term. ""The rela-
tion between G, and G", is given by

. ()q)ls, ( ))Is' )=()q)ls, )q)lit )+—f'q q'
&kl G". (~) I q & (Q —I) & qlG. (~) Ik'&

CO
—g

(16)

proximately independent of e. Apart from the fac-
tor (1 —)7) ', S(ko) is the parameter I defined by
Coester et al." Note that, according to Eq. (22),
G is linear in m. In actual calculations of G(&u) as
a function of co, we found that G is very nearly lin-
ear in ~, at least up to changes in ~ of 1 F '.
This change in e corresponds to a change in the
single-particle energies of about 20 MeV. For
example, for both the Reid 'So potential and poten-
tial 2, we calculated the diagonal elements of G(~)
for several values of ~ between ~=2.0 F ' and
e =3.0 F '. We also approximated G(&u = 2.0 F ')
by a linear extrapolation from the slope of G(&u)

at &o =3.0 F '. The exact values of G(&u = 2.0 F ')
disagreed with the extrapolated values by less
than 4%%uo of the total change in G. In the sS, +sD,
cases, the agreement ranged from about 90 to
96%. These small errors imply that the ~ inde-
pendence of S(k,) in Eq. (22) is justified. We will
later use the near linearity of G in v to discuss
self-consistency corrections.

If we differentiate Eq. (22) with respect to &u,

we obtain

where A =5'/M. Since Gs(&u) is determined from
the short-range part of the interaction, the refer-
ence defect wave function, )t~(k)q which is propor-
tional to G", (k, q, ~)/(ru —k'), is relatively indepen-
dent of q, at least for low and moderate q. '~

Therefore, we may approximate G, by

&klG, (~) Ik'& = &kIG'. (~) Ik'&+- &kl G'. (~) Ik'&

dq 2 qG, + k'. 19

&k, lG(~) lk, &
= S(k,) .

McCarthy and Davies" have shown that"

—&k.lG(~)lk.&
=—

8(d 8m'p
'

One obtains, from Eqs. (22)-(24),

&kolG(cu)lko) = (ko —cu)Av/(6wsp)+(kol V, lko&.

(23)

By multiplying both sides of Eq. (19) by (Q —1)/
(tu —k') and integrating over k, we may evaluate
the integral in Eq. (19) in terms of an integral in-
volving G~. The result, which is also given by
BBP, is

& kl G, ((d) Ik') = (kl G"((d) Ik'&/(I —)7),

where

(20)

n= Jjd'7 (9 —I)(~ --e') '&qlG", (~)lk'&.

From Eq. (20) we obtain, for diagonal G-matrix
elements,

&k. lG(~) lk.& = (k.lG. (~)Ik.)/(I —n)+ &k. l V, lk.&.

(21)
If we further assume that the defect wave function
is approximately independent of the starting ener-
gy tu, we may rewrite Eq. (21)

&k.IG(~)lk.&=S(k,)((u —ko )+ &k()l V, lko& q (22)

where S(ko) = &kolG", (&a) lko&/I (I —)7)(~ —ko )] is ap-

x &k. I G(~) lk.& lsu, TTS& (27)

from which Eq. (11) is derived. In Eq. (27) k, and

k, are single-particle momenta and k, is the rela-
tive momentum. If we insert Eq. (26) into Eq.
(27), with the provision that ts, ~ is averaged over
spin and isospin quantum numbers, we obtain a

Now we consider two phase-shift equivalent po-
tentials, V and V, with G matrices G(v) and G(&u)

and wound integrals ~ and z. We assume that A is
sufficiently short ranged as to leave V, unaltered.
We observe from Eq. (25) that, at a fixed density,

(kol«(~) lko&
= (ko'- ~)~~ K/(6rsp), (26)

where 4G = G —G, etc. Since ~ is negative, we
see from Eq. (26) that G becomes more positive
for potentials with larger wound integrals. Also,
G is linear in K.

To relate changes in G to changes in binding en-
ergies, we employ the relation"
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difference in binding energy per particle AE0 giv-
en by

hE
n.E =E E-= = -2(E —T)b.x/(I+ 2t() . (34)1+2K

&E 0=(EO —E)= 6 ~ d k,d k~(ko —(u)n.i.
8m p

(28)

Here E is the self-consistent energy per particle
for the untransformed (Reid) potential. Of course,
b, l7 in Eq. (28) depends on k, and tu. With the as-
sumption that we may replace 4K with its average
value for two particles in the Fermi sea, one may
take hz outside the integrand in Eq. (28). We then
employ the fact that the values of ~ to be inserted
in Eq. (27) are on the "energy shell, " i.e.,

&u
= k,~+ k~~+ (1/A)[U(k, ) + U(k~)] —K

= ko + (I/X)[U(k, ) + U(k~)], (29)

where U is the self-consistent single-particle po-
tential energy as determined by the prescription
of BBP. Substitution of Eq. (29) into Eq. (28)
yields

EO 6 2 d kid k2 Uk& +Uk2
ky, k2~ AF

= -(U)~~, (30)

E —T= ~(U)

to east Eq. (30) into the form

nEo = -2(E —T)b, K.

(31)

(32)

One must remember that E, is calculated with an
energy spectrum that is self-consistent for the po-
tential V, not for V. Therefore, we must correct
Eq. (32) to account for a self-consistent energy
spectrum for V.

In correcting for the changes in ~ required by a
self-consistent energy spectrum, we assume that
G is linear in ro. We then notice that according to
Eq. (31), a change in energy aE, leads to a change
in the average potential energy (b, (U,)) given by

6 (Uo) = 2nE0 . (33)

This change in U, in turn, leads to a change in the
values of &u to be substituted into Eq. (27). If one
employs Eq. (29) to calculate the average change
in v, and Eq. (24) to calculate the change in 6,
substitution into Eq. (27) yields an additional
change in E (hE, ) of nE, = -v(n, U,). Thi-s change
in energy, likewise, causes a new change in (U)
for which further corrections are necessary. The
final result is an infinite power series in K that,
when summed to all orders, yields '

where (U) is the average single-particle potential
energy for the untransformed potential V. We final-
ly utilize the relation

nE" =- -2(E —T)n. P, (35)

where AE and 4K are the contributions to AE0
and b, x (Q» hx~~. of Ref. 7) from the partial-
wave eigenchannel o.. The results in Fig. 4 indi-
cate that, in the 'S, state, r Eo/n, V =78 MeV for
kF= 1.6 F '. This slope is very close to that pre-
dicted by Eq. (35), which is nE, /6 ~

~ „~,~z„„=76
MeV. In Fig. 5, however, for the 'S, +'D, state
nE, /n. x"= 103 MeV. This slope is significantly
larger than that predicted by Eq. (35). In Fig. 6
we compare r Eo/r x" for both the 'S, and 'S, +'D,
states as obtained from our nuclear matter calcu-
lations with nE, /hx" predicted by Eq. (35). The
'S, slopes agree very well with Eq. (35) while the

Sy + Dj slopes are somewhat larger.
The properties of nEO/r x shown in Fig. 6 can

be explained as follows. In the 'S, state V, is weak
and can be treated as a perturbation. Therefore,
Eq. (17) should be a good approximation. In the
S

y
+ D j state, however, V, contains a strong ten-

sor force. We expect, therefore, Eq. (17) to be
inadequate. We now suggest how Eq. (35) can be

Here E is the self-consistent binding energy for
the potential V. Equation (34) agrees with Bran-
dow's result" for self-consistency corrections.

In our computations we calculated Ep We then
obtained the approximately self-consistent satura-
tion curves of Figs. 1 and 2 by applying Eq. (34).
We found Eq. (34) to be an excellent approximation.
In a few test cases, Eq. (34) differed from a self-
consistent calculation of E by less than 0.5 MeV,
even for large values of K at kF=1.6 F '.

Equation (34) tells us that, given the saturation
curve for V (in our case the Reid potential), one
may construct the saturation curve for the trans-
formed potential V. Only the knowledge of K and
K as functions of density is necessary. Since AK

is generally an increasing function of density, and
since, in the case of the Reid potential, (T —E) is
an increasing function of density, then AE is an
increasing function of density. Therefore, Eq. (34)
accounts for the density dependence of 4E ob-
served in Sec. III. The density dependence of b,E
has a profound effect on the shapes of the satura-
tion curves and the saturation densities.

Equations (32) and (34) qualitatively agree with
the results described in Sec. III. For instance,
we found that E, is linear in K, as predicted by Eq.
(32). We also found that nE is an increasing func-
tion of density as predicted by Eq. (34); i.e., a
larger K yields less binding.

If we analyze Eq. (32) by partial waves, we may
rewrite Eq. (32) as
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improved for the 'Sg+ D] state.
We now consider the expression for G through

second order in the MMS method, which is, ac-
cording to BBP,

G((q&) G ((d)+ V)+ 2G," V, + V, V'v —T
(3 6)

If we rewrite Eq (36) in integral form and employ
Eq. (20) and the boundary conditions on y-„(r), one
obtains the BBP result

&k.lG(~) lko& = &k.lG. (~) Ik,&/(I —n) + &kol V, lk.)

'(s/x) J q q(q, lv lq&, (ql v lq &.

(37)

Employing the Hermiticity of Gs((d) and the ap-
proximate q independence of )(-„(ko), we rewrite
Eq. (37)

«o IG(~) lko& = &kol G'. (~) lko&/(I —
&))I:I+ (2/~) nl(~)1

+ (k. l V(lk.)+ (I/&))7. (~), (38)

and assume

q(~)=fq*q(q. llv, llq&( .)(qllv, l~q,).

We now set S(k,) =&K, lG&q(&)lk &/I(I q)(~ k o)]
and assume, as before, that S(k,) is independent

We differentiate Eq. (38) with respect to o&

md employ Eq. (24). Equation (38) then becomes

&k.lG(~)lk. &= 8,. +~n.'(~)

(k.' —~)II+ (2/~)n, (~)]
I. I + (2/~)I&i, ((o) + ((o —k.')8', (o&))]

+(k.IV, lk.)+(I/~)n. (~), (39)

where the primes represent derivatives with re-
spect to o&. The only quantity in Eq. (39) that var-
ies from potential to potential is ~. Note that Eq.
(39) is linear in (( although the quantity that multi-
plies A)(/(8»'p) is no longer (k,' —~) as in Eq.
(25). In the 'S, +'D, state, where q,'((d) is large,
we expect the coefficient of A)(/(8o'p) to differ sub-
stantially from (k,' —oo).

If Eq. (39) were analyzed by partial waves, and
substituted into Eq. (27) to give a binding energy,
the result would be of the form

where aE,"=C (k )&i, (4o)
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~z, =pc (k,)z K, (4I)

where C (k~) for the 'S, and the 'S, +oD, states is
given in Fig. 6. To correct for self-consistency
we divide by 1+2~ to obtain"

where C"(kz) depends on kz, V, in channel a, and

on the self-consistent values of cu for the untrans-
formed potential. The coefficient: C (k~) does not
depend on the transformed potential V.

One could continue our analysis to higher order
in G, and t/', and collect terms linear in ~ to de-
rive expression like Eq. (40). In such an analysis,
terms of higher order in ~ might appear. The re-
sults in Figs. 4 and 5 imply, however, that the lin-
ear term (40) dominates. The coefficients C (kz)
may be empirically determined from the values of
BEo/Dg" in Fig. 6.

Equation (40) gives us a very simple prescrip-
tion for constructing the saturation curves for
phase-shift equivalent potentials. Namely, for a
given density we have the empirical result

FIG. 6. cXEO/4(&" for the ~SO and S&+ 3DI states com-
pared with GEO /4'. ~ expected from the separation ap-
proximation. The slopes 4E~&/&&" for the «So and 3S&

+ D& states are calculated by a "best" linear fit of Eo
versus i" for the potentials used in Figs. 1 and 2. The
slopes predicted by the separation approximation are
given by Eq. (35) and are state independent.

Employing the density dependence of (('(oS, +oD, )

for potentials 10 and 11, we compare in Fig. 7 the
saturation curves of these potentials expected
from Eq. (42) with those expected from the first-
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order separation approximation. We also include
the actual saturation curves in Fig. 7. Since forc-
es 10 and 11 were two of the forces used to deter-
mine C (kz), the curves predicted by Eq. (42) na-
turally agree well with the actual saturation
curves. The saturation curves prediet4:d by the
first-order separation approximation give the qual-
itative features of the actual saturation curves,
but fail by several MeV to give the correct bind-
ing energies at higher densities. As a further test
of the universality of the coefficients C (k~), we
include the corresponding saturation curves for
the Bryan-Scott one-boson-exchange potential
(OBEP).' Although the Bryan-Scott potential has
slightly different bound-state properties, phase-
shifts, and long-range behavior than the Reid po-
tential, its saturation curve is qualitatively pre-
dicted by Eq. (42) and the separation approxima-
tion.

In applying our transformation, we have found
that it is difficult, although not impossible, to gen-
erate potentials that are smoother (smaller a)
than the untransformed (Reid) potential. However,
the consistent linear dependence of E, and k shown
in Figs. 4 and 5 suggests that we may extrapolate
our results to smoother potentials. Ip Fig. 8 we
illustrate saturation curves, calculated on the ba-
sis of Eq, (42), for five hypothetical functional de-
pendences of ~ on density. The S,+'D, wound in-
tegrals as functions of density for four of these
cases (H1-H4) appear in Fig. 9. Case H5 is a hy-
pothetical case for ~=0. Case IJ4 has been fit to
give the empirical energy per particle (-16 MeV)

and saturation density (kz= 1.4 F '). These re-
quirements on H4 account for the unusual density
dependence of ~. The saturation curves in Fig. 8

suggest that variations in binding energies and
saturation densities of up to 12 MeV and 0.24 F ',
respectively, are conceivable for potentials
smoother than the Reid potential. These varia-
tions are not as large as those reported in Ref. 7.
However, the potentials in Ref. 7 were not con-
strained to give precisely the same fits to the deu-
teron observables. Potentials corresponding to
eases IJ1-II5 would be presumably so constrained.

Vfe note that, according to Fig. 8, very smooth
potentials overbind nuclear matter and saturate
at too high @density. %'hile the saturation curves
in Fig. 8 are not the results of actual nuclear mat-
ter calculations, they are accurate insofar as Eq.
(42) is empirically valid. Furthermore, by virtue
of the relatively small values of ~ in IJ1-H5, the
three-body terms of the Goldstone expansion '"
should not greatly affect the variations in binding
energy.

From the preceding discussion a clear physical
picture emerges. Since ~ is a measure of the
"wound" of the two-nucleon wave function in a nu-
clear medium, the binding energy of nuclear mat-
ter is primarily sensitive to the total "wound. "
However, the binding energy does not seem to be
overly sensitive to the details in the wound, at
least up to distances of 1 F.

Considerable interest now exists in formulating
nuclear physics in, terms of the two-nucleon tran-
sition (T) matrix. '0" We now demonstrate how
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FIG. 7. Actual saturation curves of potentials 10, 11,
and the Bryan-Scott (BS) potential compared with those
(1) expected from the relation AEO/4K =C (kz) and (2)
expected from the first-order separation approximation.

FIG. 8. Saturation curves for five hypothetical cases
(Hl-H5). The heavy dots represent saturation minima.
Cases (H1-H4) are defined by Fig. 9. Case H5 is for
z =0.



932 M. I. HAFTEL AND F. TABAKIN

the sensitivity of nuclear matter to the "wound" of
the wave function can be translated to the sensitiv-
ity of nuclear matter to the off-shell T matrix.
We concentrate our discussion on the so called
"half-shell" T matrix. The half-shell T matrix
is derivable from the tmo-nucleon scattering wave
functions and, aside from the bound-state wave
function, completely determines the off-shell T
matrix.

V. NUCLEAR MATTER AND THE T MATRIX

We have found that the binding energy of nuclear
matter is determined by ~, the "wound" integral.
The wound integral, K, is determined from the G

matrix, not the T matrix. How may we relate the
G matrix to the T matrix'

One way to relate G and T is to note that the off-
shell T matrix T(&u) is the same as the reference
G matrix Gs(u&)." The G matrix, therefore, is
related to the T matrix by a Pauli correction term,
which is given in Eq. (18). Since the fully off-shell
T matrix, T(&u), is hilinear in the so-called "half-
shell" T matrix, 2"' the Pauli correction term
would involve terms of higher order than two in
the half-shell T matrix. While the Pauli correc-
tions are small in the 'S, case, they are very im-
portant in the 'S, +'D, state. Therefore an analy-
sis of Eq. (18) in terms of the half-shell T matrix
would be fairly complicated.

Our procedure will be to try to correlate bind-
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ing energies with derivatives of the T matrix.
This procedure seems reasonable since ~ is pro-
portional to sG/s&u. Likewise, z„,the wound in-
tegral of the "reference" wave function, is given
by

," =—(k, )T(u)) ~k,) .
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FIG. 10. The- Sp potential energies E~p vs the 'Sp "ref-
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In Figs. 10 and 11 we show the binding energies
of our transformed potentials versus x„for the
'S0 and SS,+SD, states for k~= 1.6 F '. In the 'S0
state the correlation between E0 and ~~ is excel-
lent. The binding energies E," are nearly linear in

is with t)E,"/t)~s=87 MeV. The slope bE, /r ~s is
slightly greater than the slope &8"/b, z" = 78 MeV.
In the 38, +3D, state the correlation is good, al-
though some deviations from linearity occur. The

slope t)E"/bks = 120 MeV is again greater than the
slope hE "/h~'= 103 MeV.

According to the results in Figs. 10 and 11, the
binding energy of nuclear matter, at a given den-
sity, is correlated with the derivative of the T ma-
trix with respect to energy. The T matrix is de-
termined from the "half-shell" T matrix (denoted
by t) by"

)' () (." ")-r.""(& )')(("««()')((). +(2&~)zfs'&v(", ((.e)(, , ()', v)((/'(~-q') pl() -q)J-
+[(k"—(())(k'+ks')(d~(k)&u~ (k')/(&u+k~')], (44)

cos6 slue, 5~
i

for coupled channels, and U~~ =5~~, , b, ~~ (k')
=5~.(k')6«. for uncoupled (J =L') channels. The
parameters 6~~ and ~ are eigenphase shifts and
coupling parameters in the Blatt-Biedenharn pa-
rametrization. 4' The matrix elements T~, (k, k',
k"+ is) are given by

T~~, (k, k ', k '2+ te) = (I/X) ( o(f k
~
V

~
4(~ ~ ), (46)

where (rla'Lk) j g(k&) JJr, (r). In Eq. (45) +i" a has
the same normalization as ~nLk) and is the con-
tribution to the outgoing solution of the Schrodin-
ger equation for incoming momentum k' and angu-
lar momentum L, '.

%Ye now consider two potentials V and V, with
half-shell. T matrices t and t. Assuming that V
and V give approximately the same deuteron wave
function, we differentiate Eq. (44) to obtain

(X/Bn*p)t). zs = (2/)) ) q'dq [t'(k„q)—t'(k„q)]
0

&(~-q') '.
In Eq. (46) we have abbreviated t =—Q~~, (t~~~ )2 for
coupled channels.

%e observe that the squares of t-matrix ele-
ments enter into Eq. (46) and that the different
CO111Poileil'tS of t (t Jt~„~„,') enter with equal coefficients. In an on-
shell approximation (i.e., a "phase-shift" approx-
imation) only the central components (t~, ~ „

t J„~„)would enter for the binding energy In.

where P stands for principal value, and ~~(k)
= f, &'«t'g(»)(df(r), ~h~~e ~f (r ) is the I.n com-
ponent of the bound-state wave function with ener-
gy -Ak~'. In E(I. (44)

t...(k, k') =Q&,",(k, k', k"+u)[V'e ""'&]„.

E(I. (46) for 8„,which essentially governs the off-.
shell variations in binding energies, central and
tensor components appear with equal coefficients.

In Fig. 12 we plot, as a function of q, the coeffi-
cients W(q) [W(q) =-q /((u —q')'] of the t-matrix ele-
ments in the integrand of Eq. (46). We choose typ-
ical values of k0 and co for two particles in the
Fermi sea for k„=1.6 F '. The weight function,
W(q), reaches its maximum value at about q = 1.8
F '. At q =4 F ', W(q) is about half of its maxi-
mum value; at q = 6 F 'W'(q) is about one quarter
of its maximum value. This r'elatively slow fall-
off of W(q) at large q, means that far off-energy-
shell matrix elements of t should play a signifi-
cant role in determining Lx~.

In Fig. 13 we plot both t (ko, q) as a function of q
(the "on-shell" variable), and t"(q, k, ) as a func-
tion of q (the "off-shell" variable) for several
transformed 'S0 potentials. %e recall that the "on-
shell" moment .m is the variable integrated over
in E(I. (46). Vt.: see that, for the potentials con-
sidered, t(q, k,) decreases slowly with q for large
values of q. In the case of t(ko, q), it is not even
evident that t(ko, q) is decreasing in magnitude at
q = 10 F '. The properties of t(ko, q), coupled with
the properties of W(q), imply that large contribu-
tions to ties may come from large values of q (q
~8 F '). These large contributions are shown ex-
plicitly in Fig. 14.

Figure 14 illustrates the integrand in Eq. (46)
[t), (q)], as a function of q, up to q = 10 F ' for po-
tentials 1-4. Vfe notice that for potentials 1, 3,
and 4 the largest contribution to A(q) comes from
q =4 to 10 F '. For potential 2, the contribution
from q = 10 F ' is especially large. The implica-
tion is that far-off-energy-shell matrix elements
are important in accounting for changes in x~.
These changes in ~™~are reflected in changes in
~ and hence in changes in the binding energy of
nuclear matter.

In this section we have observed that changes in
binding energy are closely related to changes in



934 M. I. HAFTEI AND F. TABAKIN

the reference wound integral K~. The wound inte-
gral ~a is proportional to sT(~)/s~, and sT(&u)/s&u

We thus conclude that the binding energy of nucle-
ar matter is ~n ee re'

d d related to the off-shell behav-
ior of the T matrix.

VI. SUMMARY AND DISCUSSION

This paper has s ownh bown that off-shell effects in the
Brueckner theory of nuclear matter are very sig-
nificant. Potentials that give the same scattering
data and bound-state observables may give varia-
tions of up to 9.5 MeV in the binding energy and

0 33 F ' ' the saturation density. If we extrap-
olate our results to smooth potentials, total varia-
tions of up to 21 MeV in the binding energy and 0.6

F ' ' the saturation density are conceivivable.
The principal quantity that governs the energy

varuna sons it s in nuclear matter is the wound integral
For a. fixed starting energy (&u) and densi y, e

binding energy is nearly linear in . *This linear-
it in ~, as shown in Sec. III, simp yI follows from
the MMS separation approximation. The slope

EEo/n K is greater in the 8, +'D, sta
'So state. The greater sensitivity of AEO to 4z in

h 3S +'D state evidentally results from the im-
nd Vportance of interference terms between t", and

in the separation approximation. TheThese interfer-
ence terms are large in the S,'S +~D state due to

the strong long-range part of the tensor force.
0.8—

0.6—

0.4

0.2

ko=. 96 F a =-2.95F ~

Changes in w, which lead to changes in binding

energy, are closely related to changes in v„,the
re erference spectrum wound integral. The wound in-

rn ' oftegra K„,~n urn,I, t rn can be expressed in terms o
the ha -s elf-shell T matrix. By virtue of the values

r of theof v in nuclear matter and the 1/q' behavior o e
weight function W(q) at large q, the binding energy
of nuclear matter is sensitive to a large region of
the off-shell T matrix. The far-off-shell elements

(q & 6 F '), therefore, play a significant role in nu-

clear matter.
The principal uncertainty in our calculations is

the role of the many-body cluster diagrams in the
Goldstone expansion for nuclear matte .atter. Since v

is the accepted expansion parameter ofor the Gold-
stone series, one may reasonably expect signifi-
cant off-shell variations in the many-body terms.
These off-shell variations should be sensitive to
far-off-shell T-matrix elements because of the

sensitivity of ~ to these matrix elements. The oc-
cupation probability formalism' ' ' ' might pro-
vide a workable starting point in estimating the
off-shell effects in the many-body cluster terms.
At any rate, it is unlikely that the inclusion of

-b d terms in our calculation (an enormous-

ly difficult ta, sk) would drastically alter, a eas
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FIG. 13. T e aTh "h lf-shell" T-matrix elements as func-
tions o e of th " ff-" and "on-" shell momenta for the Reid

So potential and the transformed '80 potential and the
transformed So potentials 1-4.
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qualitatively, our remarks concerning the sensi-
tivity of nuclear matter to half-shell T-matrix ele-
ments. Certainly, extrapolation of our quantita-
tive results is justified to that class of "smooth"
potentials (KS Kpz&d) for which many-body contribu-
tions should be small.

The potentials studied in this paper give varia-
tions in v of about three times the value of K for
the Reid potential. This variation in ~ is larger
than the variation in v of Ref. 14 and considerably
larger than the variation in Ref. 7. For equal
changes in v ('S,) we get variations in binding en-
ergy comparable to those of Coester et a/. W'e do

not, however, get in the 'S, +'D, state as large
variation in binding energy for like changes in ~

as those reported in Ref. 7. One must remember,
however, that the potentials in Ref. 7 were not con-
strained to give exactly the same phase shifts,
long-range behavior, or the same electric form
factor as the Reid potential. In fact, these latter
three constraints probably account for about 8 of
the 22-MeV difference in binding between the Reid

potential and force "A" of Ref. 7. The point here
is that one should apply empirical constraints on
the deuteron wave function and meson-theoretic
constraints on the long-range part of the potential
before attributing variations in binding energy to
off -shell effects.

The linear dependence of the energy per particle
on K holds only for potentials with approximately
the same electric form factors. The electric form
factor, however, does not uniquely determine the
binding-energy result. We have observed that po-
tentials with aimost exactly the same E„(q)can
give drastically different wound integrals and bind-
ing energies. It therefore follows that even with
the requirement of a precision fit to the experi-
mental values of deuteron form factor, it would
still be possible to have potentials that give very
different binding energies in nuclear matter. For
example, the Reid potential and potential 11 give
almost exactly the same deuteron wave function
yet give binding energies that differ by 9.5 MeV.

The results of this paper imply that even with the
presently available empirical and theoretic con-
straints on the N-N interaction, a major ambiguity
still exists with respect to off-shell matrix ele-
ments. Since nuclear matter is sensitive to a
large region of the off-shell T matrix, nuclear
matter calculations should play an important ro1e
in resolving the ambiguities. Nuclear matter cal-
culations should be used in conjunction with calcu-
lations of other processes, such as the p-2P knock-
out reactions, ~' to help clarify the role of both near
and far-off-energy shell matrix elements. Until
the roles of the off-shell matrix elements is re-
solved, a meaningful comparison between theory
and experiment of the properties of nuclei is very
difficult.
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