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The two-body shell-model matrix elements for central and tensor forces can be expanded as
linear combinations of Talmi integrals. A closed form, which does not involve vector-coupling
coefficients or transformation brackets, is obtained for the coefficients appearing in this ex-
pansion. For the case that all the oscillator constants are the same, the result is simple
enough to allow tabulation. A table of these coefficients for matrix elements involving the
shell-model states Os, OP, and Od is included. The main advantage of this method over the
Talmi-Brody-Moshinsky method is discussed.

I. INTRODUCTION

Investigations of nuclear properties in terms of
both spherical and deformed shell models involve
either the reduction or the reductions as well as
the evaluation of the matrix elements of an appro-
priate hvo-nucleon interaction V(r, &). Only the re-
duction of the spin and angular momentum part of
this interaction is necessary if one wishes to de-
termine the matrix elements over the radial part
by fitting observed spectra. Both the reduction
and the evaluation of these matrix elements are
desired if one wants either to predict a nuclear
spectrum for a given nucleon-nucleon interaction,
or to compare matrix elements obtained by fitting
a given set of spectra with those obtained using a
two-nucleon interaction which is compatible with
deuteron properties and the two-nucleon scatter-
ing data (at least at low energies).

A very useful method of reduction of these ma-
trix elements was first suggested by Talmi' and
later investigated by Moshinsky2' and Brody. In
order to reduce a typical shell-model matrix ele-
ment

I= dry dr2 num y num

~ V(r„)y„, , (r,)y„, , (r,},

they noted that it is useful to transform the inte-
grand to relative and center-of-mass coordinates.
They accomplished this by coupling the product
state wave functions in Eq. (1) to states with angu-
lar momenta A. and ~' defined by

~ =I+ L =1,+l2,
X' =1'+L'=1,+1„

where 1 and L (and 1' and L') are, respectively,

gtLt tI t

&& (n'l'X'L', A. ~n,'l,'n,'f,', X')

x (nlNL; Xgi Vin'l'N'L'; A. 'p, ') . (4)

In (4), the first two terms on the right-hand side
are the Talmi-Brody-Moshinsky transformation
brackets, and the last term can be expressed in

terms of the Talmi integrals.
The double sum over A. and X' in (3) is reduced

to essentially a single sum by the restriction that
X=A.' if V(t) is a central-force potential or A. =A. ',
A. '+2 if V contains a tensor-force component. In
evaluating the Iz~. for each permissible A., A.

' pair,
one finds that the number of terms in the multiple
summations in (4) is considerably reduced by par-
ity, orthogonality, and conservation-of-energy re-
strictions. Nevertheless, it requires a good deal
of computational labor to evaluate all the required
transformation brackets, the I„~ for each X, A.

'
pair, and finally the desired integral I itself, ~Is-

ing (3).
In the above approach, it should be noted that it

is more difficult to handle tensor forces than cen-
tral forces. Secondly, in the original work of
Moshinsky, the transformation brackets were de-
fined only for the case that all the oscillator con-
stants were the same. Recently, Gal4 has alleviat-

the relative angular momentum and the angular
momentum associated with the .center -of-mass mo-
tion. The desired integral (1) is then transformed
to a sum of integrals over center-of-mass and rel-
ative cooordinates

I= Q (I,l,m, m, ~& p)(f,'I,'m,'m,'~A. 'p')I~~

with

I» -=(n, 'p.f.; ~VIV»In('ln212; ~'u')

(n„f,n, f„~~nurL, ~)
NLnl



DIRECT REDUC TIQN TQ TALMI INTEGRALS. . . 85

ed one of these difficulties by extending the defini-
tion of the brackets to the case of different oscilla-
tor constants for the various wave functions it „, (r)
in (1). The current work also allows one to treat
the case of different oscillator constants, and in
addition also allows one to treat tensor forces on

an equal footing with central forces.
The purpose of this paper is to point out that the

interaction matrix (1) for

V(r12) C(rl2) VT(r12)

can be reduced directly to Talmi integrals I,

(V„)=g(c,I, +t,I, )
s

without any recourse to an intermediate step in-
volving the coupling scheme (2). In (6), the super-
scripts C and T indicate that the Talmi integrals
are to be evaluated using Vc(r) and V„(r), respec-
tively, and c, and t, are the desired expansion co-
efficients.

The advantage of our method is its simplicity, in
that it directly evaluates the interaction matrix.
Most physical problems leading to (1) involve prod-
uct states, rather than vector-coupled states of
angular momentum A, =l, +12 and A. '=1,+12, as in
the conventional method of Talmi-Brody-Moshinsky
(as for example, in the case of the interaction be-
tween Nilsson orbitals). Moreover, the expansion
coefficients obtained here can be used directly in
evaluating these matrix elements without any addi-
tional 3-j or 9-j symbols, and independently of any
coupling scheme.

On the other hand, even with the use of the pub-
lished table of the transformation brackets and the
auxiliary table of B coefficients, the Talmi-Brody-
Moshinsky method requires lengthy calculations.
One must first vector-couple states, which replac-
es (1) by the sum (3), subject to the previously not-
ed restrictions on A, and A'. Each of the integrals
Iz z is then transformed to Talmi integrals using
Brody and Moshinsky's table of coefficients
B(nl, n'l';P) Finally al. l the contributions are
summed [the summations indicated in (3) and (4)]
to achieve the final result. The amount of work
involved, particularly in the case of a tensor force,
was a principal motivation in developing a more
direct means of evaluating (1). Finally, we note
that in the event that one wishes to use deformed
orbitals of the Nilsson type, the conventional meth-
od becomes even more involved, while no particu-
lar difficulty is encountered using the method de-
veloped here. The exact relationship between the
expansion coefficients c, and t, and the various co-
efficients in the Brody-Moshinsky tables is dis-
cussed in Sec. VI.

The principal work in this paper is the deriva-

tion of closed-form expressions for the c, and t,
in the expansion of (1) in terms of Talmi integrals,
as in (6). These expressions, which may be pro-
grammed for a computer, allow all four oscillator
constants v„v„v,', and v2' to be different. This
leads to the possibility of multiwell calculations,
such as using different oscillator constants for neu-
tron and proton states, or for states with different
l values. (As has been noted, this is now also pos-
sible using the transformation-bracket approach,
due to the work of Gal. 4)

For the usual case of equal oscillator constants
(v, = v, = v,'= v,'= v), the coefficients c, and t, are
independent of v, so that tabulation becomes fea-
sible. Furthermore, if the integrals are written
without complex conjugates of wave functions, as
in (1), a large number of symmetries exist which
considerably reduce the size of the tables.

The method could easily be extended to include
a spin-orbit force, This has not been done explicit-
ly, because the integrals in this case can be re-
duced to those for central forces by letting one of
the operators L„L, or L, act on either of the
product states in (1). In this way one can express
the coefficients for a spin-orbit force in terms of
the ~, ~

A brief report of the method for equal oscillator
constants has been presented previously. ' Apart
from presenting proofs and details, the present
article extends the results to the case of unequal
oscillator constants. For illustrative purposes, a
table of c, and t, has been included. This table
gives the reduction to Talmi integrals of matrix
elements containing the p, = 0 component of the po-
tential V,"2 when the particles are restricted to be
in the states Os, OP, or Od, and have equal oscilla-
tor constants. Both central- and tensor-force co-
efficients have been included.

II. DEFINITIONS AND NOTATIONS

For our purpose, it will be sufficient to deal with
the p.th spherical component, V,"2 of the interaction
V(r»), i.e.,'

V,",=
V(rc) „6, V+r(r) T,"

with p, =0, +1, +2. T," is the pth spatial component
of the tensor operator, and will be defined explicit-
ly later.

Because of the usual properties of the spherical
harmonics, we have

= (-) " '
J~ 4

„*i,(I)4 „*... ,(2)

V12& 'i' '(1)&n'i' '(2)dridr2 (8)11 1 22 2
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and this integral (8) vanishes unless

p+m, +m +m,'+m'=0. y= (1-X)/!(.
(15)

We want to expand the integral (8) in Talmi inte-
grals to obtain

(10)

Using (14) and the binomial theorem, one obta, ins,
for a and b integers

%'e shall use spherical coordinates

r' =x+iy =r single" ~,
r'=z =r cosa.

(yp)n(yP)a g— (M )~~agp) 2+a ()(-po)8
8=0

with

(18)

R = (1 —X)r, + Ark,

with

r=r —r1 2~
(12)

l'2+ ~2

+ ~~ + l/pi + l/p2

For the spherical coordinates of the two particles,
this gives the transformation properties

Note the difference in normalization from the usual
definition.

For the general case of unequal oscillator con-
stants, we introduce the "center-of-mass" trans-
formation

The M& are most easily calculated by recurrence
relations.

For the spherical spatial components T2u of the
tensor operator S», we use

T"= 3 sin'Oe~'~
2

T,"=Scos&sin&e"@,

T2= 2cos 0 —sin ]9~

which differ in normalization from the usual spher-
ical tensor operator.

Finally, we introduce the notation

ri~- Ru+ Aru = Ru+ pu

r,"=B"—(1 —A.)r"-=R" —yp"

for p, =o, +1, and where

(14)
Q(n, m) =

Jt sin2" 8 cos2™OdQ,

2"n! (2m —1)!!
[2(n+m)+ 1]!!

III. EVALUATION OF c,AND

One may write the single-particle harmonic-oscillator wave functions as

( )
(2v)"'[2(pi+1)+1]!!"'~Dn)(4 ) +)/2 2nn( (ym)

n l m j./2nn -2. (20)

where

(21)

The spherical harmonic r'Y, can be expanded as
(l -P)/2

l 1™—N g G l P y 2k(y+ )(P + m) /2
(y -)(P -m)/2 (yO) l -P -2k

l lm k (22)

with P = Iml,

(23)

(24)

Since
n

(r2)n [(rO)2+y+r-]n (yO)2(n-i)(r+y-)i

l=0
(25)
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one finds for $„1 (r)1
n+»2 s

(T)-( )(2+m)/2 2"
(4v)sffnlp (T+)t™2(T)™-2(TO)2(st)-e -vr

w
s=l/2 t =P/2

(26)

with

1 ' (2l+ 1)(l -p)!(l+p)![2(n+L)+1]!!
nip 2li ~ 2nnI (27)

and
(l -p)/2

ypglP —Dnl ~ ~ g lP
atc a c

k=0

(28)

Then using (26) and (28), one may write for the product of two oscillator wave functions of the same vari-
able (with v'= 6v)

N+ L/2 S
(T)P (te)

—
( )(P+(0/2(6)(l '+2/2)/2(2 v/v)2/2+ N g Q (4 v) Z n(2, n l Jl'

S=L/2 T=P/2

with

x (T
t

)T+/I/2(& )T tt/2(TO-)2-(S. T)e -(v +-v')r
(29)

and

I' =P+P', L = l+ l', M= m+ m', (30)

ff nile n'l'le' ~(6)s'D t'Dnnl ~ Gt'tG)tee
Q, C a Qa ~ C

k' 16k'
a' E,k'

Using (29), the integral of (8) (hereafter designated by (V,",)) may be written

(V,",) =J)Q„, (1)(j&„ 1 (2) V,"2((()„,, e(1)(p„et e .(2)d7;d 7',

(31)

—
( )(P1 P2+t/1+)/2)/2(6 )()1+2/2)/2(6 )((2+2/2)/2(6 )2/2(2 v /v)2/2 g (~ N )1 2 12 1 n] l(P] n'l]Pls

with

N2+ 2 21

x
S1 L1/2 S2 L2/2

S1+ S2 n1l 1p, n1l 1p1
Z (612) (4vl) +s -1 /2. T P/2+2 L/-2, T P -/2

T =P /2 T =P /2 1 1 ' 1 1 2 2 ' 2 2
1 1 2 2

(32)

l(1 2)=Jj(;)" (,;) "",(r )' '"(r )"'"'(r', )
" ' (r ) ""e '" '"'" '" "d' r dr'dr

(33)

and where 5,. and 5» are defined by

P~ 5iV] p

"2 = ~12~1 ~ (34)

Using (16) to transform to center-of-mass and relative coordinates, one has

I(1 2) —g [(I )T(+t(1/2, T2+l(2/2(M )2(S1 Tl), 2(SS-T2)(M )T-( t((/2, T2-I/2/2]-
7 a )' b C

a sb)C

R+ T+N/2-a g- -Af/2-c g0 — — +-vg d& y a+ +c „++ a +- c +0 +-vr y + y T-4
(»)

with

S=S,+S„T=T, +T„M=M,+M„ (36)
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V V. + V.

~=H(&;+ &,')/2 (t;+ ~,') .
(37)

The angular integrals vanish unless

T + M/2 —a = T —M/2 —c,
i.e.,

c=a —M

(39)

so that one may define parameters k and I by

2k=2a -M,
2l =2a —M+ 6,

giving

a =k+M/2,

c =k —M/2,

b =2(l —k) .
The center-of-mass integral then becomes

(39)

(40)

J + ~ 2 a [2 S —l + 1]!!

~/~ (T —k)![2(S —l —T+k) —1] !!
(x) ys-3+8/22s-/-T+/!

Using the definition of the T, and (19), one may write for the integrals over 0„:
(a) For central forces,

(41)

(42)

(h) For tensor forces

f [sining ]gl[cosgg ]g-4!ed+!|!T-Qdf)! DQ (4x)2!I+!lv!/!! k, IMI, [2(l —k) —IMI + 1] !!M r r 2 r 2 2
'

(2l+ 1)!!
with

Doo = 1/[2(l k) + 1],
4/ —6k"DO—

[2(l —k)+ 1] 2l+3

D"=D"= 3/[2l+3].

The remaining radial integral has the form

l ag+a -!!q2 I x (&) ( + )!!
V

where

I =, x""V(v "'x)e * dx.2 + 2

1'(l+ —,')

The total contribution from the integrals over R and r is therefore

7/ 2]M~/2—&s/2 2s Tl s-1 Ns, T( & k)(5!!/-.ODO f/ 2 l
(VVJ 2 V V

(43)

(44)

(45)

(46)

(47)



DIRECT REDUCTION TO TALMI INTEGRALS. . . 89

where I(c and IT refer to Talmi integrals calculated with Vc(r) and VT(r), respectively, and

rk „((,k) = (T —k) ) (k+,' Ik (( —l ) —
I k)l + (I r r (2 (S —( —T+ k) —(I r r. .

Combining all these results, one obtains for the integral of (8)

(Vll ) —
( )(P+&/&/2(5 )(l +2/2)/2(5 )(l '+2/2)/2(5 )2/2N k2P ~s

12 1 2 12
(l/V)

2/2

T S I I / / 2 /

1 1~1' 1 1~1

12 S1 L1/2, T1 P1/2 S2 L2/2, T2 +2/2

S1,T1 S2,T2 k=1&l /2 l =0

(48)

with

T &+«I l/2, T2+&/2/2 T 1 «(1/2T2 /, /2/2 2(Sl Tl&, 2(S2 T2) 1 (4 V ) S/(2&

x[(M )«+&//2 (Mq)«S/2 (M&)2(& «& ] 2S T,' S, NS T(lkk)[5&(.oDoI& +DSI, ],
(49)

2 fuf/2

$g(l + l '. +n +g')

(2l;+ 1)!!(2l,'+ 1)!![2(n, +I;) + 1]!![2(n,'+ l,')+ 1]!.!
tl j ~ 5 j ~

) )I

(50)

Considerable simplification takes place when one specializes to the most frequently used case that all the
P,. are the same. One then has

=y=11 2 12

P P1r P 4P1y (51)

Denoting (MT)'(!«by M'(!« for convenience, the expression for the matrix element (V,",) in this case becomes

"1'1&1 "1 1&1 "2'P2 "2'Sb
12) ( ) + Q Q Q+ Skl, l2/, Tl Pk/2 +S2 LSIST2 P2/2,

S1&T1 S2,T2

T1+N1/2, T2+N2/2 T1-N1/2, T2 N2/2 2'($1-T~)k g S2-TQ
"[kt«+&//2 Ir/(« l//2 M2(& «& ]2S Tl(IS, (Tl k)k[ 5&o/DoI-& +DSI( ] (52)

from which the coefficients c, and t, are easily extracted. It is perhaps well to mention that a convenient
check sum exists for the c, . Letting Vc(r) =1, one finds using orthogonality that

m1+ m2

l

if (n;, l „m,) = (n,', f,', m,'. ), and 0 otherwise.

(58)

IV. AN EXAMPLE

To clarify the general procedure used above to derive expressions for c, and t„we note the essential
steps for the simple case

„1,2 Vcr +VTr T~go 1, , 2 d7d7', (54)

where all the oscillator constants are the same.
(1) Each Q„, is expressed in terms of the spherical coordinates r«, r', defined by (11). The subscript i

stands for particle 1 or 2. For this example, one obtains

constant &(Jtr,'rokr«r2 e '"("k '"2 & [Vc(r) + VT(r) T~]d T d T2. (55)
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(2) The integral is transformed to center-of-mass and relative coordinates using (16). For this case A.

= —,', since all the v, are equal. One obtains

constant&& R'+2r' R +ar B —2r R —2r e "" e '"
V~ r + V~ r 7", d7 d7„

=constant& R'B B'' ——R'B r' + R 'r'r + —,', r'r r'' e ""e "" V r +V r T, d7d7

(66)

In the last line we have used the fact that the center-of-mass angular integral vanishes unless the powers
of 8' and R are equal.

(3) Each term is integrated over the center-of-mass coordinates and the angular part of the relative co-
ordinates to gave a constant times a Talmi integral [I or I depending upon whether one is dealing with
the central force Vc(r) or the tensor force Vz(r)j. These integrations are elementary, even with the tensor
force operator T," of (18).

For the special case of all v, equal, a FORTRAN program has been written which allows rapid calculation
on the c, and f, . Some tables have been prepared, using the Fordham University IBM 360/40 system.
Short excerpts are included here in the table, allowing the reduction to Talmi integrals under the follow-
ing conditions:
(1) All oscillator constants are equal;
(2) central forces or tensor forces with p =0;
(3) all particles are in the Os, Op, or Od states.
These tables are laid out as follows: In the first line of each table are the values of 1» I» I» I,', in that
order (written as either s, p, or d), and labels for the coefficients in the different columns, c, denoting
central-force coefficients, and I;, denoting those for the tensor-force case. If c„is the highest nonvanish-

ing central-force coefficient, it can be shown that

This symmetry has been used to reduce the number of columns and is indicated in the headings.
Each remaining line in the table consists of a set m„m2, m,', m,', in that order and the corresponding

values of the coefficients c, and t, . Not all sets of m values have been included, because the integrals

(f,~,l,~21 VII',~g~m~g) =
yo(, ,(I)yo(, ,(2) V,2yo(,„;(I)yo), ,(2)«d T. (66)

have the following symmetry properties (1,2, 1', 2' refer to the four wave functions):

(1) The integrals are invariant under any of the exchanges (a) 1 to 1', (b) 2 to 2', and (c) the pairs (1, 1')
to (2, 2').
(2) The integrals are invariant if all m's are replaced by their negatives.
(3) If m, +m,'=0, the integral is invariant under the exchange m, to m,', and similarly for mm and m,'.

A11 nonvanishing integrals (i.e., m, +mm+m, '+m2=0) for our cases can be reduced to those in the tables

by use of the symmetry properties. Examples:

J
go'23(1)gag, (2)Vg (~)go„(1)y0,2(2)d ~d ~, = -(2 -2; 2 -11V, 121;22)

=-(22 211V 12-1 2-2&

= 0.167(f,'+ I,') - 0.260(f,'+ I,')+ 0.126I,',
010$0,0(1)(jh~, ~(2)VrT2$02, (l)$02 2(2)d7'~de=-(10; 111VrT2121;2-2)

= -(21;2 -21V,7,110;11)

=-(2-2 211V T'111 10)

=-(22 2-11V 7 11-1 10)

0.141'~ —0.101I2~ . (60)



DIRECT REDUC TION TO TAI. MI INTEGRAI. S. . . 91

TABI E I. The coefficients e& and t& in the expansion of the integrals

~0lfmf ~ ~~0!2tn2 ~ ~ 12~0lfmg ~~~~ol2m2 ~2~+1~+2 K~~A +~l~j ~

in terms of Talmi integrals. All oscillator constants are equal and all particles are in 08, Op, or Od states. To the left
I

of each table are, in the first line, the values of l», E2, E ~, and E2, in that order, written as 8, p, or d. Each succeed-
s

ing line contains a set of m&, m2, m&, and tn2. Other integrals with s, p, and d particles may be reduced to those in
the tables by using the symmetry properties listed in the text.

d
0

d
2

0

p

1
1

0

2

1
0
0

d

0

2
2

1
1
1
0

d
2

2
2
2

p
1
0
0

~]
0

P
-1

0

1
0

-1
0

-1
0
1
0

p
-1

0
~1

1
0

p

«1
0

0

0
0
0
0
0
0
0

~p=~)
-0.500

0.500

-0.500
0.500

Cp =C2
0.250

-0.250
0.205

Cp =C2
0.250

-0.250
0.250

Cp =C2
0.500

-0.250
-0.250

0.500
0.750

Co=~2
0.854

-0.250
-0.250

0.144
0.289

Cp =02
0.354

-0.250
0.144
0.289

Cp =03
-0.144

0.177
-0.144
-0.072
-0.072

0.177
0.144

Cp= ~3
-0.204

0.177
0.177

-0.375
0.125

Cg
-D.500

0.500
-0.500

Cg

0.500
-0.500

0.500

Cg

0
0.500

-0.500
-1.000
-0.500

Cg

0
0
0
0
0

Cg

-0.707
O.MO

-0.289
-0.577

0~=02
0.144

-0.177
0.144
0.072
D.072

-0.177
-0.144

0.204
-0.530

0.177
1.125

-0.875

-0.200
-0.400

tg
0.200
0.400

tg
0,346

tg
0.200
0.100

-0.200

tg
-0.200
-0.100

0.200

0
0.100

-0.100
0.400

-0.400

0
+0.300
-0.300
-0.173

0.173

t(
0.283
0.100

-0.058
-0.289

tg
0.029

-0.141
0.029
0.318

-0.202
0.283
0.087

tg
0.041
0
0.141

-0.450
0

t2
-0,143
-0.071

0.143

0.143
-0.071

0.143

-0.286
-0.071
-0.071
-0.286

0.857

tg
0.202
0.071
0.071
0.206

-0.454

-0.202
-0.071
-0.206

0.454

t2
0.041
0.101

-0.206
-0.289

0.330
-0.202
-0.871

t2
0.117
0
0.101
0.643
0

ts
0.144
0
0.144

-0.144
-0.144

0
0.488

t3
-0.204

0
0

-0.250
0



TABLE I (Continued)

d p P
2 ~2 ~l 1
1 1 1 ~1
1 0 0 -1
1 0 -1 0
1 -1 1 -1
1 -1 0 0
Q 0 1 -1
0 0 0 0

-0.375
0.250

-0.072
-0.072

0.250
-0.875
-0.208

0.458

cg= c2
0.125

-0.250
0.505

-0.861
-0.750

0.625
0.458

-0.708

-0.050
-0.200

0.144
-0.029

0
0.050
0.117

-0.267

t2
0.071

-0.143
-0.206

0.165
0

-0.500
-0.024

0.667

Cs
-0.250

0
0.144
0.144
0
0.250

-Q.083
-0.667

p
2 1
2 0
2 0
2 ~l
1 1
1 0
1 0
1 -1
0 1
0 0

d d
2 2
2 1
2 1
2 0
2 0
2 0
2 ~1
2 ~1
2 -2
1 1
1 0
1 0
1 -1
0 0

J

p

-2 0
0 -1

-1 -1
0 -1

-1 0
1 -1
0 -1
0 0

d elf

ISNlt 2
-2 -1

0 -2
1 ~l

-2 0
1 ~2
0 -1
2 ~2

~] ~]
0 -1

-1 0
1 -1
0 0

co=cd
-0.875

0.177
0.125

-0.204
0.250

-0.072
-0.375

0.250
-0.208

0.458

co=c4
0.375

-0.187
-0.1SV

0.187
0
0.187

-0.187
0
0.875
0.375

-0.187
-0.187

0.375
0.562

c(=cg
-0.125
-0.177

0.375
0.204
0.250
0.072

-0.125
-0.250
-Q.292

0.042

cg=cs
0
0.250

-0.250
-0.417

0.204
0.083
0.750

-Q.408
-1.500
-0.250

0.677
-0.583
-1.000
-0.750

tg
0.050

-0.141
0
0.041
0.200

-0.202
0.350
0.400
0.017
0.133

C2

0.250
-0.125
-0.125

0.458
-0.408

0.45S
-1.125

0.816
2.250
0.750

-0.958
0.542
1.250
1.375

t g

0.071
0.101
0

-0.292
-0.143

0.330
-0.857
-0.286
-0.262
-0.381

0
0.125

-0.125
-0.033

0.~02
-0.038
-0.075
-0.143

0.600
-0.200

0.108
-0.042

0.100
-0.238

ts
0.250
0
0
0.204
0

-Q.144
-0.250

0
0.083
0.667

t2
-0.143

0.018
0.018
0.024

-0.073
0.024
0.161
0.102

-1.286
0.214

-Q.899
0.244
0.857
0.738

0
-0.125

0.125
0.167

-0.102
0.167

-0.125
-0.102

1.000
0
0.458

-0.292
-0.500
-O.S38

t4
-0.273

0.084
0,034

-0.136
0.084

-0.186
0.084
0.084

-0.278
0.136

-0.170
-0.170

0.136
0.6S2

VI. RELATION BETMfEEN c (AND t ) AND TALMI - SRODY-MOSHINSKY BRACKET

To establish a relation between the expansion coefficients c, and t, and the transformation bracket tabulat-
ed by Brody and Moshinsky, we will consider only the central-force case. A similar relation can be estab-
lished for the tensor-force case.

The integral considered by Moshinsky is not the integral of (l) involving the product state functions, but

rather the integral where the wave functions are coupled to intermediate states of angular momenta X and
A. ', i.e., the integrals

f„,= &n,l,n, l„au. I Vln,'f,'n,'f,'; x' p'}.
Moshinsky showed that such integrals may be written {for central forces, so that X =A') as

i„=pl,( Q [(n,f,n,f„~Indi. , »(n'fxl. , ~ln,'f,'n,'f,', »]B(nf, n't;p)).
P n/EL ff'

(61)

(62)

The terms inside the square brackets on the right-hand side of (62) are the transformation brackets, which,
along with the coefficients B(nl, n'l';p), have been tabulated by Brody and Moshinsky.

The desired integral (8) is related to the integrals evaluated by Brody and Moshinsky (Iz~ ) by

t)~t+ )2t

(l,l,m, m, I x it}(l,'f,'m', m,'I x' p, '}I~).. .
x'= ts'-r')

2

(66)



DIRECT REDUCTION TO TALMI INTEGRALS. . .

Since, in terms of the coefficients c, introduced here, (V„)may be written

(V„)=Q(c I +t I ) (64)

one can relate the c, to the various quantities used in the Brody-Moshinsky method by

~r, +~2~

(l,l,m, m, ~Ap)(l,'l,'m,'mphil) g ((nlNL, X[n,i,n, l„A)(n', l', n'l,', A ~n'lNL, A)B(nl, n'l;P)). (65)
X= Il&-l2I nfNLn'

From the expression (65), the principal advantage of the present method is ciear. We have replaced a
very complicated summation by a simple coefficient. In the Talmi-Brody-Moshinsky method, one is to use
the Brody-Moshinsky tables to get the transformation brackets and the 8 coefficients, and then perform
multiple summations over products of these coefficients with various Clebsch-Gordan coefficients, even for
the central-force case. Obviously the tensor-force case is more complex. By contrast, in using the pres-
ent method, one simply takes the desired coefficient c, (or t, for a tensor force) directly from the table.
In addition, as should be clear from the above discussion, the amount of work eliminated by our method in-
creases sharply as one deals with higher-energy states, where the number of values of X and A. ', the num-
ber of Clebsch-Gordan coefficients, the number of transformation brackets, and the number of 8 coeffi-
cients involved in calculating a single integral over product state wave functions all increase. On the other
hand, the c, and t, may be tabulated once and for all for any reasonable case using a simple FORTRAN pro-
gram.
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