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Four generalized one-boson-exchange-potential (GOBEP) models are examined. The first
is a highly realistic model which includes only well-established mesons and which takes ac-
count of the resonance width of the isoscalar scalar € meson. Two others are adaptions of
this model, each containing a phenomenological term to help improve the fits to high-energy
phase shifts. The final model does not assume charge independence of the nuclear force.
Meson-nucleon form factors derived from a generalized field theory are used throughout,
and a new fitting procedure is introduced which makes allowances for the uncertainties in
the theoretical model. The models are compared and evaluated in terms of both the F test
for a fit to the phase shifts and the second-derivative matrix method for a fit to observable
data, Our basic intention is to provide realistic GOBEP models suitable for nuclear-struc-

ture and nuclear-matter calculations,
I. INTRODUCTION

Realistic descriptions of the nucleon-nucleon
(N-N) force have been provided by one-boson-ex-
change potentials (OBEP), especially by general-
ized OBEP’s (GOBEP)'~3 which include meson-nu-
cleon form factors. Since Green and Sawada’s
work! achieved reasonable fits to all N-N scatter-
ing data up to about 150 MeV with only two adjust-
able parameters, it appears that the GOBEP mod-
el is qualitatively correct. However, as an ap-
proximate model, it cannot be expected to provide
exact agreement with all experimental data at all
energies,

Here we discuss four models which are in good
agreement with experiment and thus provide po-
tentials which should be useful for nuclear-struc-
ture and nuclear-matter calculations. While the
various phenomenological potentials or energy-de-
pendent phase-shift formalisms may be very ac-
curate in interpolating on-energy-shell data, there
is no assurance that they retain this accuracy
when extrapolated into the off-shell regions, To
provide the accurate off-shell transition ampli-
tudes required by nuclear many-body problems,
what is needed is an exact model which realistical-
ly incorporates all important ingredients of the nu-
clear force. As a step toward the eventual formu-
lation of such a model, we examine an approxi-
mate GOBEP model which is in quantitative agree-
ment with scattering data up to the inelastic thresh-
old while involving only well-established mesons.
The other models we discuss are modifications of
this basic model. )

Section II discusses the manner in which we de-
rive meson-nucleon form factors from a general-
ized field theory. A new fitting procedure which
provides a reasonable compromise between the
high accuracy of some of the phase shifts and the
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inherent uncertainties is described in Sec. III. In
Sec. IV we utilize these form factors and the new
fitting procedure in a model which also takes ac-
count of the instabilities of the recently discovered
I=0, $=0 € meson, This differs from most pre-
vious models in that it does not contain any fictiti-
ous mesons such as the weakly-coupled ¢ used in
earlier realistic GOBEP."?

Since GOBEP is an approximate model, we must
still use some empirical adjustment to provide a
precise fit to the data. The results of the Green-
Sawada' two-parameter model indicate that the
greatest discrepancies are to be expected in the
high-energy region. This is not at all surprising
since one would expect multiple meson exchange
and relativistic effects to become more important
as the energy is increased. In Sec. V we introduce
a phenomenological L? force and in Sec. VI we in-
troduce a contact potential in an attempt to obtain
improved agreement with experiment,

Another problem which has plagued many of our
previous models relates to the statistical errors
of the experimental data., While the p-p scattering
data have been determined quite precisely, the
n-p data are much less well known.*° Consequent-
ly, if the traditional x? goodness-of-fit tests are
used to adjust model parameters, the p-p data are
weighted much more heavily than the n-p data,
Our models generally would fit the p-p data better
than one could reasonably expect from an approxi-
mate model while some of the fits to the n-p data
are quite poor. In an attempt to circumvent this
problem, we have attempted fits to the p-p and
n-p data separately, the results of which are de-
scribed in Sec. VII together with a discussion of
the possibility of charge dependence of the nuclear
force. In Sec. VIII the models are compared and
discussed with respect to their agreement to both
phase shifts and observable data.
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II. FORM FACTORS

The generalized meson-field theory of Green®
which incorporates arbitrarily high derivatives in
the field Lagrangian leads to a nonsingular, or
regularized, generalized meson potential. It has
recently been shown’ that this same regularized
potential may be obtained from the usual meson-
field theory by introducing a form factor at each
meson-nucleon vertex of the form

F(kz)—_-I:lI (1 +kz/A'-2)_l/2, (1)

where the form-factor parameters A; are often
called regulator masses.

We have given our form factors the normaliza-
tion F(0) =1, as used in the work of Ueda and
Green.»” The coupling constant convention used
in the well-regulated potential of Green and Sawa-
da'® resulted in form factors having the normaliz-
ation F(u2)=1. For purposes of comparison, g2
the square of a meson-nucleon coupling constant
from one of these early papers, should be multi-
plied by IT/, (1-p2/A2)? to bring it into agree-
ment with our present convention. This also ap-
plies to the recent publication of Stagat, Riewe,
and Green,®

The form factor with » =1, i.e. “monopole regu-
larization,” results in a unrealistic form factor
(1 +k2/A2)71/2, Nevertheless, it is sufficient to
eliminate the singularities from numerical calcula-
tions without the use of a hard-core cutoff and has
been used for this purpose in several of the ear-
lier models.*®

Form factors which are more realistic may be
obtained by choosing the A; of Eq. (1) to be equal
in pairs. This results in the expression

Fe2) = T1 (L +R2/A )1 (2)

i=1

Note that for N =1 we have a “monopole” form fac-
tor, or dipole regularization. Setting N =2 with A,
=A, results, as pointed out by Ueda and Green,” in
the familiar Hofstadter-Wilson dipole form factor,
or quadrupole regularization,

In most GOBEP models, attempts were made to
use regulator masses as adjustable parameters in
order to provide greater flexibility in fitting ex-
perimental N-N phase shifts, However, the calcu-
lations were found not to be as sensitive to changes
in the regulators as had been hoped. Any small
change in the regulator masses could be compen-
sated for by readjusting the coupling constants.
Furthermore, two or more unequal regulators
could be set equal to some properly chosen inter-
mediate value without altering the results. Allow-

ing the regulators to take on different values for
each meson also resulted in little improvement,
except in some cases where the pion regulator
was set slightly higher than the rest.

Thus, we conclude that the fit to the N-N phase
shifts is not very sensitive to the precise values
of the regulators as long as they are constrained
to lie in the region of about 1300 MeV <A, <2500
MeV. That is, the x% surface, viewed as a func-
tion of the regulator masses, apparently possess-
es a very broad minimum in this region. Conse-
quently, so as not to overburden ourselves with a
profusion of adjustable parameters, we have cho-
sen to set N=2 and take A, =A, =2M, for all me-
sons, where M, is the nucleon mass.

III. MODIFIED FITTING PROCEDURE

The most serious discrepancies in the pure
OBEP fits achieved to this point occur at high en-
ergies in 'P,, 'D,, 3D,, and p,. Since three of
these four are T =0 states, one is led to suspect
that the over-all quality of our fits may be strong-
ly influenced by the fact that the standard errors
for the T'=1 phase shifts are approximately only
% of those for the 7=0 case.*® This, of course,
is because the T =1 phase parameters are obtain-
able from the very precise p-p data whereas for
the T =0 states one must rely on the much poorer
n-p data. As a result, a standard x* minimization
procedure will force a very precise fit to the T'=1
states while tolerating rather large discrepancies
in the 7'=0 states. Now since the one-boson-ex-
change model is admittedly an approximate theory
one cannot realistically expect it to provide an
arbitrarily precise representation of the p-p data.

Perhaps the most reasonable means of overcom-
ing this difficulty would be to introduce an esti-
mate of the errors inherent in the theoretical mod-
el. Then, if a given phase shift, as calculated
from the theory, is uncertain by an amount €,
while the experimental error is €,, it is easy to
show that the appropriate error to be used in deter-
mining the x2 is given by

€2=€t1‘12~'_€x2' (3)

If our previous discussion of the difficulties we en-
countered in trying to simultaneously fit the 7=0
and T =1 phase shifts is valid, we would expect to
find that €,,< €, for the T =0 states whereas €,
> €, for the T'=1 states. This would result in our
fits to the 7'=0 phase shifts being limited in pre-
cision essentially by the experimental uncertain-
ties while the T =1 fits are largely limited by the
approximations in the model.

The essential difficulty now is to provide reason-
able estimates of the theoretical errors. This is
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a problem which is by no means trivial if one is
after a very rigorous result. We have satisfied
ourselves with defining a prescription which, we
feel, does provide a reasonable estimate. In per-
forming our initial searches on what we believe is
our most physically realistic model (see Sec. IV),
we allowed ourselves to vary all coupling con-
stants, including that of the pion. We obtained a
“best” fit with a value of g,%2=13.5 as opposed to

a value of 14.8 which is obtained from 7-N scatter-
ing data.'® If our model were exact, we would ex-
pect that our best fit should occur for a coupling
constant very close to the experimentally deter-
mined value. That this is not the case is a reflec-
tion of the approximate nature of our model and
the difference between 13.5 and 14.8 is, in some
sense, a measure of the errors inherent in the
model. Thus, if we consider the change in the
phase shifts as we change the pion coupling con-
stant from 13.5 to 14.8, we can expect this to pro-
vide an estimate of the uncertainties in the phase
shifts due to the approximations in our model.
These “theoretical” errors were compounded with
the experimental errors, as described previously,
and have been used in the studies to be described
in Sec. IV.

IV. SCALAR MESONS

A weakness in all previous OBEP models was
the essential use of scalar mesons (J =0) whose
existence had not been established experimentally.
Inparticular an/=0, J =0 (scalar-isoscalar) meson
which is needed in all models to cancel the large
static contributions of the w vector meson and to
provide a residual attractive interaction in the
middle region has been elusive. Recently, howev-
er, experimentalists have reached a consensus
that scalar mesons do indeed exist.’? The €, (I=0),
at long last appears firmly established as a broad
S-wave resonance or enhancement in m-7 scatter-
ing data. The exact width of this resonance is
still uncertain and it appears that there are four
different possible -7 phase-shift solutions which
are consistent with existing data. The 6, (I=1),
is now quite well established, having a mass of
about 960 MeV.'®

It is our purpose here to present a model which
incorporates only the € and 0 scalar mesons and
which embodies the broad mass nature of the €.

We represent the €’s potential by

11

o) =[ " ) ¥ i (4)
u

1

This is an obvious adaption of the well known an-
satz of Charap and Fubini'* and its Fourier trans-
form has been used in many recent works.

Because the available m-7 data are too imprecise
to accurately determine the distribution function
p(u), we select its form in an empirical manner
by setting the requirements that it vanish at thresh-
old, n=p,=2m,, and reach a maximum value in
the vicinity of the resonance position, p=u,. A
form such that the integral in Eq. (4) can be done
analytically is convenient for calculations, espe-
cially in treating the nonstatic contributions of the
€ which involve derivatives of J(7).!

A function which satisfies these requirements is

p(p) =N[ze=(s-V ] (5)

where z =(u - u,)/(¢,~ 4;) and v is a width param-
eter. When this expression is inserted in Eq. (4),
we obtain

e M1+ - gy | ~(v+1)
” [ (/“Lrv ul) ] , (6)

J(r) =

where we have chosen N such that fp(p)du =1.
Note that the larger the value of v the narrower
the mass distribution and, when v - », J(r) be-
comes a simple Yukawa function corresponding to
a meson of mass {,. We use this limit for the 6
meson as well as the 7, 1, w, and p mesons.

. 1 N | " 1
600 700 800 900

M o (MeV)

FIG. 1. The first graph shows fits to the up-up solu~
tion (open circles, dashed lines, v=17.4, u, =740 MeV)
and the down-up solution (solid circles, solid line,
v=32.7, 4, =760 MeV) of Smith and Manning. The lower
graph shows fits to the up~down (open circles, dashed
line, »=0.8, u, =900 MeV) and down-down (solid circles,
solid line, v=2.2, pu, =850 MeV) solutions of the same
authors,
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In practice, we do not use Eq. (6) as it stands,
but rather, we choose J(7) to be a superposition
of well-regulated potentials®*? which have been de-
rived from a generalized field theory.® This pro-
cedure has recently been interpreted as equivalent
to including realistic meson-nucleon form factors.
For the broad mass meson, we assume that the
corresponding regulator masses are also charac-
terized by the mass distribution given in Eq. (5).
To this end, we replace the regulator mass, A, of
previous works, by a regularization parameter,

A, defined by A =xp.

To determine a reasonable range for 4, and v
we note that the S-wave 7-7 scattering amplitude
can be written approximately as

() _sinbe??
f W2 —k2=ie u kT ™

Taking the imaginary part of each side we get p(i)
~sin26, We therefore fit p(u) to sin?6 for the vari-
ous proposed phase-shift solutions.

A fit to one such set of phase shifts!® is shown
in Fig. 1. We found that the proposed phase-shift
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FIG. 2. The well-regulated Yukawa function, J(r), for
the sum of the two scalar-isoscalar mesons of Ref, 2
(solid line) and for a single distributed mass meson
(dashed line).
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solutions fall into two distinct classes. One has a
resonance position between 700 and 800 MeV and
a width from 100 to 400 MeV. The other is an ex-
tremely broad solution with a resonance mass
about 900 MeV and a width of 1000 MeV or more.
Consequently, we chose five different “standard”
cases for our consideration, Three of them have
resonance masses of 750 MeV and widths of 100,
200, and 300 MeV respectively, while the other
two have a resonance mass of 900 MeV and widths
of 1000 and 1500 MeV.

We began our test by readjusting the parameters
of one of the Ueda-Green? models to optimize the
fit to the most recent N-N **5 phase shifts. The
coupling constant and regularization parameter of
each of our five test cases were then adjusted to
fit the potential due to the two Ueda-Green? iso-
scalars. The fit was excellent at short distances,
indicating that the ficticious ¢ in conjunction with
a sharp € simulate the short range effects of a
broad-mass €. Finally, a search was performed
on all the parameters of the distributed mass mod-
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FIG, 3. Fits to the N-N phase shifts for the distributed

scalar model. Solid circles are the single energy solu-
tions of MacGregor, Arndt, and Wright and the open
circles are the energy-dependent solutions of Breit ef al.

(Ref. 4), Theoretical error bars are not shown,
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TABLE 1. Potential parameters for all models. DMS: distributed mass scalar; L% L?force; CT: contact term;
RCD: realistic charge dependent; PCD: phenomenological charge dependent. DMS’ and PCD’ are fit to observable
data; others are fit to S, P, and D phase shifts at six energies. The distributed mass ¢ meson has a monopole form
factor with parameter A. Each discrete mass meson has a dipole form factor with its parameter fixed at twice the nu-

cleon mass.

Mass RCD PCD PCD’
Meson (MeV) DMS  L%2 cth n-p  p-p n-p p-p DMS’ n-p  p-p
T 138.7 14.26  13.70 12.93 12.97 13.36 10.57  13.38 13.97 10.97 12.87
n 548.7 2.53 3.38 6.87 5.59  5.59 —26.3 6.50 2.48 —-25.16  6.69
w 782.8 10.00  10.5 10.3 15.0  9.57 15.4 8.15 10.00 15.37  8.15
o 763.0 0.583  0.957 0.942 1.00 1.14 0.411  1.45 0.69 0.595 1.44
5 963.0 1.39 1.75 2.89 1.43 1.43 1.69 -1.67 1.39 2.20 —1.84
3 782.8 13.9 14.6 13.3 19.3 13.8 20.3 14.5 13.53 19.68 14.35
(F/8)p 5.18 3.74 3.71 3.45 3.48 5.82 3.30 4.87 443  3.33
v 3.80 3.88 3.80 3.84 3.84 3.70 3.84
A 1.50 1.58 1.50 1.58 1.58 1.50 1.58

3 Also uses g;,°=0.511.

el to minimize the ¥? with respect to the N-N
phase shifts, This procedure clearly distinguished
the five different cases. First of all, the two ex-
tremely broad cases had a significantly higher yx?
than any of the narrow width cases. Furthermore,
among the three narrow resonance cases, the x?
decreased by approximately 20% with each 100-
MeV increase in the width. Our results, then,
tend to favor a resonance mass between 700 and
800 MeV with a width of 300 MeV or more.

Very recently it has been suggested that the n-w
phase-shift analyses may suffer from an even
greater uncertainty than has been believed.!® Thus,
it may be fruitful to allow ourselves greater flexi-
bility in characterizing the € mass distribution
than that permitted by m-m phase-shift analyses.
We therefore sought a model in which the param-
eters of the mass distribution were to be deter-
mined solely by searching on N-N phase shifts
such as have been given by Seamon et al.* and
MacGregor, Arndt, and Wright.® Since the phase
shifts turn out not to be very sensitive to the pre-
cise position of the resonance (as long as it is be-
tween 700 and 800 MeV), we chose to impose the
five-vector constraint, originally suggested by
Green,'” by setting the resonance mass of the €
equal to the mass of the w.

That our suspicions that the weak light-mass ¢
used earlier™? primarily described the effects of
the instability of the € are plausible can be seen
in Fig. 2. Here we have plotted J(») for a broad-
mass scalar and for the sum of the weakly coupled
o and strongly coupled € in the Ueda-Green III®
model. As can be seen, this combination of two
stable mesons can provide an excellent approxima-
tion to a single strongly coupled distributed mass
€.

Our final fits to the N-N phase shifts are shown

bAlso uses g,?=83.6.

in Fig. 3 and the corresponding potential param-
eters and deuteron parameters are given in Tables
I and II. Deuteron wave functions are shown in
Fig. 4. In performing the parameter search, we
have used the compound errors described in Sec.
IIT with the exception of the %S, states, where ex-
perimental errors were used as a stronger con-
straint.,

V. L* FORCE

In a previous paper, Ueda and Green” attempted
to remove the discrepancies at high energies by
introducing a phenomenological L? force in the fol-
lowing form:

V,==g, 2T, 7)1 +P)]L2 J(r), (8)

where P is the parity operator and J(7) is the gen~
eralized Yukawa function corresponding to a quad-
rupole form factor.? The presence of the term

in square brackets allows this force to act only in
even-L states so that the P waves are not adverse-
ly by its presence. The isospin dependence is
included to reverse the sign of the potential be-
tween spin-singlet and spin-triplet states. With

TABLE II. Deuteron parameters obtained from the
various models. All models have had the coupling con-
stant of the 6 meson adjusted to give the correct binding
energy.

Ep
(MeV) DMS L? CT PCD Expt.
2.224 2.224 2.224 2.224 2.2245
p (F) 1.85 1.83 1.77 1.80 1.82£0.05
% D 4.6 4.0 4.9 4.1
Q (F7?) 0.275 0.262 0.258 0.240 0.282
p (py) 0.855 0.861  0.857  0.849 0.8574
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this form it is possible to provide some extra at-
traction in the 'D, state, while at the same time
providing the needed repulsion in the 3D, state.
Furthermore, the S, P, and F waves will not be
affected — the S waves, since L?=0 for these; and
the P and F waves, because of the presence of the
projection operator. The coupling constant, g,2,
is chosen sufficiently small and the “meson mass”
in J(») made sufficiently large that we do not ex-
pect this additional term to have any appreciable
effect on the higher partial waves,

With this additional freedom, Ueda and Green
were able to provide precise fits to the 'P,, 'D,,
and 3D, phase shifts, even at high energies. Un-
fortunately, no attempt was made to constrain the
fits to the very low-energy data, with the result
that the deuteron parameters are quite imprecise.
In the present work, the model has been derived
by adding the potential given by Eq. (8) to the mod-
el of Sec. IV. The parameters have been adjusted
to yield a much improved fit to the low-energy da-
ta. We note that due to the central nature of the
L? terms (as opposed to a tensor type term, which
mixes different partial waves), this model does
not provide any significant improvement in our fit
to the J =1 mixing parameters. The parameter
values and the final fit for this model are given in
Tables I and II and in Figs. 4 and 5.

VI. CONTACT TERM

When the prescription for determining theoreti-
cal errors is introduced, it is found that the re-
sulting compounded errors are quite reasonable,
in the sense that they conform to our a priovi ex-
pectations. The lone exception is in the 3S, state,
where the prescribed theoretical errors.are sig-
nificantly larger than we would have liked. Con-
sequently, when a parameter search is performed
we find that all the previous major discrepancies

05t —— L

o4t -

R(F)

FIG. 4. Deuteron wave functions for all models.

can be resolved at the expense of a drastic de-
crease in the 35, phase shift. This may seem a
rather large price to pay, since many-body prob-
lems are often rather sensitive to this phase shift.
However, we do gain the purely statistical advan-
tage that we can now introduce some small amount
of phenomenology to correct only one phase shift
rather than trying to juggle four at once.

The problem is now reduced to finding some way
to increase the attraction in the 3S, state while
holding all other phase shifts approximately con-
stant. This can be accomplished most easily by
introducing a very short-range force which acts
only in spin triplet states. The short-range fea-
ture will prevent it from affecting anything but an
S wave while the spin dependence is necessary to
avoid destroying the quality of the 'S, fit. Ideally,
this would take the form of a pure contact term
(i.e., a 6 function of the origin) but the necessity
of carrying out numerical calculations essentially
forbids this. Instead, we employ a contact term
which is “well-regulated” ™ ?; i.e., it is modified by
the introduction of a dipole form factor. A pure &
function may be written in the form
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FIG. 5. Fits to the N=N phase shifts for the L? force.
Experimental data points are those given by MacGregor,
Arndt, and Wright.
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6(?)=(21r)‘fe‘-1:'rd3k. 9)

We can generalize this by introducing one of the
form factors described in Sec. II into this integral.
That is, if we define:

AF) =(2m)3 f % T | PRty Pk, (10)

where, in our case, we choose F(k?) to be the di-
pole form factor, then we note that, in the limit
as the regulator masses become infinitely large,
the form factor approaches unity and A(F) ap-
proaches 6(F). If the regulator masses are chosen
to be sufficiently large, then A(¥) will provide a
suitably accurate representation of a true contact
term without introducing any undue numerical dif-
ficulties.

In our first attempt at introducing the contact
term, we added a potential of the form

3
V Contact =g°2<Mlc> A(F)PY Mc?, (11)
where P§” is a projection operator onto the spin
triplet states. The regulator masses were arbi-
trarily chosen to be 2M, and g2 was chosen so as
to give the correct deuteron binding energy. Thus,
at the expense of one adjustable parameter, the
38, was corrected and, in addition, we were able
to obtain a very precise fit to the deuteron param-
eters. Unfortunately, the introduction of an addi-
tional central force resulted in a drastic decrease
in the J =1 mixing parameter, thus defeating one
of the principal reasons for introducing the con-
tact term.

The latter deficiency can be remedied quite
simply. By deleting the simple spin dependence
and replacing it with a tensor force, that is, by
setting

7\ A
VContact:gcr‘!(‘Mz) A(I’)SIZMCZ. (12)

We can again avoid any conflict with the singlet
states while at the same time the J =1 mixing pa-
rameter can be increased to provide even better
agreement with experiment.

The parameters for the latter fit are given in
Tables I and II and the deuteron wave functions
and phase shifts are plotted in Figs. 4 and 6. The
only significant difference is the improved fit to
p, in the tensor force model.

VII. CHARGE DEPENDENCE

As experimental accuracy increases, it is be-
coming apparent that charge independence is only
approximate.'® The most direct evidence for the

3

violation of charge independence is found by com-
paring the 'S, scattering lengths for p-p and n-p
scattering. Also Noyes'® has found that the p-p
and n-p effective ranges seem to differ by at least
10% for the 'S, state, although the evidence is not
as strong as in the case of the scattering length?®
and the data are still being revised.?! These ef-
fects need not be due to any fundamental break-
down of symmetry, but may be caused by such
phenomena as'®?2%23 two-boson exchange, N-N
pair formation, electromagnetic effects on the
charged mesons, or nonpseudoscalar pion-physi-
cal-nucleon couplings. Also, the small-mass
differences between the neutral and charged pions
may cause relatively large charge-dependent ef-
fects.!®* Any theory of nuclear forces which fails
to take these processes into account, must find
some means to distinguish between p-p, n-p, and
n-n scattering,

The N-N phase shifts used in our GOBEP analy-
sis are determined solely from p-p and n-p scat-
tering because of the relative inexactness of n-n
experiments., We will thus be able to consider
only the validity of charge symmetry, rather than
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FIG. 6. Fits to the N-N phase shifts for the contact
term model. Experimental data points are those given
by MacGregor, Arndt, and Wright.
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TABLE III. yx? and F for models fitted to phase shifts.

Model x? No. of data x°/datum Parameters F
DMS 321 69 4.65 9 1.00
L? 227 69 3.29 10 1.39
RCD 291 74 3.93 14 1.10
PCD 196 74 2.65 16 1.58

complete charge independence. The phase shifts
for states with total isospin 7=0 are determined
from n-p data while those with 7' =1 result from
p-p data. The only exception is the !S,, for which
both an n-p and a p-p phase shift are given. Hence
each experimental phase shift corresponds to eith-
er n-p or p-p scattering.

We can introduce charge dependence into a
GOBEP model by fitting to the n-p and the p-p da-
ta separately. This procedure, of course, gives
better agreement with experiment than charge-in-
dependent calculations due simply to its greater
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FIG. 7. Fits to the N-N phase shifts for the phenom=-
enological charge-dependent model. Experimental data
points are those given by MacGregor, Arndt, and Wright.

number of arbitrary parameters. The improved
accuracy increases the usefulness of the calcu-
lated potentials in applications where n-p and p-p
interactions may be treated individually. Also,
the need for the “theoretical error bars” of Sec.
IIT disappears, since n-p and p-p data are now put
on an equal footing.

As a starting point, consider the distributed
scalar model discussed in Sec. IV, for which a fit
using the actual, rather than the “theoretical,”
error bars gives a x? of 321 for 69 data. There is
no reason to assume that the scalar-meson param-
eters v and A should depend on the charge state.
Also, the coupling constants for the 7 and 6 must
change considerably to produce an appreciable
change in the phase shifts. Thus holding v, A, g,%,
and g ;% constant, separate searches onn-p and
p-p data give a total x2 of 291 for 74 data, where
both the #-p and p-p 'S, phase shifts are used.
The coupling constants are given in Table I.

Since the 2 did not improve greatly, we must con-
clude that if the GOBEP model is essentially cor-
rect, then the effects of charge dependence are in-
deed slight.

Note that the pion coupling constant is greater
for p-p than for n-p scattering. This conclusion
was also reached by Seamon, Friedman, and
Breit,?® who calculated that g,,2 ~g,?=2.2+1.3.
We found, however, that an improvement in the
x? did not result unless coupling constants other
than that of the pion were assumed to be charge
dependent. Since the coupling constants for this
model take on physically reasonable values, we
shall refer to it as the realistic charge-dependent
(RCD) model.

A much better fit to the experimental phase
shifts can be achieved if g, and g5* are not fixed,
but allowed the same freedom as the other cou-
pling constants. The resulting x? is 196, or 2.65
per datum, which is a definite improvement over
both the distributed scalar model and the RCD
model. However, the coupling constants take on
the unusual values given in Table I. Thus they
must be considered to be phenomenological pa-
rameters with no specific physical significance.

It appears that g,? and g ;> assume negative values
in order to compensate for approximations or
missing ingredients in the model. We term this
model the phenomenological charge-dependent
(PCD) model. The phase shifts are shown in Fig.
7 and deuteron parameters and wave functions are
given in Table II and Fig. 4.

VIII. DISCUSSION AND CONCLUSION

Our efforts in this paper have been in two differ-
ent, although related, directions. Our first ob-
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jective has been a further examination of the basic
validity of the GOBEP model. One of the major
criticisms'! of past models has been their utiliza-
tion of scalar mesons which had not been observed
experimentally. Experiment, however, now sup-
ports the use of two of the scalar mesons -~ the €
and 6. However, the unestablished ¢ still remains
in some models'? as an ad hoc weakly coupled
light scalar meson (m, =416 MeV) which is used
to provide an extra middle-range attractive force.
Our basic model eliminates this ¢ and thus con-
tains only mesons which are well-established ex-
perimentally., Furthermore, an allowance is
made for the broad-mass nature of the € in a real-
istic way. It should be noted that our v value (3.8)
corresponds to a very broad-mass distribution.

A similar conclusion was reached by Furuichi,
Kanada, and Watanabe.?* This might in part re-
flect a phenomenological allowance for virtual ex-
citation of the N* and for uncorrelated 27 effects.

Our second objective has been to satisfy the very
practical need for a precise description of the nu-
clear force in a form which is convenient for
many-body calculations. Before we evaluate our
results in this light, let us discuss the general
question of comparison of a theoretical nuclear
force model with experiment.

The values of x% per datum provide a basis for
comparing the fit of each model with the experi-
mental phase shifts. However, such a comparison
does not take into account the number of adjustable
parameters in each model. Thus we cannot tell
whether an improvement in x? signals the discovery
of a new ingredient in the nuclear force or whether
it is merely a result of the flexibility in curve-
fitting gained by an increase in the number of pa-
remeters.

The F test may be used as a statistical test for
approximately assessing the effect of a change in
the number of parameters. For each model we

S

find the ¥? per degree of freedom by dividing the
total ¥? by the number of data less the number of
adjustable parameters. The ratio of this quantity
for one model to that of another is the F value for
the models. An F of approximately unity indicates
that the improvement in x? is just what would be
expected due to the extra number of parameters,
provided that the experimental error bars have
realistic values. If F differs from unity, the con-
fidence level for assuming that the improvement is
real, rather than statistical, can be found in stand-
ard tables. The F test may have applicability to
our present study since the number of phase-shift
“data” is of the same order as the number of ad-
justable constants required to individually para-
metrize the phase shifts as, for example, in en-
ergy-dependent phase-shift analyses.*®

Taking the distributed scalar model as our basis
and using actual, rather than “theoretical,” error
bars we can calculate the F value for our other
models. Since each of these models results from
the addition of a component of the nuclear force
to the distributed scalar model, F is roughly a
measure of how likely it is that the component is
meaningful. The values of F, along with other in-
formation, are given in Table III. The contact
term model is not included for reasons which will
be explained.

Assuming that the F test is applicable to our
phase-shift fits, the F value of 1.39 for the L?
force indicates a much greater improvement than
chance associates with one additional parameter.

From the two charge-dependent models we can
see why the F test is a useful comparison tool.
Although the x2 per data point is improved in the
realistic charge-dependent model, the F value is
close to unity. This suggests that the improved
fit to the data probably results only from the in-
crease in the number of parameters and not from
any actual charge dependence in the phase shifts.

TABLE IV. x? per datum determined both from phase shifts and from the second-derivative matrix.

Phase shifts

x? per datum
Observable data

Charge-dependent 2
Charge-dependent
Distributed mass 2
Ueda-Green I
Gersten-Thompson-Green 2 b
Contact term

Distributed mass

L? force

Bryan-~Scott
Chiang-Gleiser-Huq

4.12 2.27
2.65 2.59
7.14 4.24
8.1 4.44
s 4.58
11.1 4.87
4.65 5.31
3.29 5.43
cee 12.13
>70 >50

2Fit to the observable data using the second-derivative
matrix.

bFit includes 425-MeV data.
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However, the F test suggests that the phenomeno-
logical charge-dependent model shows an improve-
ment which would be expected to result from
chance alone less than 5% of the time. Thus, it
appears that there is a significant extra ingredient
of the nuclear force which is not included in our
basic model and which depends upon the value of
the total isospin quantum number.

Although the goodness-of-fit to the phase shifts
gives a reasonable indication of the relative merit
of each model, the procedure may not provide re-
liable information concerning how well the models
predict observable data such as cross sections or
polarizations. A better method would be to adjust
the GOBEP parameters to fit directly to observa-
ble data. This, however, requires too much com-
puter time to be practical in our case. Instead we
use the method of fitting to the second-derivative
matrix developed by Arndt and MacGregor® 25
which is almost equivalent to fitting the experi-
mental data.

Table IV gives the 2 per datum of several mod-
els determined both from phase shifts and the sec-
ond-derivative matrix method. Included are mod-
els by Ueda and Green,? Bryan and Scott,® Gersten,
Thompson and Green,?® and Chiang, Gleiser, and
Huq.?” The entries from searches using the sec-
ond-derivative matrix are indicated. A glance
at the table reveals that there is little correlation
between the two methods of determining . Of
the cases which were fit to the phase shifts, only
the phenomenological charge-dependent model had
a x2 which did not change greatly when computed
with respect to the observables, The Ueda-Green
model, which was fitted to older phase-shift data,
still gives a good fit to the observables. The mod-
el of Bryan and Scott was fitted to the phase shifts
at three energies, A slight readjustment of the pa-
remeters would no doubt lead to a much better fit
to the observables.

The model of Chiang, Gleiser, and Huq is a phe-
nomenological adaptation of an earlier model
which was based on Sudarshan’s?® universal theory
of primary interactions. In this recent form, the
model has the same essential mesonic ingredients
(m, w, p, m, and an € or o) of almost all one-boson-
exchange models (see Refs. 1 or 27 for 1962-1964
literature references). One coupling constant and
a cutoff value are the only adjustable parameters.
Although axial-vector mesons (A, D, and E) arein-
cluded, their effects are for the most part screened
by the hard-core cutoff at 0.4 F. As indicated by
the values of x2 the model does not provide a quan-
titative description of the N-N interaction. Thus
this recent model must be classed with earlier
qualitative models which use three or less param-
eters by embodying relationships between coupling

constants. Among these are the five-vector model
of Green,!” the modified five-vector models of
Green and Sawada,™® and the zero-parameter mod-
el of Sugawara and von Hippel.?® Thus far realis-
tic models which quantitatively characterize the
experimental N-N data (including the deuteron
properties) appear to require six or more adjust-
able parameters and hence might appropriately be
referred to as semiempirical.

If we compare the parameters in Table I for the
distributed mass scalar (DMS’) with DMS and
PCD’ with PCD, one notes that only minor read-
justments are needed to optimize fits to the ob-
servables. The changes in phase shifts on the fig-
ures are slight, although significant contributions
to the phase shift ¥? are made by phase shifts with
small error bars. The effect is undoubtedly due
to correlations in phenomenological phase-shift
assignments which reflect the particular philos-
ophy used in fitting the experimental data.

It should be mentioned that we have tried, brief-
ly, to optimize the L%, and the contact term
models using the second-derivative matrix, but
did not find a descending path in the x® hyperspace
near our previous solutions. We believe an exten-
sive search would lead to parameters whose ¥? is
somewhat lower than DMS’. However, on the ba-
sis of our phase-shift search work, we suspect
the gains will not be as large as that achieved by
the PCD’ model.

The significance of the negative 1 coupling con-
stant in the PCD’ is obscure. It may possibly re-
late to errors in n-p data or possibly be associat-
ed with a middle-range uncorrelated two- or three-
pion effect not fully described by the broad €. In
general, changes in the n coupling constant have
much smaller effects than changes in other cou-
pling constants. The negative 6 coupling constant
obtained in fitting the p-p data is probably a re-
flection of a missing short-range ingredient.

In final conclusion, we note that from the view-
point of observables the UG-I represents a good
GOBEP model incorporating two scalar-isoscalar
mesons with sharp masses at 416 and 1016 MeV.
The model DMS’, which incorporates the broad
mass € and eliminates the ad hoc o0, is our most
physical and precise model constrained by charge
dependence. Our PCD’ is our most precise model.
This model implies a small charge-dependent com-
ponent. It is clear, however, that existing experi-
mental data, especially for the n-p interactions,
are now the limiting factor determining how strong-
ly one can state conclusions concerning compari-
sons between various physical models. We have
noted that optimization to phase shifts and optimi-
zation to the second-derivative matrix led to slight-
ly different sets of model parameters but substan-
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tially different assignments of x?/datum. This sug-
gests a definite need for further additions to and
improvements in the N-N data and the accompany-
ing refinements in the phase-shift assignments or
second derivative matrix assignments. With such
advances those pursuing theoretical models could
determine more precisely the importance of ef-
fects which remain to be examined such as charge

dependence, relativistic effects, effects of uncor-
related multimeson exchanges, virtual excitation
of the N*, recoil effects, and a whole gamut of
additional effects related to the structure and inter-
action of nucleons.
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