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A number of results on the boundary-condition-model (BCM) T matrix are developed. It is
shown that the half-off shell T matrix is unique, but the fully off-shell T matrix is not. Further,
it is shown that the ambiguity in the T matrix resides in that part of the complete T matrix
which is identifiable as the T matrix for the pure BCM, where by pure BCM is meant no forces
outside the boundary-condition radius. Three different formulas for the pure BCM T matrix
are presented. The first is derived by using the relations that exist between the half-off-shell
T matrix and the fully off-shell T matrix for well-behaved potentials, and is found to be sepa-
rable. The second is taken from the work of Kim and Tubis. The third is derived from a
pseudopotential constructed by Hoenig and Lomon. All three agree exactly half off shell, and
satisfy the off-shell unitarity relation. Numerical comparisons are given which show that sig-
nificant differences can occur in the fully off-shell T matrices. An integral- as well as a dif-
ferential-equation approach are given for finding the contribution to the BCM T matrix from
the forces outside the boundary-condition radius. Separable representations for the BCM T
matrix are developed, and their usefulness in carrying out calculations on the three-nucleon
system is discussed.

I. INTRODUCTION

In a boundary-condition model (BCM), part or
all of the force between a pair of particles is rep-
resented by a logarithmic boundary condition on
the Schrodinger wave function. The boundary con-
dition may or may not be energy dependent. It
appears that the BCM was first used to describe
the two-nucleon interaction by Breit and Bouri-
cius, ' who showed that the low-energy '~, scat-
tering data could be fitted by a pure BCM (no out-
side forces). They considered both energy-indepen-
dent and energy-dependent logarithmic derivatives.
The pure BCM was extended to higher energies
and to tensor forces by Feshbach and Lomon, ' who
found that they could obtain a reasonable fit to the
scattering data up to 274 MeV if they allowed the
'S, core radius to change with energy.

A good fit to PP data was later obtained by using
an energy-independent boundary condition in con-

junction with a local potential outside the core.
The local potentials were of two types: a purely
phenomenological exponential potential, ' and a me-
son-theoretic potential4 which included one- and
two-pion-exchange contributions. In recent years,
the fits to the nucleon-nucleon scattering data have
been improved and the effects of mesons other than
& mesons have been incorporated into the model. '
The analytic properties of the scattering ampli-
tudes arising in the BCM have been studied and
found to be similar to those of the more conven-
tional potential models. ' It is now clear that the
BCM with outside forces taken from meson field
theories leads to as reasonable a description of
the two-nucleon system as conventional potential
models, in that it fits the elastic scattering data
and gives rise to scattering amplitudes with accep-
table analytic properties. The situation with re-
spect to the many-nucleon problem is not so clear.

The application of the pure BCM (no outside
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forces) to nuclear matter was treated by Lomon
and McMillan, ' who found a pseudopotential which
could be used to replace the boundary condition.
They also investigated the two-body half-off-shell
reaction or K matrix. An important conclusion of
their work is that an ambiguity arises in applying
the BCM to the many-body problem. This ambigui-
ty comes about because it is not necessary to speci-
fy the potential inside the core radius for the pure
two-body problem, but it is necessary to do so for
the many-body problem. A calculation of the prop-
erties of nuclear matter based on a BCM with a
square well representing the forces outside the
core was carried out by Razavy and Sprung. ' They
represented the force which gives rise to the en-
ergy-independent boundary condition by a hard-
core potential with a very narrow but very deep
attractive well just outside the hard core but just
inside the distance at which the logarithmic deriva-
tive is to be obtained. The calculated binding ener-
gy per nucleon came out very small (2 MeV per nu-

cleon). It is not clear whether this was due to the
force model inside the boundary-condition radius,
the force model outside, or both. The BCM with

outside forces was also applied to nuclear matter
by Hoenig and Lomon. ' They further clarified the
ambiguity in the BCM. In particular, they showed

that, if the boundary condition is energy indepen-
dent and the potential is local outside the core,
then the two-body ~ckxodinger wave function must
vanish inside the core. They found, however, that
this was not true for the Bethe-Goldstone (BG)"
wave function. The solution of the BG equation de-
pends on an arbitrary parameter, which is the
logarithmic derivative of the BG wave function just
inside the core radius. In this connection Hoenig
and Lomon' have constructed a yseudopotential
which, besides producing the correct logarithmic
derivative just outside the core radius, also pro-
duces an arbitrary logarithmic derivative just in-
side the core radius. One cannot obtain this pa-
rameter from the pure two-body problem.

The T matrix for the BCM has been studied by
Kim and Tubis. " They have shown that one can
produce an energy-independent logarithmic deriva-
tive at some distance c from the origin by applying
a limiting procedure to a square repulsive poten-
tial inside c with a &-function interaction at c.
Their idea is similar to that used by Razavy and

Sprung in their nuclear-matter calculation. Using
this limiting procedure Kim and Tubis have ob-
tained an expression for the T matrix arising from
a pure BCM, as well as an integral equation for
the contribution to the T matrix from the forces
outside the core. Their procedure is by no means
unique, since one could, for example, use the
Hoenig-Lomon pseudopotential' to produce the en-

ergy-independent boundary condition.
It appears clear that further study of the ambigui-

ty in the BCM is necessary. In this paper a num-
ber of results on the BCM T matrix are obtained.
The ambiguity in the BCM T matrix is isolated,
and some methods are presented for applying the
BCM to the three-nucleon system.

In particular, by combining the Hoenig-Lomon
theorem' on the two-body Schrddinger wave func-
tion with a result of Noyes, "it is shown that the
half off sh-el/ -T matrix can be obtained directly
from a knowledge of the two-body Schrodinger
wave function; the potential need not be specified.
It is shown, however, that by applying three dif-
ferent procedures to the pure BCM (no outside
forces), one obtains three different off-shell T
matrices. The half-off-shell T matrices are the
same. The first procedure is based on the rela-
tionship that exists between the half-off-shell T
matrix and the fully off-shell T matrix for M)ell-

beh. ared potentials. "'" These relations lead to a
one-term separable T matrix for the pure BCM.
The second procedure is the Kim-Tubis" prescrip-
tion mentioned above. The third T matrix is ob-
tained from the Hoenig-Lomon' pseudopotential,
and contains an arbitrary parameter (see above)
which can be varied without effecting the half-off-
shell T matrix. Furthermore, it is shown that all
three T matrices satisfy the off-shell unitarity re-
lation, "so that this general relation cannot be used
to discriminate between the various T matrices.

Fortunately, it is found that adding in the con-
tribution to the T matrix from the forces outside
the core introduces no additional ambiguities. All
of the ambiguity in the BCM T matrix resides in

that part of it which is the T matrix for the pure
BCM. In particular, it is shown that the integral
equation for the contribution to the T matrix from
the outside forces derived by Kim and Tubis"
holds in general and does not depend on their pre-
scription for the potential inside the boundary con-
dition. A differential-equation approach is also
developed for obtaining the BCM T matrix when
forces outside the core are present. This is an ex-
tension of the method developed by other authors"
for treating hard-core potentials and should be of
use in studying analytic models.

Finally, some separable representations of the
BCM T matrix are presented. Two of these are
extensions of this author' s" previous work on hard-
core potentials; the other is related to the so-
called unitary pole expansion of Harms. " These
expansions have proven useful in carrying out cal-
culations on the three-nucleon system. Calcula-
tions on this system should be useful in assessing
the effect of the ambiguity in the fully off-shell
BCM T matrix, since this is what enters into cal-
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culations based on the Faddeev" equations.
In Sec. II the various pure BCM T matrices men-

tioned above are developed and their properties
are dicussed. A numerical comparison of the T
matrices is given so as to demonstrate that signifi-
cant differences among them do exist. In Sec. III
the contribution to the BCM T matrix from the
forces outside the core is investigated. The inte-
gral equation for this contribution is developed in
part A of this section and is shown not to depend
on the prescription which is used for the pure
BCM. A differential-equation approach is also
presented. In part B of Sec. III various separable
representations for the contribution to the BCM
T matrix from the outside forces are developed.
A summary and some discussion are given in
Sec. IV.

II. T MATRIX FOR THE CORE REGION

In this section we will treat the contribution to
the two-body T matrix arising from the force in-
side the boundary-condition radius c. We begin
by establishing notation and normalization. In the
BCM one uses the Schrodinger equation for r & c
and applies a logarithmic boundary condition at
r=c; i.e., we solve

,— +, + V(r) u, (k, r) =k'u, (k, r), r &c
d' t(l + 1)

(2.1)

with the boundary condition

cot6'(k) kc")'(kc) +(1-f,)n, (kc)
g&(kc;f,)

where

g, (x; f,) =xj, '(x)+(1 f,)j,(x)-.

(2.6)

(2.7)

Following Noyes, "we introduce the half-off-
shell extension function E,(p, k) by the relation

(ptm~ t(k'+te) Iktm)
(klm

~
t(k'+ te)

~
klm)

' (2.9)

It is shown in Ref. 12 that this function can be ob-
tained from a knowledge of just the two-body wave
function by means of the relation

p
& oo

F,(p, k) = — +(p' —k') drkr'j, (pr)
0

[(t),(kt r) —u, (kr) —cot6, (k)j,( rk)],

(2.9)

with (t), normalized so that

We let t(&) stand for the T matrix arising from the
core region. The normalization (2.4) implies that
the on-shell T matrix is related to the phase shift
by

(ktm
~
t(k'+te)ktm) = -(2~'k) 'e '~)t» sin6;(k) .

(2.5)

Here 6', is the phase shift arising from the pure
BCM; i.e., no outside forces, and is given by

' (k, r) =—'u, (k, c) . (2.2)
(t),(kt r) „„n,(kr) + cot 6,(k)j,(kr) . (2.10)

We will assume that f, is independent of energy.
Our free-particle eigenstates are normalized so
that in the coordinate representation they are
given by

( r ( plm) = (2m') ' 'j, (pr) y, (r) . (2.3)

~ plm) 4''dp(plm ~
= 1. (2.4)

j, is the usual spherical Bessel function, ~, is a
spherical harmonic, and r" is a unit vector in the
direction of r. With this normalization, the com-
pleteness relation is

Hoenig and Lomon' have shown that if f, [see (2.2) j
is independent of energy and the potential is local
for r &c, then the two-body wave function must
vanish for 0&r&c. Using this fact and (2.9), it
follows immediately that for the pure BCM

I" (P, k) =a(pc;f )IZ(kc;f ). (2.11)

Note that this function is separable in p and k.
We now consider going from half off shell to

fully off shell. In Ref. 12 it is shown that for a
smell-behaved potential, the half-off-shell T matrix
and the fully off-shell T matrix are related by

t (tt'+' )=tt(lt'te't+' , )+ tI tt(t, , ')~ te~ t.— * *)
f~, 1 1

+ze-x q +ze-x

OQ 1 1= t, (p, q;p'+te) + W, (p, q;x')dx
k' +2f -x p +sc-x
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where

t,(p, q;k'+is) =(plmI t(k'+i~)
I qlm),

W, (p, q; k') =F,(p, k) T(
' sin'S, (k)E,(q, k) .

(2.13)

(2.14)

and Lomon' in connection with nuclear-matter
theory, there is an ambiguity in the BCM.

Another potential which gives rise to (2.2) is the
pseudopotential of Hoenig and Lomon. ' Theirs is
a separable potential which is defined by the
relations

Using these relations and the fact that E, is separa-
ble I see(2. 11)], it is easy to show that for the pure
BCM

t", (p, q; s) = E,(p, k) t, (k, k; k'+is)F, (q, k),

(2. is)

where E, is given by (2.11) and the on-shell T ma, -
trix is given by

U (r r)= —'S(r-c )+6'(r c)-
c

x —' S(r' —c ') + 6'(r —c-)
C

+ 6'(r —c ) ———6'(r' —c-) .
f(

(2.22)

U(r) = U, —U, c S(r —c), 0 ~ r -e, (2.18)

where U, and U, are made to approach infinity so
that

f, = (O'U, —U,c)c.
The potential (2.18) leads to the T matrix

t, (p, q;k'+is)

=F,(p, k)t, (k, k; k'+ie)F, (q, k)

(2.19)

+ „, „,k „[g, (pe; f,)u) g(qc, kc)(k' -p')

t, (k, k;k'+i@) =(27('k) 'g(k c;f,)/D, (kc), (2.16)

D, (») =»kI'l'(») +(i —f,) kI' (l«). (2.17)

The spherical Hankel function is normalized as in
Messiah. " The T matrix (2.15) has the important
property that it is separable in P and q.

Unfortunately the prescription which led to (2.15)
is not unique. The difficulty lies in the use of
(2.12), a relation whose validity depends on the
potential being well behaved. Some of the pseudo-
potentials which are used to produce the energy-
independent boundary condition at r =c have a hard
core for 0&roc, as well as ~ functions and deriva-
tives of & functions. ' '" For a hard-core poten-
tial, (2.12) is not valid, although (2.9) is. In par-
ticular, Kim and Tubis" use the following potential
to produce the pure BCM,

c' (c ) stands for a distance slightly greater
(smaller) than c, and the primes indicate differen-
tiation with respect to the argument of the 6 func-
tion. In order to derive the T matrix which arises
from (2.22), we follow the method developed by
Van Leeuwen and Reiner" for square wells. The
T matrix is the solution of the equation

t(s}=U+UG, (s)t(s),

where

G(&(s) =(s-ffo) '.

(2.23)

H, is the kinetic energy operator. This can be con-
verted to a differential equation by introducing

Q(s) = 1+G,(s) t(s) .
From (2.23) we have

t(s) = UQ(s),

so (2.24) becomes

(s a, U)n(s) =(s -a,) .
In a mixed representation we obtain

(2.24)

(2.2s)

(2.26)

(~ ~ ~*&&
I

(&( & Is( &
-f & I

(& I & ~. ( r I (& (~&
~l
q( &

= (s - q')(r Iqlm).

(2.27)
If we let

—g,(qc;f,)(u, (pc, kc)(k' —q2}], (2.20) ( rI Q(s) I qlm)
( 2)gg2 F( (r) (2.28)

~,(», y) =xi,(»)i, '(y) -«i, (y)~, '(») . (2.21)

It is easy to check that the two T matrices, (2.15)
and (2.20), agree half off shell; i.e. , when t& =k or
q =A. In the two-body problem only the half-off-
shell T matrix arises; however, in a three-body
calculation, for example, one needs the fully off-
shell T matrix. Thus, as pointed out by Hoenig

and use (2.3) and (2.22), then (2.27) becomes

d2 l(l + 1)s + —,——,G,(r, q; s)dt'

d~'U, r, ~' G, r', q; s = s —q' rg, qr
0

(2.29)
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The free wave rj, is a solution of

p'+, —, r j,(t)r) =0.
d' t(l + 1)

df' 'Y
(2.so)

If we multiply (2.29) by rj,(pr) a,nd (2.30) by
G,(r, q; s), subtract, integrate from c —e to c + e,
and then let & -0, we find

G)(c', q; s) ——'G, (c+, q; s) cj,(pc)

C
+ G,(c,q; s) ——GI(c, q; s) —cj,(j()c) = 0.

(2.sl)

Since cj,(Pc) and d cj,(Pc)/dc are linearly indepen-
dent, we must have

if b, is set equal to f, ; i.e. , if the logarithmic de-
rivative of the wave function is continuous at r = c,
the pseudopotential (2.22) gives the same T matrix
as one would get from a well-behaved potential.
By well-behaved potential we mean one for which
(2.12) is valid.

It is also interesting to note that for P, q, and k

real, all three T matrices have the same imagin-
ary part, since they differ by terms which are
purely real. Furthermore, since they agree half
off shell (i) =k or q =k), they all satisfy the off-shell
unitarity relation"

Imt, (t), q; k' +ie) =-27)'kt, (p, k;k2+ie)t, *(k, q;k'+to)

= -2m'kt, d'( jj,k; k'+ic)t, (k, q; k'+ie) .
(2.37)

G, '(c+, q; s) =—' G, (c+, q; s),

G, '(c, q; s}=—' G,(c,q; s) .
(2.32)

Thus, the pseudopotential (2.22) imposes two loga-
rithmic boundary conditions; one just outside c
and one just inside c. It is completely trivial to
solve (2.29} with the boundary conditions (2.32).
The result is

G, (r, q;s) =- ' ' ' rkI+l(kr)+rj, (qr), r&c;

(2.33}

G, (r, q; s) = — ' rj, (kr) + rj, (qr), 0 r&c .-gg(qc) b()

g, kc;b,

e have assumed s =k'+it. This dictates using
in the outer region. Note that

G, (r, k; k'+ ie) = 0, 0 - r &c . (2.s4)

From
(2.20)
ing to

(2.s6)
(2.21) it follows that (2.36) agrees with
and (2.15) when p =k or q =k. It is interest-
note that (2.36) becomes the same as (2.15)

This was to be expected, since (2.29) is the Schr6-
dinger equation when q =k. From (2.25} and (2.28),
it follows that

t, (0, q; s)

=(2 ') ' f d rj,()Jr)f dr')j(r, r')C, (r', d;s).
0 0

(2.35}
Combining (2.22}, (2.33), and (2.35), the Hoenig-
Lomon T matrix is found to be

t, (tj, q; k'+ ie) = E,(p, k) t (k, k; k'+ie)F, (q, k)

c(f, —b, ) ur, (t)c, kc)w, (qc, kc)
2)) td)(kc; f))g)(kc; b))

In order to see if the differences between the T
matrices given by (2.15), (2.20), and (2.36) are of
practical significance, values for s-wave T ma-
trices have been calculated using f= 2. 1 and c = 0.71
F for a variety of momenta and energies. The val-
ues f and c are appropriate for the 'S, state of the
two-nucleon system. " Samplings of the numer-
ical results are given in Tables I-III. %e see
from Table I that for k' = 4 F ' (a. lab energy of
about 330 MeV) there are significant differences
between the various T matrices. Of course, they
agree if P =k or q =k, but as soon as one is fully
off shell, the disagreement becomes noticeable.
Large differences between T-matrix elements are
also found at large negative energies (lab energies
of about -300 MeV). We see from Table II (k' = 0)
that at low energies the differences are less dram-
atic but still significant. It is of interest to note
that the Kim-Tubis T matrix (column 4) and the
Hoenig-Lomon T matrix with b= sf (column 5) are
very similar. This is found to be true, in general,
for c.m. energies in the range from 75 down to
-75 MeV for most of the momenta given in the
tables. Thus, by making an appropriate choice of
b, one can use the Hoenig-Lomon T matrix as a
good separable approximation to the Kim- Tubis
T matrix. This will be of practical value in carry-
ing out three-body calculations in the Faddeev ap-
proach. Table III gives some values of the various
T matrices for k' = —I F . From these tables, as
well as from results which have not been shown,
it can be concluded that there is a practical diffi-
culty in going from the half-off-shell pure BCM
T matrix to the fully off-shell T matrix. One way
to study this difficulty is to carry out three-body
calculations. In such calculations it should be suf-
ficient to use the Hoenig-Lomon T matrix, since

, by simply varying the arbitrary parameter b, one
can produce significant differences in the off-shell
T matrix. Of course, in such calculations one



60 MICHAEL G. FUDA

TABLE I. Values of T matrix t (p, q; s) for s=4 F 2. t+ is given by (2.11), (2.15), and (2.16). tK is given by (2.11),
(2,16), and (2.20). tHL is given by (2.11), (2.16), and (2.36). P and q are in F . All values for to have been multiplied
by 10 . f=2.]., c=0.71 F. We give only the real parts here fort, tH (b=3f), andt (b= ), since all three 7 ma-
trices have exactly the same imaginary part.

Re(tK~) Be(tHL), b = 3f Be(tHL), b=~

0.0
0.0
0.0
0.0
0.0
0.5
0.5
0.5
0.5
1.0
1.0
1.0
1.5
1.5
2.0

0.0
0.5
1.0
1.5
2.0
0.5
1.0
1.5
2.0
1.0
1.5
2.0
1.5
2.0
2.0

0.888 —i 0.962
0.903 —i 0.978
0.944 —i 1.023
1.001 —i 1.084
1.059 —i 1.147
0.918—i 0.994
0.960 —i 1.040
1.018 —i 1.103
1.076 —i 1.166
1.003 —i 1.087
1.064 —i 1.153
1.126 —i 1.219
1.129 —i 1.223
1.194 —i 1.293
1.262 —i 1.368-

0,117
0.190
0.397
0.704
1.059
0.259
0.454
0.743
1.076
0.616
0.853
1.126
1.014
1.194
1.262

0.077
0.152
0.365
0.683
1.059
0.222
0.423
0.724
1.076
0.590
0.837
1.126
1.004
1.194
1.262

-0.286
-0.185

0.105
0.541
1.059

-0.089
0.183
0.592
1.076
0.404
0.736
1.126
0.948
1.194
1.262

should include the contribution to the T matrix
which arises from the forces outside the boundary-
condition radius. We turn our attention to this in
the next section.

III. CONTRIBUTION TO THE BCM T MATRIX
FROM FORCES OUTSIDE THE CORE

This section consists of two parts. In the first
part we derive the exact equations, integral as
well as differential, for the contribution to the to-
tal T matrix which arises from the forces outside
the core. The second part presents three schemes
for constructing separable approximations to the
T matrix. Such approximations are of use in three-
body calculations. W(r) =0, 0 (r&c. (3.3)

A. Exact T Matrix

We begin by dividing the complete potential into
two parts; i.e. , we write

(3.1)

where" U stands for the potential or pseudopoten-
tial that gives rise to the pure BCM (no forces out-
side), and W stands for the potentia. l outside the
core. We assume W is a local potential, which
means it can be written in the form

( r
~ W~ r ') = W(r) 5(r —r') .

Of course

TABLE II; 7.' matrices to(P, q;0). f=2.1, v=0.71 F.
See caption to Table I for explanation of notation.

tKT tHL b 3f tHL

TABLE III. T matrices to(P, q; -1).f =2.1, c =0.71 F.
See caption to Table I for explanation of notation.

tKT tHL b 3f tHL

0,0 0.0 1.884 1.884
0.0 0.5 1.916 1.916
0.0 1.0 2.003 2.003
0.0 1.5 2.125 2.125
0.0 2.0 2.247 2.247
0.5 0.5 1.948 1.944
0.5 1.0 2.037 2.020
0.5 1.5 2.160 2.125
0,5 2,0 2,285 2.228
1,0 1,0 2,130 2.066
1.0 1,5 2.259 2.124
10 20 2 389 2172
1,5 1.5 2.396 2.112
1.5 2.0 2.534 2.078
2.0 2.0 2.680 1.948

1.884
1.916
2.003
2.125
2.247
1.944
2.020
2.124
2.226
2.064
2.120
2,163
2.102
2.057
1.907

1,884
1.916
2.003
2.125
2.247
1.942
2.015
2.115
2.211
2.047
2.083
2.104
2.025
1.932
1.705

3.094
3.146
3.290
3.489
3.690
3,199
3.345
3.548
3.752
3.498
3.710
3.924
8.935
4.161
4.401

0.0 0.0 3.012
0.0 0.5 3.045
0.0 1.0 3.185
0.0 1.5 3.254
0.0 2.0 3.362
0.5 0.5 3.074
0.5 1.0 3.154
0.5 1.5 3.258
0.5 2.0 3.348
1.0 1.0 3.204
1.0 1.5 3.264
1.0 2.0 3.303
1.5 1.5 8.259
1.5 2.0 3.222
2.0 2.0 3.095

3.011
3.044
3.132
3.249
3.354
3.073
3.151
3.252
8.337
3.199
8.254
3.285
3.240
3.188
3.038

2.998
3.021
8.097
3.196
3.279
3.045
3.107
3.186
3.245
3.132
3.152
3.142
3.085
2.971
2,783
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The complete T matrix is given by &qtml Z(s) I r &
= &r I Q(s*) I qtm)* ~ (s. is)

T(s) = V+ VG(s) V,

where

G(s) = (s —H, —V) '.

(3.4)

(s.6)

H, is the kinetic energy operator. The pure BCM
T matrix is given by

Calculating (r I Q(s*) I qlm) simply amounts to re-
placing h~+~ by h~ ~.

The relation between the full T matrix and the
pure BCM T matrix can be obtained by using (3.4),
(3.6), (3.9), (3.11), and (3.12). The result is given

by the relations

t(s) = U+ UR(s)U,

where

R(s) = (s —H, —U) '.

(s.6)

(3.7)

T(s) = t(s) + t"(s),

t ' (s) = Z (s)r(s) Q(s),

T(s) = W+ WG(s) W.

(s.i6)

(s. i7)

(3.18)

We also introduce the free Green's function From (3.9) it follows that the T-matrix-like opera-
tor T(s) satisfies

G,(s}= (s -R,) '. (3.8)
T(s) = W+ WR(s)T(s) . (S.i9)

The various resolvents or Green's functions are
related by the well-known operator indenties Using the identity

G(s) = R(s) +R(s)WG(s),

G(s) = R(s) + G(s) WR(s),

R(s) = G,(s) + G,(s) UR(s),

R(s) = G,(s) +R(s)UG, (s) .
We define

(3.9)

(3.10)

[1—UG, (s) ][1+UR(s) ]= 1, (s.20)

which can be derived from (3.10), one easily dem-
onstrates that the contribution to the T matrix from
the outside forces is the solution of

tt'&(s) = Z(s) WQ(s) + Z(s) WG, (s) ti'~(s) . (3.21)

This equation can easily be written out in momen-
tum space by using

and

Q(s) = 1+G,(s) t(s),
= 1+R(s)U,

Z(s) = 1+ t(s) G,(s},
= 1+UR(s) .

(3.11)

(s. i2)

( tllml Z(s) WQ(s) I qlm)

Plm Zs r dr+ y r Qg @Em

(3.22)

&tltm I Z(s) Wl qtm& = &tltm I Z(s) I r) ltr W(r)&r I qtm) .
(3.23)

(s. is)

g, and D, are given by (2.7) and (2.17), respective-
ly. As will be seen shortly, we do not need 0 in-
side the core in order to calculate the contribution
to T from the outside forces. Furthermore, it is
easy to show that the other two prescriptions for
the pure BCM lead to the same result for 0 when
x ~ c. In order to find an expression for Z, we can
use the identity

Z(s) =Qt(s+), (3.14)

which follows from (3.11) and (3.12). From this
identity one can show that

The two forms of 0 and Z can be shown to be iden-
tical by using (3.6) and (3.10). By combining (2.28)
and (2.33), we can write out Q for the Hoenig-Lo-
mon ps eudopotential

( r I Q(s} I qtm)

As promised above we see from (3.2) and
(3.21}-(3.23) that t~'&(s) does not depend on the
form of Z(s) and Q(s) inside the core. Since all
of the prescriptions give the same result for Z(s)
and Q(s) for r ~c, there is no ambiguity in the con-
tribution to the T matrix from the outside forces.
Equation (3.21) agrees with that of Kim and Tubis"
if one makes allowances for differences in normali-
zation. The derivation presented here, while not as
rigorous as theirs, is certainly more transparent.

The contribution to the T matrix from the forces
outside the core can also be obtained by solving a
differential, rather than an integral equation. In
order to formulate this approach, we introduce an
operator r(s) defined by

1 (s) = Q(s) + G,(s) t ' (s) . (s.24)

r(s) = Q(s) +R(s)Wr (s) . (s.26)

Q(s) is given by (3.11). From (3.21) it follows that

t& '~(s) = Z(s) Wl (s) . (s.26)

Using (3.10), (3.12), (3.24), and (3.25), we obtain
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It is most convenient to study (3.26) in a mixed
representation.

&RI'(s}lqlm&=&rifi(s) lqtm&

+ r R r' dr'8'x' r' 1 s qlm .
(3.27)

From (3.13) we have, assuming s =k'+ie,

(s+v')(rlQ(s}lqtm&=(s —q')(rlqtm&, r&c.
(3.28)

Since fI(s) is the Green s function for the pure
BCM, lt 18 ObviOuS thRt

(s+v')(rift(s)lr'&=5(r —r'), r and r'&c.

(3.29)

It is easy to show that this Green's function is
given by the relations

&-.l~( ) l-") = g"",,',"'y,.(~)y,.('),
(3.30)

use in obtaining closed-form results for simple
models such as a square well outside the core. We
will present results for the square-well model in
the near future. We now turn our attention to sep-
arable representations of t(')(s).

8. Separable Representations of the T Matrix

In this section we will derive three different
schemes for producing separable expansions for
the contribution to the 7 matrix from the forces
outside the core. Two of these schemes" are
generalizations of those obtained for hard-core
potentials and could be obtained by extending the
methods used in the references just given; how-

ever, we will derive the results here in a simpler
fashion. The expansions for potentials with hard
col es Rre speciRl cRses of those we Rre Rbout to
give, and can be recovered by letting f, [see (2.2}]
become infinite.

We begin by considering the differential equation

s +,—,—y „(r;s) = X„(s)W(r) &p„,(r; s), r & c .I(t + 1}
dy2 r2

R,(r, r', s) = krr' j-,(kr&)k~P(kr&)

k(')(kr)k(')(kr')
D,(kc)

(3.31)

(3.37)
The solutions of this are to satisfy the boundary
conditions

where g, and D, are given by (2.7} and {2.17}.
Combining (3.27)-(3.29) we obtain the differential
equation for l (s},

[s + v' —g (r) ](r l I'(s) lqlm) = (s —q')(r lqlm), r & c .
(3.32}

—
4 „(r;s) = —' y.,(r;s),

(r s)-e'"" s =k'+ie e&0

(3.38)

(3.39)

If we use (3.13), (3.27), (3.30), (3.31), and let

(rl I'(s) I qtm& =
(2,,')~J, I'g (r),

it is easyto show that

From the nature of the boundary conditions it is
clear that we can only obtain solutions of (3.37) for
a discrete set of eigenvalues A, „(s). From (3.37)
we have

dl, (r, q; s) ~f
C

(3.34)
s+,—,g„,*(r;s*)=y,*(s*)Wy„,+(r;s+).

d' t(t+ I)

The boundary condition at infinity is obviously
(assuming s =k'+te, e &0)

I,(r, q; s) '„- rj,{qr) +rc,k(,+)(kr),

where c, is' some constant. After one solves
(3.32) subject io the boundary conditions (3.34)
and (3.35), one can find t(')(s) in momentum space
by using (3.25) in the form

&ptmlt"(s)lqt &

plm Zs r drlVr r I' s' q/yn .
(3.36)

This differential-equation approach should be of

4„(r;s*)=4„*(r;s),
),(s*)=Z,*(s).

(3.41)

(3.42)

It is trivial to show, using (3.37)-(3.39), that

(X„—Z„) @„,*{r;s+)Iy(r)q„,(r;s}dr=O.

(3.43)

Thus for complex & we have a set of biorthogonal
eigenfunctions, "with the orthogonality relation

(3.4o)

Since p„,"(r;s*) satisfies the same differential
equation and the same boundary conditions [ see
{3.38) and (3.39)] as Q„,(r; s), it follows that
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&4„(s*)Iwl c„(s)&=o, (3.44}

and the completeness relation

~ WI4„(s)&(C'„(s*)IW~ &C.( *)lwlc.()&
'

The completeness relation gives us a separable
representation for the potential W. It is easy to
convert the differential equation (3.37) with the
boundary conditions (3.38} and (3.39) into an inte-
gral equation. One easily checks by using (3.29)
-(3.31) that the integral equation is

R(s) Wle„(s)& = IC'„(s)& g„(s),

(s.45)

(3.46}

where

g„(s) =x„'(s). (s.47)

Combining (3.17), (3.19}, (3.45), and (3.46), we
obtain

~ z(s)wl4„(s)&(4„(s*)lwn(s)
(C.(s*) I WIC. (s)& 1-C.(s)

'

Plm Zs r rWr r C„s
(3.49}

From (3.10) and (3.12) it follows that

R(s) = G,(s)Z(s); (s.5o)

hence the integral equation (3.46) can easily be
written in momentum space. It becomes

(s-p') ' ) (plmlZ(s)wlqtm& 4vq'dq(qtmI4„(s)&
0

= (plm lc „(s)&g, (s) .
(s.51)

The factors in (3.48) are given by, e.g. ,

(plm IZ(s) WI4„(s)& = (s p')(plm IC,—(s)&g„(s),

(s.52}
and are therefore directly obtainable from
(3.51). The results (3.51) and (3.52) give a more
practical scheme for constructing the expansion
for t&'&(s) than the method given previously for
hard-core potentials, "although the formal equa-
tions are similar.

If the potential W is a negative definite operator,

(3.48)

This is a separable representation for t~' (s). If
one obtains the functions 4 „by solving the differen-
tial equation (3.37), the factors in (3.48) can easily
be obtained in momentum space by doing an inte-
gral; e.g. ,

(ptm I Z(s) WIC „(s)&

i.e., if

(~l wl~& -o, (s.5s)

where I +& is an arbitrary vector, then it is obvious
from (3.45) that for negative, real energies

(@l~ WI .( )&( .( )I
(4'„(s) I wlc'„(s)&

'
(3 54)

Thus, for negative, real energies, the separable
potential obtained by truncating (3.45) is always
less attractive than the original potential S", if W

itself is a purely attractive potential. If one
carries out a calculation of the triton binding en-
ergy by using one of the separable T matrices pre-
sented in Sec. II for the core region, combined
with a truncation of (3.48) for t ' (s), the result
will be an upper bound on the three-body energy.
An alternative would be to use (3.45) but keep the
energy s fixed. One no longer has (3.48) but rather
an expansion for t~'~(s} which is a generalization
of the so-called unitary pole expansion of Harms. "
The upper-bound property would still be true.

We now turn our attention to deriving another
separable representation for that part of the T ma-
trix which arises from the forces outside the core.
This expansion is also based on the differential
equation (3.37) with the boundary condition (3.38),
however we no longer use (3.39) but rather

&rlC'„(s}&„-„&rlklm],
where

(r I ktm] = ( r IQ(k'+ te) I ktm& e" &" .

(s.55)

(3.56)

Ic,(s)& = Iktm].
(s.57}

The system (3.37), (3.38), and (3.55) can be con-
verted to the integral equation

I4 „(s)&= Iktm]+R(s)x„wlq'„(s)&,

where R(s} is given by (3.30) and (3.31). From
(3.57), we see that (3.58) is obviously true for

(s.58)

From (3.11) it follows that I klm] is a solution of
the Schrodinger equation for the pure BCM. ~; is
the phase shift for the pure BCM. It is easy to
show, using (3.13), that putting in the phase factor
in (3.56) makes the radial part of (3.13) real, for
k real. The set of functions obtained by solving
(3.37} with the boundary conditions (3.38) and (3.55)
form an orthogonal rather than biorthogonal set
for both positive and negative real energies. Under
such circumstances one does need the star in (3.44)
and (3.45). It is obvious that one solution of (3.37),
(3.38), and (3.55) is the BCM wave function itself
with an eigenvalue A. equal to zero. We label these
with the subscript zero; i.e.,

x, =0,
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I Tr„(s)& = lklm] —Ic„(s)).
Combining (3.58) and (3.59} we can write

R(s)w, (s) I»„(s)&= ls„(s)& g„(s), vgo,

where

wlkfm][kfmlw
[klm I Wlklm]

(3.59}

(s.eo)

(s.el)

and P, is given by (3.47). In deriving (3.60} we

have used the fact that

[klml WI4 „(s)&=0, vgo. (s.62}

In order to derive a separable representation for
ti»(s), we first derive a separable representation
for r(s) [see (3.16)-(3.19)]. To do this we insert
the completeness relation into (3.19) and obtain

WIC. (s)&&A.(s) I

&c,(s) I WI4. (s)&
'

where

v =0. It is a straightforward matter to check (3.58)
for the other values of v by using (3.30), (3.31),
(3.44) without the star, and (3.57). In order to
make (3.58) look more like an eigenvalue problem,
we introduce

and (3.68}, we finally arrive at another separable
representation for t ' (s),

(,&( }
ti'&(s)Iklm&&klmI ti'&(s)

( ) ( } ( )
&kfml f&»(s) lkfm&

+

(3.70}

It is obvious from (3.14), (3.57), (3.62), and

(3.67) that any approximation to ti»(s) obtained
by truncating (3.70) (as long as one keeps the first
term on the right-hand side) is exact half off the
energy shell. Furthermore, one can show by using
the arguments of Sec. IV (see second work Ref. 16)
that the T matrix obtained by adding a truncated
version of (3.70} to any of the T matrices obtained
in Sec. II, exactly satisfies the off-shell unitarity
relation (2.37).

The factors in the second term on the right-hand
side of (3.70} can be obtained by using

z(s) wl c'„(s)&= -z(s) w, (s) I z„(s)&, (s.71)

which follows from (3.59), (3.61), and (3.62), and

by solving

(s -p') ' &plml z(s)w, (s) I qlm&4vq'dq&qfml m„(s)&

=&pfml s„(s))g,(s), (3.72)

&A„(s) I =&4 „(s)I W[1+R(s)r(s)] . (3.64)
which we have obtained from (3.50) and (3.60).
»om (3.14), (3.56), and (3.61), we have

Using (3.62) we find

r(s) lkfm][klm lr(s)
[kfmI~(s} Ikfm]

and

(s.ee)

r(s) I kfm] ~ WIC „(s}& 1

[kfm lr(s) Ikfm] ~ &4„(s}I WIC'„(s)& 1 —X„(s)
V=0

(s.e9}

Combining (3.11), (3.12), (3.14), (3.17), (3.57},

Combining (3.63), (3.64), and (3.58), we find

&A„(s) I
= — " + &A,(s) I, v ~0.&c.(s) I w

(s.65)

Inserting (3.65) into (3.63) we have

WIC. (s)&&A.(s)l~ &C.(s) I WIC. (s)& 1-&.(s)
V=0

(s.ee)

where " wlc. (s)&&4'.(s) I w~ &C.(s)IWIC'. (s)& 1 —&.(s)
'

(s.67)

&kfm I &(s)W,(s) I qlm& = 0, s =k'+is; (3.73)

hence, in general, one will not have a singularity
in (3.72) when p =k. This is one practical advan-
tage this expansion has over the one presented
earlier in this section.

IV. SUMMARY AND DISCUSSION

A number of important results have been ob-
tained for the BCM T matrix. In particular, it has
been shown that the half-off-shell BCM T matrix
is unique, but the fully off-shell T matrix is not
unique. It has been demonstrated that the ambigui-
ty occurs only in that part of the complete T ma-
trix which is identifiable as the T matrix of the
pure BCM (no outside forces). In other words, the
Kim- Tubis" integral equation for the 'contribution
to the T matrix from the outside forces has been
shown not to depend on the potential inside the
boundary-condition radius. A differential-equa-
tion approach has also been developed for finding
the contribution to the T matrix from the outside
forces.

Numerical results obtained for the '$0 pure BCM
T matrix show that significant differences d6 occur
when one uses various prescriptions for producing
an energy-independent boundary condition at the
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core radius. It is of interest to note that the pure
BCM T matrix, which mas obtained by only assum-
ing that the potential inside the core mas mell be-
haved, turned out to be exactly separable. This is
of great calculational convenience, and it mould be
pleasant if this turned out to be the best prescrip-
tion for going fully off shell. It is probably signifi-
cant that the T matrix obtained from the Hoenig-
Lomon pseudopotential' goes over into the T ma-
trix just mentioned if one assumes that the logarith-
mic derivative of the Schrodinger wave function is
continuous in the neighborhood of the core radius.
Such continuity is certainly physically resonahle.
Of practical significance is the fact that by a prop-
er choice of the parameter b, (the logarithmic de-
rivative just inside the core radius) in the Hoenig-
Lomon pseudopotential9 one can produce a two-
term separable T matrix that is similar to that of
Kim and Tubis. " Thus by using the Hoenig-I omon
T matrix in a three-body calculation, for example,
and by varying b, , one should be able to assess the
effect of the ambiguity in the pure BCM T matrix.
Of course, one must be able to include the effect
of the outside forces in such a calculation. The
separable representations developed in part 8 of
Sec. III are one way of doing this. The practicality
of using these expansions in three-body calcula-
tions with hard-core potentials has been demon-

strated previously. "
A calculational program based on the results of

this paper is nom under may. In particular, the
BCM T matrix for simple force models outside
the core is being calculated in order to see if the
ambiguities in the pure BCM are masked by the
contribution to the T matrix from the outside
forces. Also, calculations on the three-nucleon
system using simple force models are under way
to see if the nonuniqueness of the T matrix makes
itself felt in a system in which the fully off-shell
T matrix plays a role.

In order to carry out calculations mith realistic
forces the results of this paper must be extended
to tensor forces. This is being done.
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