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The kernel A differs from Ao by a kernel of rank
1. If the largest eigenvalue of A, is nondegenerate,
it can be removed by putting

where n, is the largest eigenvalue of A, and X(k)
is the corresponding eigenfunction, i.e.,

Aox eo

This is the optimum choice for y if uniform con-
vergence of the series (45) is desired.

V. CONCLUSIONS

The preceding analysis can be trivially extended
to a finite number of coupled channels.

The unmodified Sasakawa series converges for
local potentials of arbitrary strength. This fea-
ture does not obtain for nonlocal potentials or the
modified series. But under very general condi-
tions the Sasakawa kernel A is a Hilbert-Schmidt
kernel, and both (r'l~l&") and (lr'l~l&")»«on-
tinuous functions of their arguments. Thus, the
integral equation

AQ =AQ, +A(AQ)

can be solved numerically to arbitrary accuracy
both in the radial representation and in the mo-
mentum representation.
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Calculations of the energy splittings between the parallel and antiparallel coupling states of
odd neutron and odd proton in deformed nuclei have been made for both zero-range and finite-
range nuclear forces. The ener gy splittings for both types of forces agree with the corre-
sponding experimental energies. Calculations have also been made for the odd-even shift in
X= 0 bands. Finite-range interactions improve the agreement between experiment and theory
for the odd-even shift, but the results are still unsatisfactory. It is shown that a tensor force
is important in reproducing the experimental odd-even shift, especially in. the case where
Z„+Zp ——1.

INTRODUCTION

One of the most important problems in nuclear
physics is the determination of the effective re-
sidual interaction. In general, the nuclear force
has many facets and plays involved roles in the
nucleus. Nevertheless, sometimes we can see
certain characteristic parts of the nuclear force
by using the appropriate phenomena. For example,
the spectroscopy of odd-odd nuclei gives us de-
tailed information about the neutron-proton inter-
action. Many authors have investigated the neu-

tron-proton interaction in the framework of the
spherical shell model. ' The Nordheim rule, ' which
was proposed for the spherical odd-odd nuclei in
order to predict ground-state spins„has been ex-
tended to deformed odd-odd nuclei by Gallagher
and Moszkowski. ' In the deformed odd-odd nu-
cleus, there are twofold degenerate states in which
the coupling of the spins of neutron and proton is
either parallel or antiparallel along the symmetry
axis. After rotational energies are subtracted,
the lowest-order term in the splitting energy be-
tween these intrinsic states is caused by the re-
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sidual neutron-proton interaction. These splitting
energies, then, are a probe for the residual neu-
tron-proton force. Another even more sensitive
probe is the odd-even energy shift [the difference
in energy between the observed and normal i(f+ 1)
energies of even- and odd-spin members of K=O
bands].

Calculations of the parallel-antiparallel splitting
energy and the odd-even energy shift have been
made by de Pinho and Picard' and by Newby. ' How-

ever, no effort was made to find a consistent in-
teraction for the description of many different de-
formed odd-odd nuclei simultaneously. A more
systematic approach for a number of odd-odd de-
formed nuclei was tried by Pyatov. ' However,
since a zero-range force was used, the exchange
character of the nucleus could not be included and
backward scattering, which is especially impor-
tant in the odd-even shift for large in~i = ln„l,
might have been overestimated. In this paper,
more detailed comparisons between experiment
and theory are presented. Considerable addition-
al recent' "experimental data are compared with
the theory which involves potentials including a
variety of central force ranges and a tensor force.

THEORY

A reasonable model of the odd-odd axially sym-
metric deformed nucleus may be obtained by com-
bining neutron and proton single-parti. cle Hamil-
tonians with the rotational kinetic energy of the
entire system and the residual interaction between
the neutron and proton. This description may be
represented by the following Hamiltonian:

H =H~+H„+H~+H Rpc+H;„, ,

where

Hn= [I ~ I I 1B 2y 3

g is the moment of inertia. I is the total angular
momentum operator and I3 is the component along

the symmetry axis. The Hamiltonian H„has solu-
tions of the form S~~, which are the well-known
rotational functions. " The second and third terms
are the single-particle Hamiltonians in the de-
formed well for the neutron and proton, respec-
tively.

The new Nilsson potential" used to generate the
single-particle Hamiltonians for both neutrons and
protons is

Ho =H~+H„+Hp,

and the eigenfunction of H, is given as

(Pg«« = sn«lv„n„& lv~n~& . (8)

This expression must be symmetrized under a
rotation of & about an axis perpendicular to the
symmetry axis. The resulting expression for the
normalized wave functions is

2I+ y

Pl««18v2 [+««Ivgng& ivy np&

+(-)' «n„' «Iv„n„&lv, ng],
where lvn), obtained by rotating by «about the

p axis, is

lvn) =It,( )l«vn) =pc„",(-) ~Iv n& (8)

If C„, is real, lvn) corresponds to the time re-
versed state of lvn&. If the time reversed state of
lvQ& is defined a,s

Ivn& = (-)" '
Iv —n),

then C„ is automatically related to C„,by

c "=( ) '-"'c „",. (10)

It should be pointed out that the quantum number
K is related to Q(n) and Q(p) by the equation

K=n(n)+n(p).

Since Q(n) and Q(p) can be either positive or nega-
tive, we see that for a given configuration two val-
ues of K are possible, namely

K, = Iln, l- In. ll

K. = In, l+ In. l.
Thus, each intrinsic configuration gives rise to a
pair of states with superimposed rotational bands.
These pairs of states, called Gallagher-Moskows-
ki pairs, are the primary object of this study.
The unperturbed energy of these states is given by

major shell. The single-particle wave functions
obtained are

I n& =Bc.",
I jn&, (4)

where I jQ& is the j—j coupling harmonic-oscilla. —

tor wave function and C„, may be obtained by solv-
ing Eq. (8). The unperturbed Hamiltonian is de-
fined as

+=2 m(d 2

H„&&~
——— V2+ r~ CL +~ S+D(L —(L2&»&&) 52

E(K) =—[I(I+1) —K2]+E„+E~. (i4)

where (L'&»q& is the average value of L' in one
In the total Hamiltonian HRpc, the rotational par-

ticle coupling and the particle-particle coupling in
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rotating nuclei is defined as
2

HR pc =
Tk

[I&(j„,+j») +I2( j„2+j») j„-,j» -j„,j»]
(15)

where j„;and j~; are the angular momentum opera-
tors of the neutron and proton, respectively, in the
frame of the body-fixed coordinate system. The
term (I /28)( j„,'+j„,'+j»'+ j»') should be added to
Eq. (15), but it involves only single-particle opera-
tors, and therefore its contribution to E(K) can be
absorbed by the constants B„and E& in Eq. (14).
If we neglect configuration mixing, H R pc does not
contribute to the energy except in the case where
IQ„I=-', , IQpI= —'„and K=O. In this case the diago-

nal matrix element simplifies to the form,

a
(gl)k]0IH Rpcl&INO) = -(-) ~ &.&]l,

where a„and a~ are the" decoupling parameters for
the Nilsson orbits, defined by

(17)

The last term in Eq. (1), H;„ is the residual inter-
action which couples the last odd neutron and pro-
ton. The matrix element of the residual interac-
tion is calculated in the j-j coupling basis:

(v„Q„vpQ~IVIv„Q„vpQp)= Q C„", C„P C„", C„"~„(j„Q„j~QpIVIj„'Q„j~Q~).
&n&p~n~p

The interactions are represented in terms of a tensor expansion, where the central potential is

Vc =Q(2k + I)'0{'](r„,r~) [(V~+ Vs/2) +(V„+V„/2)P„][C{'](r"„)C{"](rp)]

(18)

+ V~ 2+ V„2PH — " cr„C y„a~xC r~
T

and C{,'](r) is related to the usual normalized spherical harmonic &„,(f') by

(is)

(20)

(21)

We used the Heisenberg exchange operator, P~ instead of the Majorana exchange operator because the j-j
coupling scheme was used as a basis.

In a similar fashion, tensor forces can be expanded.

S»Vr(r~„) = (-', )'~'Q i "&+ &(2k„+1)(2k&+ 1)(k„kp00 I 20)
Ankle

x)r(k)kr); 22)222"' 'l( „,rr)([, xCl' l(",)]rl[rr xCkrl(r )]l l

The first term of the central-force interaction
does not contribute to the splitting energy and the
odd-even shift. This is shown simply in what fol-
lows. In general the result of sign changes in
omega, (Q) can be written

(j—Qlo,"Ij' —Q) =(-)" "(jQlo,'I j'Q). (22)

If the phase (-)' ', which comes from Eq. (10), is
taken into account, an operator of even rank does
not contribute to the splitting energy between the
parallel and antiparallel states. The odd-even
shift is caused by the cross term in the energy
matrix between the first and second parts of Eq.
(7); that is, the symmetrized term with respect
to the m rotation about the y axis. This odd-even
shift caused by the residual interaction is nonzero
only if K =0 and is then given as:

B = (v„Q„vp QpI VIv„Q„v~ Qp) . (23)

Like the splitting energy difference, the odd-even
shift will vanish for the first term in Eq. (19). The
proof of this is illustrated by the following proper-

g{ll)(~ / )
5( ]2

n P
(25)

which is independent of the transferred orbital an-
gular momentum k. Therefore, the calculation
leads to a much simplified result. Furthermore,
since the Majorana operator does not cause any
change in the zero-range force, the Majorana, and

ty of the matrix elements under time reversal:

(j„Q„lo])I j„'Q„)=-(-) (j„'Q„lo„'Ij„Q„&, (24)

where T is the sign of the tensor operator 0&
under time reversal. The first part of the central-
force expansion involving terms in C~"~ will have
positive sign under time reversal, while terms in
[o&C{"](r)]{] will be negative. Under exchange of
j and j', the terms containing C" will cancel
while the terms with [oxC "]]{] will not. The in-
tegration over the radial coordinates r„and x~
was performed using the formula of Horie-Sasaki. "
In the limit of the zero-range force, g{'](r„,rp) has
the following form:
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ff;„,= -4wga(r~ —r„)[1—n+ no„~ o,].
The energy shift (including the splitting energy
and the odd-even shift) is simply

(26)

~ =E(K,) —E(K ) = -2n(A „[1+(-) v v„5,]+8 „),
(2'f)

where A~„and B~„are given by Pyatov' and K, and

K, are as defined in Eqs. (12) and (13). ~ is the
energy shift contrihuted by the residual interac-
tion only and &~ and &„are the parities of the
states.

CALCULATIONS

First the splitting energy between the parallel
and antiparallel coupled states will be calculated
using a zero-range force. Since the Majorana
operator is the identity operator in the zero-range
interaction, the contribution of the Majorana force
to the splitting energy and to the odd-even shift
vanishes for the same reason as the Wigner force.
Furthermore, o„~ o&V(r)I'„, which is from the
Heisenberg part of the potential, gives the same

Heisenberg parts give the same results as the
Wigner and Bartlett parts, respectively. The zero-
range force which involves only s-state interac-
tions in the relative coordinates (r~ —r„) can there-
fore not include a tensor force. A simple form of
this interaction is given by

results as o„~ a~V(r} which comes from the Bartlett
part of the potential. Therefore, the residual in-
teraction is characterized by only one parameter
nW, where

(28)

and v is a quantity which appears in the expres-
sions for the radial wave function. Because the
radial integration is simple using the zero-range
force, it is possible to employ more suitable wave
functions which result from the solution of a Wood-
Saxon potential. '~ In order to make a satisfactory
comparison, it is necessary to compare the cal-
culated values with the experimental values of the
splitting energies from which the kinetic terms of
Eq. (2), the experimental odd-even shift, and the
Coriolis coupling term of Eq. (16) have been sub-
tracted. A least-squares fit to the splitting ener-
gies alone is obtained for nR'= 0.85 MeV with a de-
viation of 41 keV. The resulting energies are
shown in column A of Tables I and II. In column B,
the energies for the value of nS' originally chosen
by Pyatov (0.24 MeV) are also shown for compari-
son. It is surprising that this simple calculation
reproduces the experimental energy splittings so
well. Even some of the discrepancies are under-
standable. For example, it is reasonable that the
zero-range force should overestimate the energy

TABLE I. Theoretical and experimental splitting energies. The calculations A, B, C, and D (in kev) are described
in the text.

Nucleus
Configuration

Proton Neutron
g 7T

Z„+Zp =0 Z„+Zp = 1
Theory
B C D

Experiment
(keV)

"'Ho

411&
411~
411~

523~
523~
523&
523~
523&

400~
402)
521~

400~
402~
521&
523~
642t

1+
3+

0

5
2
6
1

2'
0+

3

2
5+
1+

136
-186

174

73
-82
160

-248
74

38
-53

49

21
-23

45
-70

21

206
—180

113

101
-117

102
-158

110

197
-204

132

99
-115

70
-158

115

136
-111

132

102
-85
171

-144
67

'"Ho 523~
523~

633&
521~

135 38
—147 -42

168
-118

165
-95

91
-171

i68Tm 411~
411~
411~

521'
512~
633t

0 1
2
3+

154
-255
-87

44
-72
-25

103
-158
-112

127
-164
-115

191
—234
-157

411)
411~

521~
512~

0 154 44 103 128
-255 -72 -158 -164

187
-232

174Lu 404 ~

404~
404 )

521 $

521~
512~

-77 -22 -72
71 20 79

-106 -30 -134

-72
76

-130

-90
80

-110
176Lu 404 I

404'
514 ~

510&
0 194 55 185 189

-93 -26 -125 -120
240

-118
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splitting in the case of "4Ho [523&] [523&], because
the wave functions for both neutron and proton have
the same asymptotic quantum numbers and an un-
reasonably high overlap in the zero-range approxi-
mation. If the same force strength is applied to
the calculation of the odd-even shift, the agree-
ment with experiment is not good. The calculated
values, in general, are larger than the experi-
mental odd-even shifts. As Newby has discussed,
the odd-even shift is caused by the backward scat-
tering parts of the nuclear force, especially when

I&I is large. For this reason the 5 force is likely
to overestimate the odd-even shift. If one tries to
fit the odd-even shift by decreasing the strength of
the interaction, then the energy splittings are se-
riously underestimated. Furthermore, in those
cases where the wrong sign is found for the odd-
even shift, no satisfactory solution is available.
It is clear then that the zero-range force is not
suitable for the calculation of the odd-even shift,
although it may be quite successfully applied to
the calculation of the energy splitting.

In view of this difficulty of the zero-range force,
a finite-range calculation was also performed. A

Gaussian form of finite range was used:

V(r,„)=e '»'i"0'. (29)

The dependence of the matrix elements on the
force range is illustrated in Fig. 1. It is conveni-
ent in comparing the matrix elements to divide
them by ~&'x,', where xo is the force-range param-
eter appearing in Eq. (29). The matrix elements
of the Gaussian force are calculated for r, =0.2,
0,8, 1.6, and 2.2 F using the harmonic-oscillator
wave function. Figure 1 shows the matrix element
of v„v~V(r~„) for energy shifts ~ (the solid line}
and odd-even shifts & (dotted line).

While I~I changes smoothly and gradually, I&I
decreases rapidly as the force range increases
especially for IA I

= -,'. This indicates that a.s far
as the Bartlett interaction is concerned, the odd-

even shift & is much more sensitive to the force
range x, than the splitting energy.

The matrix elements of P„V(r~ } are sensitive to
the force range in the region r, = 0.2-0.8 but not
for x, )0.8. However, this contribution to the split-
ting energy and odd-even shift is not very large
with the exception of the configurations [523&]
[523&] and [523&] [633&]. Therefore, the splitting
energy and odd-even shift are not good probes to
determine the Majorana force. In the limit of
r0-0, v„~ o~P„V(r&„) is the same as v„v& V(r&„}.
This effect decreases as the range r, increases
in general.

The results of the calculations for a range of 1.4
F are shown in column C of Tables I and II, as an
example. The strengths were chosen to give a
least-squares fit to the splitting energies and the
odd-even shifts, with a resulting deviation of 55
keV. The finite-range interaction improves the
agreement between experiment and calculations
very little as far as the energy splitting is con-
cerned. This is understandable because the Bart-
lett force is not sensitive to the range of the inter-
action, and the effect of the Majorana force is
small even in the finite range. Furthermore,
v„v+„has the same tendency for all matrix ele-
ments. On the other hand, when the odd-even
shifts are fitted simultaneously with the splitting
energies, a reasonable agreement between experi-
ment and theory is obtained. This is quite in con-
trast with the situation for zero range where si-
multaneous fitting with both splitting energies and
odd-even shift is very unsatisfactory. The stand-
ard deviation from experiment can be decreased
from 100 keV in the case of the zero-range inter-
action to 55 keV for the finite range. The force
parameters used are tabulated in Table III. The
magnitude but not the sign of the disagreement in
the odd-even shift of the configuration [404&] [514&]
may be improved by the finite-range interaction.

The importance of the tensor force in calculating

TABLE II. Theoretical and experimental odd-even energy shifts. The calculations A, B, C, and D (in keV) are de-
scribed in the text.

Nucleus
Configuration

Proton Neutron Zg+Z) Parity
Theory
B C D

Experiment
(keV)

i58Tb 411~
411&

521&
402&

-202 -57 -79 -74
16 4 S -S4

523 t -182 -51 -8 -18
521~ -198 -55 -97 -75

411&

404 ~

-193 -55 -97 -76

9 1 -24

"'Lu 404 i -211 -60 18 19
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Proton Neutron

[4111] [5121]

[5231] [5231

[4041] [5141

[4111][52lt
[snl] [5331
[411 1] [5211
[4041] [5141
[4111] [4021

[sn&] [6331

[4111][521$
[4111][5211

[411J] [400$
[523$] [521 1

[5231][5211

[4111][633kg
[sn&] [542 1]
[404$] [5121]
[4041] [slo 1

[sn t] [4021
[sn1] [400&]

[4041][52»]~
[404$] [521 I]

[4111][402 t]~-

a

0.2 0.8
Force Range (Fermi)

I

2.2

FIG. 1. Dependence of the matrix elements of the residual interaction on the range. The dashed lines represent
the odd-even shifts and the solid lines represent the splitting energies.

the odd-even shift has been discussed by Newby. '
The tensor force is of particular importance in the
case of parallel intrinsic spins for which the tran-
sition to the time-reversed state is forbidden for
a central force. Indeed using a central force, the
calculated values for the odd-even shift for the
configurations [404&] [633&]and [411&][402&], are
small and have the opposite sign to that of the ex-

periment. The results of the tensor-force calcu-
lation are shown in column D of Tables I and II.
The strengths were again chosen to give a least-
squares fit to both the splitting energies and the
odd-even shifts. The force strengths are shown in
Table III. The standard deviation using the tensor
force improves from 55 to 52 keV. Although the
signs of the odd-even shifts of the configurations
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TABLE III. The strength of the nuclear force in case
of finite range (ra=1.4).

Bartlett Majorana Heigenberg Tensor

Theory C -71.2
Theory D -68.0

-18.1
-1.4

BB+1

16.0 -79.2

[404&] [633&]and [411&][402&] are corrected, not
all comparisons of odd-even shifts are improved
by introducing a tensor force. In particular we
cannot explain the sign of the odd-even shift of the
configuration [411&] [521&].

CONCLUSION

The zero-range force can fit the splitting energy
between parallel and the antiparallel states in de-
formed odd-odd nuclei as well as the finite-range
force. However, it cannot satisfactorily explain
the odd-even shift in K = 0 rotational bands because
it overestimates the backward scattering part of
the nuclear force. The tensor force is needed to
interpret the odd-even shift for configurations in
which the matrix element is forbidden in Newby's
selection rule and gives the correct sign while the
central force does not. Therefore, experimental
data on the odd-even shifts in odd-odd nuclei pro-
vide an excellent testing ground for studying the
tensor force.
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