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Sasakawa has rewritten Schrodinger' s integral equation in such a manner that the inhomo-
geneous term has the asymptotic behavior of the exact scattering wave function. This paper
gives a proof that the iterative solution for the scattering amplitude converges for all local
potentials for which the function rV(x) is absolutely integrable. Under very general conditions
the kernel of the Sasakawa equation is a Hilbert-Schmidt kernel. The integral equation is con-
venient for numerical solution in both the radial representation and the momentum representa-
tion.

I. INTRODUCTION

A scattering wave function y(r) may be written
as a sum of that solution of the unperturbed
SchrOdlnger equation, p (r), that ls asymptotical-
ly equal to q&(r), plus a function )((r) that vanishes
fol large r. The function cp (r) depends on the un-
known scattering amplitude. Schrodinger's inte-
gral equation yields a coupled set of linear equa-
tions for )((r) and the scattering amplitude. The
Sasakawa' expansion is the iterative solution of
these equations. It appears to have the remark-
able property that it converges for arbitrary po-
tential strength. Sasakawa has shown this for the
square-well, the exponential, and the Yukawa po-
tential. ' Recently, Austern' has advocated the use
of this approximation for coupled-channel reaction
problems.

It seems worthwhile to gain bet:ter insight into
the convergence properties by a more general
proof. Section IV gives such a proof for all local
potentials that satisfy the condition

Under this condition the series can be majorized
by an exponential series. The locality of the po-
tential is essential for the proof. The series cer-
tainly does not converge for all interesting poten-
tials of arbitrary strength. Any potential of rank
1 is a counterexample that disproves the conjec-
ture that it does.

The Sasakawa expansion allows an obvious gen-
eralization. It is possible to modify the function
p'(r) at small distances while retaining its asymp-
totic form. There is a corresponding change in
the kernel of the integral equation.

Section II wllj. serve to lntl oduce Sasakawa s
form of Schrodinger's integral equation, including
its generalizations, and to establish the notation.
Sasakawa formulated the scattering problem in
the radial representation. Better insight can be

II. VARIOUS FORMS OF THE SCHRODINGER
EQUATION

Let the Hamiltonian for the I.th partial wave be
represented by the kernel

where

t~'I(J
I

)=()(~'-~) — .+ . +);(~)).
d' I.(L+ 1)

(s)

The functions fz (r, k) shall be the regular solu-
tions of the differential equation

-d ~+, + V, (r) —k' f~(r, k) =0,(
da I.(I.+ 1)

normalized such that

(4)

and

The completeness relation (6) implies the assump-
tion that the Hamiltonian 80 has no bound states.
For V, (r) = 0, the function f~(r, k) is related to the
spherical Bessel function j~(kr) by

obtained by using both t:he radial and the momen-
tum representation; they complement each other.
Qualitative features that are obvious in one repre-
sentation may not be apparent in the other. The
transformation from one representation to the oth-
el' ls straightforward. In the momentum represen-
tation it is easy to see that Sasakawa's equations
are closely related to those of Noyes' and Kowal-
ski. 4

In Sec. III it is proved under appropriate assump-
tions that the Sasakawa kernel is a Hilbert-Schmidt
kernel. Its properties are important for nonitera-
tive numerical solutions.
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(k'IVlk) = t drfi(r, k')V(r)fi(r, k).
0

(10)

The scattering wave function p~(r, k) is the
mixed radial representation of the Ms'lier' opera-
tor 0, i.e. ,

pi(r, k) = (rlQlk) = dk'fi(r, k')(k'IQlk). (11)
0

The Miler matrix (k'IQlk) satisfies the Schrodin-
ger integral equation

(k'IQlk) =6(k' —k)+lim dk" (k' —k"+ie) '
a~0 0.(k lvlk")(k "IQlk).

The corresponding radial integral equation is

(12)

cps(r, k) =fi(r, k)+ dr'G(r, r') V(r')y~(r', k),
0

(13)

where the Green's function G(r, r') is defined by

G(,) l. "dk, f (r, k')f (r', k')
r, r = im

k —k''a~0 0 +gf

fI (r, k) = (2/~) "'rkj i (kr) .

If Vo(r) & 0, then the fi are the so-called distorted
waves. We are interested in the scattering pro-
duced by the potential V(r) The functions fi, and
hence the phase shifts produced by U„are consid-
ered known.

The momentum representation of any operator
8 is related to the radial representation by

(k'I elk) = dr' ( dry (r', k)(r'I 6lr) fi(r, k).
0 0

(8)

We thus have

(k'IHolk) = 5(k' —k)k,

The phase shift 6i is related to T by

e ' i —1= -2vi(klTlk)/2k. (17)

Equation (12) is quite formal, and a side remark
about the limits involved is in order. The kernel
(k'IQlk) is supposed to represent the operator Q

defined by the strong operator limit

ljm e 2Hte IHot Q
ce

(18)

„(kI
vlk') (k'I Tlk)

k2 k/2 +&~O
(20)

must converge to a continuous function of k. The
properties of the potential should guarantee that
these conditions are satisfied.

Let us return to the main topic. Sasakawa's ex-
pansion is based on rewriting Eq. (13) or (12) in
the general form

(21)

where (rlQ, lk) has the same asymptotic form as
(rlQlk); i.e., the function (rlAQlk) vanishes asymp-
totically. It follows that 00 is defined such that the
kernel (k'IAlk") does not have a singularity for k'
=k. These requirements are satisfied if

(k'IQolk) =6(k' —k)+ (k' —k' + is) '(k'lylk)i(k),

(22)

It can be shown that if the limit (18) exists, then
the strong vector limit

(k'ITlk)y(k)s-lim dk k2 —k"+ '

also exists for square-integrable y(k). However,
this condition is not sufficient for the existence of
cross sections. For that purpose it is necessary
that (klTlk) be a. continuous function of k. From
Eqs. (12) and (16) it then follows that the expres-
sion

= -(w/2k)[hi(r, k)fi(r', k)0(r —r')

+ fi(r, k)hi(r', k) 8(r' —r)], (14)

where

i(k)-=(klTlk), (23)

1, if x)0;
0, if x(0. (15)

The scattering amplitude is obtained from the
kernel of the operator T defined by

and the function hi(r, k) is the solution of the dif-
ferential equation (4) that satisfies the outgoing-
wave boundary condition. The integral over k' in
Eq. (14) can be evaluated by using the analytic
properties of the functions fi(r, k).' The step func-
tion Ois

and (k'lylk) is a smooth function restricted by the
conditions that (1+ lk'I) '(k'lylk) is bounded and

(k I ylk) = 1. (24)

The kernel A is then given by

(k'I&lk") = (k'- k") 'I(k'I Vlk") —(k'lylk)(kl Vlk")].

(25)

The radial representation of 00 is

T=—VQ. (rlQolk) =fi (r, k) —(v/2k)Hi(r, k)i(k), (26)
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——'e (. k)=iim t dk f ' ""'I'I"
(27)

2k ', oJo k —k' +fr

The radial representation of the kernel A is

(r i~ fr-)=C(r r-)v(r-)

G(r', r") = (v/2k)([h~(r', k)f~(r", k)

-f (r', k)h (r",h)]B(r" —r')

+[H (r', k) —h (r', k)]f (r",k)J. (29)

The exac't solution of Eq. (21) ls

Ne do not attempt to prove results under the weak-
est possible assumptions for the potential. In-
stead the aim is to make assumptions that are
strong enough to allow simple proofs while includ-
ing all potentials that are of interest in practice
except the Coulomb potential and potentials that
are more singular than h ' at the origin.

For local potentials the kernel (k'IVlk") and its
derivatives satisfy the inequalities

a' 'l(a'Ilvll). ")II = J «r()rr)()rr) 'flv "r)rr(r)

- t)h, Jt d«l V(r)l,

n=(1-W) 'n, . (3o)

f(k) = (kl v(1-A) 'lk)/[1- J(k)], (31)

According to Eqs. (23), (16), and (30), the exact
expression for the scattering amplitude t(k) is

, (k lvlk") = t «f'(k'r)f(k"r)«(r)

&bb' dhh Vh
0

(39)

where

-„„,(k I
v(1-a) -'Ik')(k'Irik)

k2 —k'~+i&

=-( /2). ,)J «() Iv() —A) 'Ir)(v, (r, ) l.
0 (32)

„(). Ivl). ") - 'J drr'Iv(r)l,
0

dk" k' V k" = Ch hV h k'h k''h

(40)

The iterative solution is equivalent to the expan-
sion

(1-X)-'= Q a".
n=o

b, dh hVh (41)

The preceding equations reduce to those of Sasa-
kawa for

where the constants & &
y and 5 ' are defined by

h = sup lf (x) I,
(k'lr Ik) = (k'ir. fk) -=,

The equations of Kowalski follow for

(34) &i = sup lf(x)/x I,

(k'folk) = (k'I vlk)/(k I vik) .

In that case (k'IAik) =0, and hence

(k'Ivlk) = (k'- k")(k'Inik)
= (k I vik)f(k)/(hi vlk)

+ dk" (k'folk") (k"
I
v'Ik),

0
(36)

For the sake of convenience and precision, let
VO=O in the following. In this case the functions

f~(r, k) are functions oi kr, i.e., f~(r, k) =f~(kr)

(k'folk")= (k lvlk")-' ' ' " ' ' ' (k'-k"')-'.
(kl vlk)

(37)

~' = sup lf'(x) I
.

J dk' dk"
I
(k'I& Ik")I' &~

0 0
(43)

Let us assume that the integrals on the right-
hand side of Eqs. (38)-(42) are finite. In other
words, the function r V(r) shall be absolutely inte-
grable and square-integrable. The volume inte-
gral f, drr'IV(r)l shall also exist. Then it fol-
lows that the left-hand sides of these inequalities
are continuous and bounded. For nonlocal poten-
tials, we explicitly assume the same properties
for the kernels (O'IVlk"). The derivative (s/&k')
&& (k'folk) shall also be continuous and bounded.

It follows from these conditions that the Sasa-
»w»cruel (k'l&lk") defined in Eq. (25) is a Hil-
bert-Schmidt kernel, i.e.,
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It follows further that the function )!(k') defined by

-„,„(k I~lk-)(k" Irlk)
k' k"-'+i e

is sufficient that the series

g(kl vw" lk)

is square-integrable and that the functions J(k)
and t(k) defined in Eqs. (32) and (31) are contin-
uous functions of k.

IV. CONVERGENCE OF THE SASAKAKA SERIES

The series

{1 g)-i —ggn (45)

converges uniformly if and only if the largest ei-
genvalue of A is less than unity. ~'8 However, uni-
form convergence is not required in practice. It

converge. We therefore prove the following theo-
reIQ.
Theorem: For @=y, the series (46) and (47) con-
verge for all local potentials for which rV(r) is
absolutely integrable.
Proof: When r = r, and hence Pi, = k~, it follows
from Eqs. (28) and (29) that

d (d) J„dv(dlvd"{v)d, (dv)

A dr, dr2 &'„rVr r, V r, ' r„Vr„& kr r 'G r, r, r, G r„»r„r„'hJ.4r„.~ ~ ~ ~ ~ ~ ~ ~
~

0

(48)

Since the functions fI (kr)ki, (kr)r ' Rnd

g(r' r)rf~{k')2/f-~(kr')2r are bounded, there
exists a constant C independent of r and r' such
t at

where

g(r,r') = (II/2k—)[k~(r, k)f~(r', k)

f~{r,k)k—~(r', k)] 6(r -r') .

lr 'f, ( kr) G( rr')I - CIf{kr') I . (48) That the series does not converge equally well
for nonlocal potentials is easily seen in the simple
case of a potential of rank i. Let

(k'I V fk) = ~~(k')w(k) .

CrrVr» rVr„
n- j. (54)

oo n+1
= const, dr rl v(r)ln+I ! (50) and hence

Thus, the series (47) can be majorized by an ex-
ponential series.

The convergence proof for the series (46) is ex-
actly the same. It is only necessary to replace h~
by f~ in Eq. (48). The inequality (50) obviously
remains valid.

The features that the Green's function G(r', r")
is pl'opoi tionR1 'to 8(r" —r ) RIld that ihe poteIliiRI
is local are essential to the preceding proof. It is
well known' that the integral equation (50) for
Fi, (r, k) -=Ii)i, (r, k) e ' —Eq. (51) below —has an iter-
ative solution with the same convergence proper-
ties for the same reason. From Eq. (13) it follows
that

V (v , d ) =f {v, d ) f dv t{(v , v '
) V (v+' )V (v ', d ) ,

(»)

{d(lvd"Id)= (d)'x"'(f ' dd{d)d

(55)
Therefore the series must diverge for sufficiently
large A. On the other hand, for (O'I ylk) =n)(k')/
II)(k) we have A =0, and therefore Q = 00. In gen-
eral we have Q=Qo if

(k lrlk) =(k ITik)/t(k). (56)

It is always possible to chose y such that Qo is a
good approximation to Q. But such a choice does
not imply convergence of the series (45).

Let Ao be the or1glnal Sasakawa kernel p
The generalized kernel may then be written in the
form

(k I~lk ) (k I~ lk )
(k lylk) (k lyolk) (kl~lk )

(57)
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The kernel A differs from Ao by a kernel of rank
1. If the largest eigenvalue of A, is nondegenerate,
it can be removed by putting

where n, is the largest eigenvalue of A, and X(k)
is the corresponding eigenfunction, i.e.,

Aox eo

This is the optimum choice for y if uniform con-
vergence of the series (45) is desired.

V. CONCLUSIONS

The preceding analysis can be trivially extended
to a finite number of coupled channels.

The unmodified Sasakawa series converges for
local potentials of arbitrary strength. This fea-
ture does not obtain for nonlocal potentials or the
modified series. But under very general condi-
tions the Sasakawa kernel A is a Hilbert-Schmidt
kernel, and both (r'l~l&") and (lr'l~l&")»«on-
tinuous functions of their arguments. Thus, the
integral equation

AQ =AQ, +A(AQ)

can be solved numerically to arbitrary accuracy
both in the radial representation and in the mo-
mentum representation.
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Atomic Energy Commission.
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Calculations of the energy splittings between the parallel and antiparallel coupling states of
odd neutron and odd proton in deformed nuclei have been made for both zero-range and finite-
range nuclear forces. The ener gy splittings for both types of forces agree with the corre-
sponding experimental energies. Calculations have also been made for the odd-even shift in
X= 0 bands. Finite-range interactions improve the agreement between experiment and theory
for the odd-even shift, but the results are still unsatisfactory. It is shown that a tensor force
is important in reproducing the experimental odd-even shift, especially in. the case where
Z„+Zp ——1.

INTRODUCTION

One of the most important problems in nuclear
physics is the determination of the effective re-
sidual interaction. In general, the nuclear force
has many facets and plays involved roles in the
nucleus. Nevertheless, sometimes we can see
certain characteristic parts of the nuclear force
by using the appropriate phenomena. For example,
the spectroscopy of odd-odd nuclei gives us de-
tailed information about the neutron-proton inter-
action. Many authors have investigated the neu-

tron-proton interaction in the framework of the
spherical shell model. ' The Nordheim rule, ' which
was proposed for the spherical odd-odd nuclei in
order to predict ground-state spins„has been ex-
tended to deformed odd-odd nuclei by Gallagher
and Moszkowski. ' In the deformed odd-odd nu-
cleus, there are twofold degenerate states in which
the coupling of the spins of neutron and proton is
either parallel or antiparallel along the symmetry
axis. After rotational energies are subtracted,
the lowest-order term in the splitting energy be-
tween these intrinsic states is caused by the re-


