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A new derivation of the quasispin groups used in nuclear spectroscopy is given. It is shown
that these groups arise as the maximum commuting subgroups of the Flowers symplectic
groups inside groups of generalized Bogoliubov transformations. These transformations are
defined to be the most general transformations which conserve the anticommutation relations
of the fermion operators of a nuclear shell.

1. INTRODUCTION

Nuclear shell-model states in j-j coupling have
been classified by Flowers' with the aid of sym-
plectic groups in 2j+1 dimensions, The symplec-
tic group acting on states of identical nucleons fur-
nishes the seniority quantum number, while the
symplectic group acting on states of neutrons and

protons provides the two quantum numbers of se-
niority and reduced isospin. These quantum num-
bers are very useful for labeling lV-particle states
and for calculating various nuclear matrix ele-
ments. ' More recently, it was found that two smal-
ler groups, of the type SU(2) and US/(4), provide
the same quantum numbers as the initial symplec-
tic groups but are more advantageous for some nu-
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clear- spectroscopy calculations. '4 These two new

groups, called quasispin groups, were shown by
Helmers' to be generated by bilinear invariants of
the symplectic groups.

The purpose of the present work is to show that
the quasispin groups arise in fact in the frame of
a more general structure. It is shown here that
there exist larger groups which contain the sym-
plectic groups and their corresponding quasispin
groups as subgroups, such that a quasispin sub-
group is the centralizer (i.e., the maximum com-
muting subgroup) of the symplectic subgroup into
the larger group. It appears that these larger
groups are groups of generalized Bogoliubov (g.B.)
transformations, which were used by several au-
thors to study pairing and self-consistent effects
on the same footing. ' The structure of g.B. groups
was studied in detail in previous papers of the au-
thors. " Here are given only the main properties
of the g.B. Lie algebra and those needed for the
proof of our argument.

In Sec. 2 the structure of the g.B. Lie algebra is
described in terms of nucleon creation and annihi-
lation operators of a j shell. In Sec. 3 we consider
the symplectic Lie algebra as a subalgebra of the

g.B. Lie algebra. In Sec. 4 we prove that the quasi-
spin Lie algebra is the centralizer of the symplec-
tic Lie algebra for the simple case of identical nu-
cleons.

2. GENERALIZED BOGOLIUBOV LIE ALGEBRA

We consider the (2j+1) single-nucleon states of
a j shell. Instead of labeling them by the magnetic
quantum number rn, we use the index i=rn+j+1
running from 1 to 2j+1. The corresponding crea-
tion and annihilation operators a;, a; satisfy the
usual fermion anticommutation relations

[a;~, a, ],= [a;,a, ],= 0, [a;~, a, ],= 5;„.

{n}={+(v,. +v„), v; —v„; it k=1, ;,2j+1}.
(2)

and

O-'~g+I. = V~) + V~g+I ~ (4)

In a semisimple Lie algebra of rank n there exist
n linearly independent commuting elements which

span a subalgebra called the Cartan subalgebra. "
It is usual to identify the Cartan subalgebra with

the (2j+1)-dimensional space of the roots. Hence,
one can associate to each root n or vector v;, re-
spectively, elements H or h; from the Cartan sub-

algebra. The scalar product in the Cartan subalge-
bra is induced by that in the root space, and one
has

(h;, h, ) =5;, . (5)

The remaining elements of Dpj+& can be described
as raising operators E„and lowering operators
E „, each couple {E,E „}corresponding to a pos-
itive root cv. If we denote by H an arbitrary ele-
ment of the Cartan subalgebra, the commutation
relations in a semisimple Lie algebra read

[H, H „]= 0, [H, E„]= (H, H „)E, [E„,E ]=H „,

The scalar products of the roots are then deter-
mined from the orthonormality relations of the
vectors v;

(v, , v, ) =5;, .

The set {a}may be partitioned in two equal pa, rts:
(i) the set of positive roots {+(v,+v„), v; —v„.
i&k}, and (ii) the set of negative roots {-(v;+v~},
-(v; —v„); i &k}. Among the positive roots one
can find (2j+1) roots, called simple roots, such
that any other positive root can be expressed as a
sum of simple roots." A possible choice of simple
roots is

The anticommutator [, ], may be interpreted' '
as a bilinear symmetric form defined on the
2(2j+1)-dimensional vector space spanned by the
a;, a; . Following this interpretation, linear trans-
formations which conserve the anticommutation
relations (1) are orthogonal and the group of g.B.
transformations is therefore isomorphic to a
2(2j+1)-dimensional orthogonal group. Its I.ie al-
gebra L is of the even orthogonal type Dp

Let us recall first some of the properties" of an
algebra of type D„-„. Such an algebra is of dimen-
sion (2j+1)(4j+1). It is usual to associate with it
a set of 4j(2j+1) root vectors {a},which can be
expressed in terms of (2j+1) orthonormal vectors
v& as follows:

[E„,E&]=N„8E„+8 if n+P is a root,

=0 if n+P is not a root.

For D»+, the scalar products (H, H ) are deter-
mined from the expressions of the H 's in terms
of the h, 's, ['see (2)] and from the orthonormality
relations (5). The coefficients N„& are equal to
+1 or -1 (the sign will be decided by inspection
when necessary).

The elements {E;,E „H, ; i =1, . . . , 2j +1}as-
sociated with the simple roots e; are called canon-
ical generators. "' These 3(2j+1) elements gener-
ate by commutation all the (2j+1}(4j+1)elements
of Dp '

y Most of the properties of D»+, we have
described here are also valid for other types of
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Lie algebras, and we shall need especially the ca-
nonical generators for the symplectic Lie algebra.

We can determine now the explicit structure of
the g.B. Lie algebra, which we shall note L, and

identify its elements with those of D„„.Let us
consider the (2j+1)(4j+1)bilinear operators

a;a» (i&k), aia» (i&k), a;a» (i 31k), a, a,. -2;

i, k =1, . . . , 2j+1.

They are linearly independent and closed under
commutation and they satisfy the operator relation
O'= -0 characterizing orthogonal Lie algebras,
where we take the transpose of a product of opera-
tors a~, a; as the product of the same operators
written in reversed order, e.g. (ata»)'=a»at. The
expressions (7) form therefore a basis of L

It is easy to verify by evaluating commutators
that the operators a~a, -~ span the Cartan subalge-
bra C of L and that the operators aita~~, a;a, are
raising and lowering operators. We can now set

(n!, o.!)=1, (a,', ci';) = —2 for i=1, . . . , j —2,
'

j+1/2~ &j+ 1/2& & & j+1/2& j-1/a&

(13)

JF-; =a;a;„+a2j+1 i a2j 2-i E =(E ~

/

H,' = ~~a;a; —a;+la'+1+a2j+1 a2j+1 i 2j+2 i 2j+2

1 ~1
y

~ ~ ~

a~ j+1/2 j+1/2 j+3/2 E ( j+1/2) L j+1/2/

IH j+1/2 = a j+„,a j+,/, —aj 3/2 j +3 (14)

The canonical generators of L' can be expressed
in terms of the elements of L as follows:

(!1!,o»') =0 for k =i, i ~1.
We can obtain a set of 3(j+ —,') canonical genera. —

tors {E;',E';, H,' f for L' by using the expression
(12) and by requiring that the scalar products

(H,', H») =(a', , a») in commutation relations [H,' , E»].
=(H,', H,')E,', have the same values as in (13). We

get then by reusing the indexi =m+j+1:

h;=a;a; —p, i =1, . . . , 2j+1, (6)
@i + @2j+l«i &

and establish the following correspondence be-
tween roots and raising and lowering operators
of L

+
v +v»-a, 'a»t, —(v;+v„)-a„a;, v; —v, -a;a„.

E; =aiai+1, E-;=a;+la;, H; =h; —h;+„'

(10)

+1 2ja2j+1 -(2j+1) 2j+1 2j

H,j„—h2j+h2j+

3. SYMPLECTIC LIE ALGEBRA

The symplectic group for identical nucleons is
formed by those unitary transformations of the j-
shell states which conserve the pair J=O operator

m&O
( 1)/- at a1'

Its Lie algebra L' is of the symplectic type C,.+»„
and Helmers' has shown that its elements are of
the form

a~ta —(-1) at a (12)

Thus, the canonical generators of L can be written
in terms of creation and annihilation operators as
follows:

2(Hi+H2i+1 !) —2(h! —h!+1+h2!+1-1 h2!+2 1)

K' I
j+1/2 j+1/2& /+1/2 /+1/2 /+1/2 /+3/2 '

It is seen from the above equations that the Car-
tan subalgebra C' of L' is contained in the Cartan
subalgebra C of L. It is also clear that L' is a
subalgebra of L and that the scalar product in L'
or in C' is determined by the scalar product in L.

[H, E,']=0 for i =1, . . . , j+2.
By using (15) and (6), these relations become

(16)

(H H')E! +(H H2 +1 i)E2 y1 1 =0

(H! H/y1/2)E!+1/2 0 (11a)

Expressing the H, in terms of the h; [. cf. (4)] and
noting that E; and E„.„;are linearly independent,
H has now to satisfy the set of 2j equations

4. DETERMINATION OF CENTRALIZER

We look now for the centralizer of L' in L, i.e.,
for the set of elements of L which commute with
all the elements of L'. Since the canonical genera-
tors of L' generate by commutation and linear com-
bination all the elements of L', it is sufficient to
find the elements of L commuting with the canoni-
cal generators of L'.

We try first to find an element H of the Cartan
subalgebra C of L which commutes with the canon-
ical generators of L'. It must satisfy the relations

The simple roots cT,', . . . , aj+»2 of Cj,», have the
following scalar products": (H, h; —h;„)=0, i =1, . . . , 2j. (1 lb)



A. BOSE AND A. NAVON

Since 8 can be written as a linear combination of
the h, , one finds that the only solution of (1V), up
to a constant factor, is

2 j+1
K= gh,

i=1
(18)

[K, E, )=+2E„

[E„E ]=K,

[K;,E, ]=0,
[E', E, , ]=0.

The operator E, can be written

(19a)

(19b)

(19c)

(19d)

(20)

where S„are scalars and E„are raising operators
of L. Introducing the expressions (18) and (20) for
K and for E, in (19a), we deduce that the roots n
appearing in the summation of (20) can only be of
the form v;+v„. Qn the other hand, (19b) entails
that

2j+1
gS„'K„=K=+ h, (21)

This last equation shows that in the summation
there must be exactly j+ ~ roots 8, no two of them
having in common a vector v;, and also that

Thus, there is only one element of C which com-
mutes with L'.

We now look for elements of L outside C which
commute with L . Our task is simplified by a re-
sult due to Morozov" which, in our case„asserts
that there can be at most a three-dimensional sim-
ple subalgebra, i.e., two more operators E+ and

E, commuting with L'. These operators should
satisfy the relations

E, = Q (-1)' "ata~
m&p

E = (E,)'-=g (-1)'- a „a..
m&p

(26)

We recognize the mell-known basis of the quasi-
spin Lie algebra. ' '

5. CONCLUMNG REMARKS

We have calculated, for the simple case of iden-
tical nucleons, the centralizer of the symplectic
Lie algebra into the generalized Bogoliubov Lie al-
gebra, and we have found that it coincides with the
familiar quasispin Lie algebra. A similar result
can be obtained, with a little more work, for the
case of neutrons and protons. In that case, the
g.B. group and the quasispin group are, respec-
tively, of the types O(4(2j+1)) and USt(4). Some
general insight can be gained by noting that both
cases are related to the maximum subgroup chain
decomposition"

O(st) 3 US@(s)x US/(t) .

Several authors'~" have investigated the quasi-
spin in L-8 coupling. In that case, the seniority
group and the quasigroup are both orthogonal.
This fact is to be related to another maximum sub-
group decomposition"

2- 1/2
j+3/2+ lE, = E (-1) a,'F12 ia;.3i~ ~

E=O

Indexing in terms of the magnetic quantum num-
ber ng, the basis of the centralizer Lie algebra L
now reads

K= Q(ata ——,'),
m&p

$„=+1. (22)
O(st) ZO(s) x O(t) .

Let us now replace in the j+ 2 equations (19c) the
H,' and E, by their expressions in terms of the h;
and E respectively, and apply the general com-
mutation relations (6). We get then a set of scalar
products equated to zero and, by using our pre-
vious results, we find that the roots n are explic-
itly

n ~ 1
g+l/2-f g+3/2+g & &

'
& j 3 ' (23)

Hence, the raising operators E appearing in the
development (20) of E are

a~+l» &a,.+3/2 f l=0, . . . ,j —2. (24)

It remains to find the signs of the coefficients S„
in (20). This is done by replacing in (19d) the E,
and E, by their expressions in terms of the ele-
ments of L. By using once more the commutation
relations (6) we find that

An interesting point we would like to mention
here is the connection between our work and a
problem which has not yet received a, satisfactory
solution. We refer to the problem'~" of the deter-
mination of a fourth quantum number necessary to
label the states of the quasispin group of the type
US@(4). This fourth quantum number corresponds
to an operator of order not smaller than 4 in the
a~ and a;. We think that this problem could be
tackled in a systematic way by extending our g.B.
Lie algebra, which contains only bilinear tensors
in a~, a;, to the algebra which contains all the ten-
sors in at, a; (Clifford algebra). This, however,
seems quite difficult and it probably involves
lengthy calculations.

We would like to thank the National Research
Council of Canada and the Government of the prov-
ince of Quebec for financial support.
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A number of results on the boundary-condition-model (BCM) T matrix are developed. It is
shown that the half-off shell T matrix is unique, but the fully off-shell T matrix is not. Further,
it is shown that the ambiguity in the T matrix resides in that part of the complete T matrix
which is identifiable as the T matrix for the pure BCM, where by pure BCM is meant no forces
outside the boundary-condition radius. Three different formulas for the pure BCM T matrix
are presented. The first is derived by using the relations that exist between the half-off-shell
T matrix and the fully off-shell T matrix for well-behaved potentials, and is found to be sepa-
rable. The second is taken from the work of Kim and Tubis. The third is derived from a
pseudopotential constructed by Hoenig and Lomon. All three agree exactly half off shell, and
satisfy the off-shell unitarity relation. Numerical comparisons are given which show that sig-
nificant differences can occur in the fully off-shell T matrices. An integral- as well as a dif-
ferential-equation approach are given for finding the contribution to the BCM T matrix from
the forces outside the boundary-condition radius. Separable representations for the BCM T
matrix are developed, and their usefulness in carrying out calculations on the three-nucleon
system is discussed.

I. INTRODUCTION

In a boundary-condition model (BCM), part or
all of the force between a pair of particles is rep-
resented by a logarithmic boundary condition on
the Schrodinger wave function. The boundary con-
dition may or may not be energy dependent. It
appears that the BCM was first used to describe
the two-nucleon interaction by Breit and Bouri-
cius, ' who showed that the low-energy '~, scat-
tering data could be fitted by a pure BCM (no out-
side forces). They considered both energy-indepen-
dent and energy-dependent logarithmic derivatives.
The pure BCM was extended to higher energies
and to tensor forces by Feshbach and Lomon, ' who
found that they could obtain a reasonable fit to the
scattering data up to 274 MeV if they allowed the
'S, core radius to change with energy.

A good fit to PP data was later obtained by using
an energy-independent boundary condition in con-

junction with a local potential outside the core.
The local potentials were of two types: a purely
phenomenological exponential potential, ' and a me-
son-theoretic potential4 which included one- and
two-pion-exchange contributions. In recent years,
the fits to the nucleon-nucleon scattering data have
been improved and the effects of mesons other than
& mesons have been incorporated into the model. '
The analytic properties of the scattering ampli-
tudes arising in the BCM have been studied and
found to be similar to those of the more conven-
tional potential models. ' It is now clear that the
BCM with outside forces taken from meson field
theories leads to as reasonable a description of
the two-nucleon system as conventional potential
models, in that it fits the elastic scattering data
and gives rise to scattering amplitudes with accep-
table analytic properties. The situation with re-
spect to the many-nucleon problem is not so clear.

The application of the pure BCM (no outside


