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Nonrelativistic Hard-Pion Production and Current-Field Algebra

M. K. Banerjee, C. A. Levinson, M. D. Shuster, * and D. A. Zollmanj'
Department of Physics and Astronomy, University of Maryland, College Park, Maryland 20742

(Received 20 July 1970)

The mass dispersion approach of Fubini and Furlan is applied to single-pion production in
nucleon-nucleon collisions. The finite-mass correction to the zero-mass limit is exhibited,
and it is shown that in a nonrelativistic approximation this correction leads directly to a sim-
ple distorted-wave Born approximation for the physical amplitude. The transition operator
is determined directly from the nucleon field-chirality equal-time commutation relation and,
in the rest frame of the pion, is given by the standard interaction term.

I. INTRODUCTION

In a recent paper, Fubini and Furlan' discussed
a dispersion relation for pion-nucleon scattering.
In this approach the dispersion variable is the pion
mass, and the soft-pion limit is the value of the
amplitude at zero pion mass. We have applied this
dispersion approach to the production of one pion
in nucleon-nucleon collisions. Using the value of
the amplitude at the soft-pion limit, we are able
to make a connection with the nonrelativistic pro-
duction theory. By "boosting" the nonrelativistic
amplitude to the pion mass shell, we are able to
derive a nonrelativistic production potential for
pions in nucleon-nucleon collisions. To apply this
method we must know the equal-time commutation
relation (ETCR) of the nucleon field with the chiral-
ity. This ETCR and the residues of three poles es-
tablish the production amplitude for zero pion
mass. The corrections due to the finite mass of
the pion are then in the form of a dispersion inte-
gral. When this correction is evaluated under suit-
able approximations, it leads to the nonrelativistic
distorted-wave approximation where, in the pion
rest frame, the transition operator is

where

7' = the ath component of the isospin operator,
0 = the nucleon spin operator,
f, =the pion decay constant,

gA= axial-vector-nucleon coupling constant,
m„=the pion mass,
I=mass of the nucleon,

and V acts on the nucleon space variables x„. The
summation is over the nucleons. In the pion rest
frame this transition operator is the operator usu-
ally used in the nonrelativistic approaches to this
process. '

This result is rather general. Ericson, Figu-
reau, and Molinari' first demonstrated that the
Fubini-Furlan mass dispersion formalism is quite
similar to the nonrelativistic scattering equations
involving off -energy-shell scattering operators.
The dependence of the relativistic amplitude on
the meson-mass variable is quite analogous to the
dependence of the nonrelativistic off-shell ampli-
tude on the off-she11. energy variable. Hence, it is
not surprising that in the nonrelativistic domain
the Fubini-Furlan method leads to the distorted-
wave approximation. However, the important
point is that the transition operator can be derived
directly from the ETCR between the nucleon field
operator and the chirality without any assumptions
about the pion-nucleon interaction Hamiltonian.

In Sec. II we develop the Fubini-Furlan approach
for pion production in nucleon-nucleon collisions.
In Sec. III, by considering the leading singularity
in the mass dispersion relation, we show that the
mass dispersion approach leads directly to a non-
relativistic distorted-wave approximation. In Sec.
IV we consider several more singularities and are
thus able to determine the most important correc-
tions to the distorted-wave approximation.

II. MASS-DISPERSION RELATION FOR NN NNn.

The 8 matrix for the production of a pion in nucleon-nucleon collisions is given by

S= f(2v)'5'"(p~-+k -p, —p, )(f~~i (0) ~p, s,)u(p, s,),
where (p„s,) and (p„s,) are the four-momenta and spine for the initial nucleons, k is the pion four-mo-
mentum, and pz is the four-momentum of the final two-nucleon system. [For most of the following develop-
ment the state fmay correspond to either a deuteron or an unbound two-nucleon system. When a distinc-
tion must be made, we shall use d for the deuteron and (p„s,) and (p„s,) for the unbound system. j j (x)
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=)j&(x)(-fp —M), where t/r(x) is the nucleon field operator. We shall always work in the coordinate system
where the pion is at rest. Hence k = (m„, 0, 0, 0).

We shall study the expression

&br)=f ""( "Nf,l*)& )*)&'(D)I&(*)l& .~ &» ~ ), * (11.2)

where q = (q„0, 0, 0), as a function of the pion mass q, . D'(x) = a A'„(x) is the divergence of the axial vector
current A'„(x), and is used as an interpolating field for the pion.

Since we have chosen the coordinate system in which the space components of q vanish, F(q) becomes a
function of q, alone, and F(m, ) is proportional to the physical production amplitude. To fix the constant of
proportionality between F(m, ) and the physical pion production amplitude we must know the vacuum-to-one-
pion matrix element of D'(x). This factor is given by the p decay of the pion by'

&~' ID'(0) Io& =f, f~~ .

For convenience we will not multiply F(qo) by the factor (11.3) until we obtain the final result
It is important to emphasize that the momenta p&, p„and p, are held fixed and satisfy the relation

p, +p, -p& =k=(m„0, 0, 0) while q= (q„0, 0, 0) and qo varies. The mass of the reduced-out pion equals qo

and the (mass)' of the reduced-out nucleon is (p& -p, —q)'. Hence, at qo= 0 not only is the pion off the
mass shell, but the reduced nucleon has a (mass)'= (p& -p, )' = (p, —k)'.

The limit differs from the soft-pion limit of Adler where only the pion is off mass shell and py py+p2.
Thus, in the Adler soft-pion approach the amplitude involves an on-shell nucleon-nucleon scattering ampli-
tude factor, while in our method the zero-pion-mass limit will be shown to involve an off-mass-shell nu-
cleon-nucleon scattering amplitude factor.

We now proceed to evaluate the q, = 0 limit, F(0). Integrating (II.2) by parts several times we obtain

~)s')= fd'*(flP&') ) &(0))&(*.)» )(-e." .') '"""()'"*)

dx f A, x,j 0 5x, p,s, -q, '+m, 'e u p,s,

Thus,

—
fq(& JI

d x&f 1[AD(x)&j (0)]f1 (xo) Ip,s,&(-q,'+ m, ')e "' u(p, s, ) . (II.4)

&)0& = —f&'*(fl)A;)*) j )&&)I&&)«,))),s) )»s,», ' '
q I ~» )'»" ")":)'»"' M)).. .))2 )'&&'&) —jj)

Q'o + So —p go + SE

, ~ &fIA:«)I && Ij «&IP &„(p, )(2,),(.)(p „-)
q ~p ~ Pfp+ Qo Plp+ SE
0 fl

(Ir. 5)

The ETCR in (II.5) is related to the nucleon field-chirality ETCR which has been studied by many au-
thors. ' ' In addition, Banerjee and I evinson&0 have studied the ETCR appearing in (II.5). Their result is

xAax ~ Q x —
g +2~ p Ta (II.6)

They have used this ETCH to derive the pion-nucleon scattering-length formula of Weinberg and others. "
[Since a derivation of (II.6) has not been published, it is presented in Appendix A. ]

Putting (II.6) into (II.5) we have for the first term in (II.5)

FErcR(0) = -(f I2Mq(0) +j (0) I p,s,&m, 'y, 2T'u(p, s, )

= -&f
Ij (o) I p s &m.' &' ~' y, l ~'u(p. s,)--

Since p& -p, =p, —k, (II.V) becomes

Fzrc&)( )=(fIj(0)IP,s,& ~ ~
P'y52T u(P2s, ) .

P'2
(11.8)

Expression (II.8) is precisely the contribution of all Feynman diagrams where a nucleon (p„s,) emits a
meson (k) by the axial-vector vertex and then scatters against the nucleon (p„s,). After emitting the me-
son, the nucleon carries four-momentum (p, —k) corresponding to the propagator in (II.8).

We examine now the remaining terms of (II.5). As qo goes to zero, only intermediate states for which
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n, =p„will contribute to the second term of (II.5). Thus, only the one-nucleon state contributes. Perform-
ing the phase-space integration, this term becomes

Q &f Ij (0) IP»'&&P»'IAl(0) IPis~&~(p.s.) .
10

(IL 9)

For a nonvanishing contribution from the third term in (II.5) n must be a deuteron if f is a deuteron.
However, (d[A;(0) ld) vanishes due to isospin conservation.

For an unbound two-nucleon system, we write the third term of (II.5) as

&P»a[A:(0) ls&&n;P.s.lj (o) Ip», &. ,2 „5(,) - -)(277) 5 p3 —n
q ~0 P30 —no+go+ gC

(p,s, [A„'(0)ln&(p,s„nlj (0)lp, s„&.
( ), (,)~ )

P40 ~0+ &0+ ~~

(II.10)

where a subscript c on a matrix element denotes a connected element. The first two terms can be treated
exactly as (II.9). The last term contains a two-nucleon cut with branch point at q, =0. However, due to
vanishing phase-space the discontinuity vanishes at the branch point. Collecting the results of (II.B) to
(II.10), we have for the process lV(P, ) +IV (P,)- IV (P,) + N(P, ) + (('(k)

2

E(0) = (p,s, P4s4[j (0) lp, s,)
~ ~

k'y, 2T'+(p, s, )

+ " p(p, s„'p,s.lj (0) Ip»(&,&p»(IA'(0)lp»i&u(p, s,)
10 s1

Q(p,s, [A:(0) I p,sg&p, sl;P.s Ij (0) lp» &.&(P s )
P 30

3

+ " Q (p,s, IA;(0) I p,sg(p, s„p,s,'Ij (0) I p», &,u(p, s,),
~4O s~

4

and for E(p,) + N(p, )-d+ v'(k)

(II.11)

2

F(0) =
&d lj (o&

I p»i&,
@ ~ M &y, '~'&(P2s. )+ g &d[j (0) Ip»(&. &Pis(IA:(0) I p», &u(p s ) .2— 10

81

(II.12)

These two amplitudes are illustrated in Figs. 1 and 2, respectively. Each of the pion-nucleon vertices
produce pions by axial-vector coupling.

P4 P P P

Pj P( P P

FIG. l. Graphical description of F(0) for NN NNx. In all diagrams in this paper a solid line indicates a nucleon
and a dashed line a meson.
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Equations (II.11) and (II.12) are not symmetrical
in the four nucleons. The term corresponding to
emission by the reduced nucleon appears to be
very different from the other terms. This is not
surprising, since the reduced nucleon is off mass
shell while the other three nucleons are on mass
shell. We will now show that to a very good ap-
proximation we may write (II.11) and (II.12) in a
symmetrical form.

Rationalizing the propagator we have

//
//d

FIG. 2. Graphical description of E(0) for NN der.

a 2+MI )lyly 2~ u(P2 2) 2 y 2 6 u(P2s2)
2P

Since g= (m„0, 0, 0), (11.13) becomes

-(p, +~) y,y, -', ~'u(p, s, ) + y, -', 7'u(p, s, ) .
2P20 gpss 2p 20 rn

(II.14)

The second term in (II.14) may be written as

m. (j, -m)
y~2'r u(P2s2) ~

P20 ~
vr

(II.15)

and (II.14) becomes

u(p, s')u(p, s')y,y,—,"~'u(p, s,) — Qc(p, s')n(p, s')y, ,'T'u(p, s,—) . (11.16)

Thus the first term connects the emitting nucleon to positive-energy states only, and the second term con-
nects the emitting nucleon to negative-energy states only.

Therefore, we will consider the nucleon scattering vertices (f Ij (0)lp,s,&u(p, s,) and (f Ij (0)lp, s,&v(p, s,).
The two vertices can be written as"

(f Ij (o) I p, s,&u(P,s,) =2 +;u(p, s3)1';u(pisi)u(P4s. )1';u(p.s.) —(Pi—P2),
i=&

(f lj (0) Ip,s»v(p, s, ) = Q Eu(p, s,)1',u(p, s,)u(p, s,)I'~v(p, s,)+ [u(pis~) —v(p, s,)],
(11.17)

where the I', are the usual scalar, pseudoscalar, vector, axial-vector, and tensor y matrices (isospin indi-
ces have been suppressed) and the E, are the appropriate form factors.

In Sec. III of this paper we will be interested in energy regions where the two nucleons can be described
in terms of nonrelativistic quantum mechanics. Since the nucleon-nucleon scattering is dominated by the
scalar interaction in this energy region, "we consider only the scalar term in (II.17) and obtain

&f IJ (0) I pis»~ (P2sz) I t I I(flj(0)lp & (P )
(II.18)

Thus, the ratio (0.18) is small, since tbe kinetic energies of tbe final nucleons are near zero in the re-
gion of interest. In addition, the first term in (IL16) is proportional to lp, l/(2p„-m, ), while the second
term is proportional to m, /(2p, o-m, ). Since lp, l

~ (m„M)'~ the ratio becomes

g, ,(f lg (0) I pis»~(P2s, ')~(p~s,')y, u(p, s,)
x (velocity of final nucleons) .Z.;(f Ij (o) IPis»u(p. sl)u(P2sl)yoy. u(p. s~)

Therefore, we drop the second term in (II.16) and write

I
(P2s2) = — g u(P2s2)u(PRS2)yoy5&T u(p2s2)

~20
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(b) (c)

FIG. 3. Some of the corrections to E(0). . (a) does not contribute if the final state is a deuteron.

This term will be the same as the other three if 2M/(2P» -m„) is replaced by g„M/p». For processes in
the low-energy region such replacement will make a small (less than 10)o) error. Therefore, we write

Q, —,'7'u(p, s,) = —Q u(p, s,')(p,s,'iA;(0) ip, s,& . (Il. 19)

Using (II.19) we recast (II.11) and (11.12) in a symmetrical form

E(0) = — p (p,s„.P,s,
~j {0)

~ p,s„p,s,&,u( p,s,') (p,s,' ~A;(0)
~ p,s,)

020

+ p&p s. P s Ij(0))p,s',&, &p,s,'(A;(0)[p,s,&u(p, s,)
I 20 ~t

+ ' Q&p~s. lAo(0) I p.s&&P3s3' p,s4li (» I pisi&. u(p2s. )
P40

4

g(p, s, ~AO(0)
~ p,s,'&(p,s,';p,s, ~ j(0) ~ p,s,&,u(p, s,),

P30 S'
(11.11a)

M
E(0) = — " p «IT(0) Ipisi&, u(p.sl)(P2s2IAO(0) IP2s.&

P20
2

+ " Q&dli(0)lpis(&. &pisllAo(0)lpisi&u(P2s2)
P10

1

(ii. 12a)

Thus, we have obtained the soft, -pion (q, =o) production amplitude. As stated earlier this amplitude dif-
fers from the previous soft-pion production amplitudes in which the two-nucleon interaction was described
by an on-shell amplitude. '4

E(0) will be useful when we take the nonrelativistic limit of the production amplitude (Sec. III). However,
first we must obtain an expression for E(qo) for arbitrary qo. To write a general expression for E(q,) we

b
vn Cr d' br Cr gr

FIG. 4. qo plane for NN NNn. The letters labeling
the pole and cuts correspond to the graphs of Fig. 3.

FIG. 5. qp plane for NN d'm. The letters labeling the
cuts correspond to the graphs of Fig. 3.
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return to Eq. (II.2). Taking (0+m ') inside the time-ordered product we obtain

F(o,) fd'x(fl(),'( )(),)&&)(8*,) '8"*'I ,&,& (& . .) Jd' &fll Q( &, ) (o)&((*.) '"*'Iu,~ &M(&'.~.)

qo d& D &&2 0 ~ &oe Pz~z+ P2

where

( +m. ')D.(x) =j;(x) .

(II.20)

(II.21)

The commutator [D,(x),j (0)](&(xQ) will vanish if tbe Lagrangian contains no coupling between the nucleon
field and derivatives of the pion field. An example of such a Lagrangian satisfying this condition, as well
as all other conditions we have assumed, is the Lagrangian of the cr model. " We will assume
[D,(x),j (0))5(xQ) =0 and discuss the consequences of this commutator being nonzero in Appendix B.

Integrating over x, in (II.20), we obtain

.g fd &f (j;(0)(n)Q(j ,(&))(»,s ) ~, (fli (Q)l ) & 1):(0)l&', ,,)
q+Qpf QnQ+ie"'''~q, +n, -p„+fe

n n

+ d'x 0, 0 x j 0 Pisi u{P2~2 ~

Since the entire q, dependence of F(q, ) is in the denominator, we see at once

f4 x(f I=(Q (()'l))(0).& I», s;&((s, , , (II.22)

Unfortunately, this ETCR cannot be evaluated directly.
The first term in (II.21) contains amplitudes with intermediate states of baryon number two, some of

which are represented in Figs. 3(a)-3(d). Except for Fig. 3(a), each term produces a cut in the q, plane
along the real positive axis. As stated previously the two-nucleon cut [Fig. 3(b)] begins at q, =0. The two-
nucleon-x-pion cuts (x= 1, 2, 3, . . . ) begin at approximately q, =xm, .

Since (p, ~ j (0) ~p,) vanishes by parity arguments, no one-nucleon pole term is introduced by the second
term in (IL21). The lowest-mass intermediate state is n=one pion and one nucleon. This state gives rise
to a left-hand cut which begins at approximately q, = -m, . This term is illustrated in Fig, 3(e).

Figure 4 illustrates the low-lying poles and cuts in the q, plane for two nucleons in the final state. Fig-
ure 5 does the same for a deuteron in the final state.

III. CONNECTION VfITH NONRELATIVISTIC DISTORTED-WAVE THEORY

For a first approximation we assume that all cuts except the two-nucleon cut are negligible. Then F(qQ)

can be written

(p,s„p,s~[j,"(0)(n',n,);„(,(n,n, )f (0) ) p,s,)u(p, s,)

P„+P„+q, —P„+ic

where tbe states n, and n, are nucleons and p„=p„+p . (We discuss the case when the two nucleons in the
final state are unbound. However, the following argument holds equally well for a deuteron final state. )

The center-of-mass three-momentum of tbe intermediate nucleons is fixed by tbe 5 function in (III.1).
Thus, the free sum will be over the relative momentum and spin variables only.

We wish to recast (III.1) into a form more suggestive of nonrelativistic theory. Therefore, we introduce
an "off-energy-shell function" &t)(', (E) defined by

(III.2)(2v)'~'"(p. —p —p.);.(n n. lj (o) I p s )n(p.s,) = (W.",'IUIX.)

(t) (E) is a general vector which describes the two-nucleon system with momentum p„and propagation en-

ergy E. P (E ), where ~p ~'=2ME, is the usual (on-shell) scattering solution, and &t) (E) is the general
off-energy-shell scattering solution. For convenience we will use (P = (t) (E„).

where y, is the two-nucleon plane-wave state, F, is the total propagation energy of the two-nucleon system,
K is kinetic-energy operator, and U is a nonrelativistic potential defined by
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Next we define a nonrelativistic potential V by

i(»)'5'"(P, +I). -P.)...&P,s„'P.s.li;(0) lsiiidi. = (0I) 'l[I', c]IC".,') (m. 3)

where (t)(i) ) is the total outgoing two-nucleon wave function and ct is the pion creation operator for a pion at
rest. (The operator [V, c] is just the nonrelativistic limit of the current operator for a pion at rest. )

To obtain the usual form for the nonrelativistic amplitude we multiply (HI. 1}by a three-momentum-con-
serving 5 function, Then we will be studying the expression

(»)'5' "(p,+ p, —Iii —p2) E(e.) = (»)'5'"(P~+P~ -P ~ -P~)F(")

g out&Pss3)Pssg If' (0) Ising&i() i()&sin2 Il (o}IPis&& (P2s2)

P'So+P«&0 Pe)+ &~

x (2~)'5"(p.+p. p~ --p.)5"(p, +I), -P.} (III.Ia)

Noting that we can replace p, +p, with p„ in the first 5 function, we insert (III.2) and (111.3) into (III.la)
and obtain

(»)'5"(p. +p, -k-p. )F(e.)=(»)'5'"(p3+p, -p, -p, )&(-}+P ~' " ' "~""~".' '"")
0 30 P&Q Qo Pffo

(2.)35(~)(p +p p p )F& )+ ~(~e 'l[I' c]l(t)")((j)'-"IUlx-)
P3+P4 PI P2 ~ + ~ E-8 +ita' fx

(IH. 4)

where F.+2M-=&so+/«+q„and E„,+2M-=p„o. The point qo=-0 corresponds to go+2M =p3o+p«,
The energy variable E is more convenient to use than the mass variable q, . Therefore, we define a func-

tion of E, T„(E), by the relations

T.(E) = F&E+2M-P, P,.)(2.)'5'-"(p. p. -p, -p.)
= Be.)(»)'5'"(p, +p, -f»-p2),

where the subscript e refers to the momentum of the incoming state. Thus,

».(&)=(~»)'(("(».+». -f, -»)»(")'g(('s 'I(»»)l»t')(0"' z ~ ((„,((» )

= (2v)'5'"(p. +I, -pi-p. }F(")+(O', 'l[I', c]le". (E)) —&ei8 'l[I', c]lx.) .
Since F(m, ) is the physical production amplitude, we can write

(»)'5'"(p. +p, -0, -p.) F(~„)= (»)'5'"(p. +p. -pi-p, )...&P.s;,Pcs. li."(o)IPisi;P2s. &;.

=&y',-&l[I",.]Iy."(E,)) = T.(E,),

(HI. 5)

(III.6)

where E,—=I,+p« —2M.
Since all the E dependence of (III.5) is shown explicitly in (j)i') (E), we set E =E, in (HI. 5) and see immedi-

ately that

F&")= (P() 'l[I; c]lx.)(»)'5"(p, +p4-Pi -p, )

Combining (III,5)-(III.7) we obtain

T.(E) =&y', ) I[I,c]ly". (E))

I
=((V'l(», )Ix.) (»" (», ), „„,.;((x.).

The main content of (HI. 8) ls to show that the entire (fo dependence of E((10) ls contained in the E = (1(&+Pgo
—2Mdependence of (t)(')(E). We note in passing that E(~) plays the role of the matrix element of a nonrela-
tivistic potential. [See (C6) in Appendix C.]

From (H. ll) and (II.12) we know the value of T(E) at the (off-shell} energy, E, Now, we estab.lish the
connection between the physical production amplitude, T (E, = m„+pz, —2M) and T (E,=pz, —2M), Equa-
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tion (III.8) may be written as

x (z) =
(( x

) [v, x] (x', —(c) (E, —(( —U) p„')(E)
0 A

{&

= L(0' 'Ixx ')x ~ ~(@.-(() x.) x. x z(x. -x) x "(x))1 1

0 0

where (K+ U)Q~„')(E) =E$~„'~(E) has been used. (All factors of E, contain a small positive imaginary part. )
Noting that E0 —F, = -nz„, and

1
y(:, &{E,) =- (E, —E)X„, ,

we can write

x(E)= p(x'x 'l(x x)lx' (x)) x.. z ~ o' (x )),
f&{' 0

(III.10)

The first factor in (III.10) is the value of T (E) corresponding to the energy (mass) at which we can eval-
uate the relativistic result. However, we must know T„,(E,) for arbitrary values of the incoming relative
momentum, p, . In Sec. II we evaluated E(q, ) by fixing the incoming momenta through the relation p, +p,
+k=p, +p, and )x, = (1„,0, 0, 0). The space components fix the center-of-mass three-momentum while the
time component fixes the energy and thus the relative three-momentum. Therefore, allowing k0 to vary
while restricting k to be zero would allow us to determine F(q,} for arbitrary values of the relative three-
momentum while holding the center-of-mass three-momentum fixed. This procedure would allow us to de-
termine the first factor in (III.10).

Since the momentum-conservation relation was used to arrive at (II.11a), we must determine what error
is involved if k, is allowed to vary. For k= (k„0,0, 0), where k, is arbitrary, (II.16) becomes

2M k0~(P.s2)u(P2s2)y. y,~(p.s.)2 ~
—

2
"

~ ~(f.sl)~(p. s2)r,~(P2s2) .
S P20 0 ~20 0

(11.16a)

From (II.16a) we see that as long as ko does not differ appreciably from m„all approximations leading to
(II.11a) will be valid. To make this statement more precise compare the two equations:

a, =
I
pl'/4M+ lp. , l'/M -p„,

m, = Ipl'/4M+ Ip, l'/M —p„,
where P is the center-of-mass momentum of the incoming two nucleons. Equations {III.11) yield

~. -m. ={lp.I'- lp. l')/M

(111.11)

Thus, as long as Ip, —p I «M, 0, will be approximately equal to nz, and we may use (II.11a) to evaluate
(III.10). When Ip~ -p

I
does become large compared to M, the energy denominator in the second term of

(III.10) will be large, and, thus, contributions from such terms will be small. Therefore, we will use
(II.11a) to evaluate the first term in (III.10}.

We note in passing that the second term in {IG.10) simply boosts the amplitude from the off-shell energy
F.0 to the physical value E,.

To evaluate the nonrelativistic limits of (II.IIa) and (IL12a) we recall that {p,s'IA;(0) lp, s,) nonrelativisti-
cally becomes

. O' V'g
Xj. & ~ 2~ Xa (III.12)

where g~ is the axial-vector coupling constant, and 7' operates on the one-nucleon plane-wave state X,. As
before,

(IIL 13)
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Using these identifications we obtain

2 2

7.(z,)=- " . (-»)n( )~-(z,)v(o, v, ,'",—+o,v, ,'"—)~)(.)+ " (»([o, v, -', ",+o, v, —,'",]n(-»(z, )U(x.) .

(III.14)

Operators subscripted 1 and 2 act to the right, and those subscripted 3 and 4 act to the left.
Inserting (IIL14) into (III.10) and summing over o(', we obtain

v' (x)=- * (x'-"(x )r(" '*" '* '"* '&(x)jn
= ~1i'ga Xg f M E g 40(

Vp p /TED (Tg g QV4 +( )t(Z )U
B) ~xx(x. )(Z)i, -z (ill. iS)

After a considerable amount of manipulating (see Appendix D), T (Z) may be written as
2 - 2

&.(x)= (x, (x
'-(xx) " g 'x. &. -'x: x. —(xxxs x

' . I x. xx. *x:("(x)(Ix.
f1= 3

(III.16)

FIG. 6. Graphical description of T„Q') in the
distorted-wave approximation.

FIG. 7. Graphical description of the potentials
U, V, and W'.
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where t(E) is the nucleon-nucleon i matrix a.t en-
ergy E A. graphical description of (III. 16) is
shown in Fig. 6. Those graphs represented emis-
sion from an external line are identical with Fig.
1 if the relativistic axial-vector coupling is re-
placed by its nonrelativistic equivalent. The re-
maining graphs of Fig. 6 represent the first-order
terms of Fig. 3(b).

Using further manipulations similar to those of
Appendix D, and inserting the normalization con-
stant from (II.3) we can write (IIL16) as

TNN~NN7f

(III.17)
FIG. 8. Some contributions of the potential V and W

to nucleon-nucleon elastic scattering.

equation (111.17) has been derived by using two rather general results: the value of the Production amPli-
tude at q, =0 (the soft-pion limit) and the nonrelativistic connection between this limit and the physical non-

relativistic production amplitude. We have not needed to look at details of the nucleon-pion interaction.
Further, this production amplitude, (III.17), indicates that the first-order correction to the soft-pion lim-
it is that correction due to initial-state interactions of the two nucleons. This correction factor is evalu-
ated much more easily in the nonrelativistic formalism than in the relativistic.

The derivation of (III.17) was performed in the rest frame of the pion. Thus, if we wish to evaluate
(III.17) for pion production in an arbitrary frame, we would make a I orentz transformation to the pion
rest frame and evaluate (III.17). (Note that we began the derivation in Sec. II by transforming the xelativ-
isfic amplitude to the pion rest frame. )

IV. CORRECTIONS TO THE DISTORTED-WAVE APPROXIMATION

In Sec. III we neglected all but the leading singularity in the mass dispersion relation and were led di-
rectly to the nonrelativistic distorted-wave approximation. This result seems to imply that a similar con-
nection should exist between the remaining cuts in the mass dispersion relation and the corrections to the
distorted-wave theory. We will establish this connection for the next two cuts in this section. Unfortu-
nately, the situation is much more complex, and, therefore, this discussion must be more qualitative than
the previous discussion.

First, we will review the nonrelativistic production theory in which the pion is allowed to interact with
the final-state nucleons. U and V will be the potentials defined in Sec. II. A third potential, 8; is defined
as the two-pion-two-nucleon potential. W can scatter pions from the two-nucleon system, or it can cre-
ate or absorb two pions in nucleon-nucleon collisions. The transitions produced by U, V, and W are
shown schematically in Fig. 7. At first, 5' might seem redundant, since iterations of V can produce two-
pion-two-nucleon interactions. However, we recall that in pion-nucleon scattering, iterations of V cannot
reproduce the correct s-wave scattering amplitude. To predict the correct amplitude a new potential re-
lated to exchange of a particle such as the p meson must be introduced. Thus, we think of 8' as the two-
pion-two-nucleon potential analogous to the potential needed to obtain the low-energy pion-nucleon scatter-
ing results.

With these definitions the total Hamiltonian is II=K+ U+ V+ W, and the total wave function is

(IV.1)

where, as before, y is the plane-wave state.
We note that, in addition to U, processes such as those shown in Fig. 8 contribute to the nucleon-nucleon

elastic scattering. Therefore, we wish to define an effective potential U as the potential that reproduces
the nucleon-nucleon elastic scattering amplitude. " Then, the two-nucleon effective scattering wave func-
tion g

' will be given by
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e". &(E}=x. , „;.,U~". (E} .

To determine 0 me define an operator Q by

g"(E) = qe" (E)

and an operator A, which projects the two-nucleon state T()
' from g +&.

By the definition of U and (t) (E) the amplitude for nucleon-nucleon elastic scattering is
Te)estic(E) —( I

U g(+&(E)}

The total amplitude for a transition from state o. to state P is given by

7,.(E)=(x, l(U v w)lq". i(E))
= ( x IA.(U' v+ w}ql %i:&(E)) '(x I(I - Ao) (U' v+ w) ql e"(E))

(IV.2)

(IV.S)

(IV.4)

(IV. 5)

(IV.6)

Since the first term in (IV.6) is the elastic scattering amplitude, it may be compared with (IV.4) to obtain

U=A, (U+V+W)q .

To determine an equation for Q we write (IV.1) as

y". (E)=x. „., (U v w)qe". &(E)
1

=x. , ~„., (I-A.)(U V W}qy". (E) „.,A.(U. V W)qyi:&(E) .
1 1

Using (IV.2) and (IV.7) we see that Q must obey the relation

(IV.7)

(IV.6}

q=l+ . (1-A,}(U+V+W)q .E -E+ ie

If (IV.9) is inserted into (IV.7) an infinite series for U is obtained.
1U=A (U+V+W)+A (U+V+W) . (1-A)(U+V+W)+ ~ ~ ~

0 0 E -E+ ie

Thus, gi„'&(E) may be written

q."i(E)= y(:&(E) „,. t(U U). V W-]O(:&(E)
1

= yi'&(E)+ . (I -A )(U+V+ W)y('&(E)+ ~ ~ ~
1

(IV.9)

(IV.10)

(IV.11)

The total nonrelativistic single-pion production amplitude can be written as (see Appendix C)

T.(E)=(y', &Il.(U v w-U), lie". &(&)) .
If we retain only the first term in (IV.10), :.(IV.12) becomes

T.(E)=(y', &I(I-A.)1.(U v w), fly". &(E)} .
If we truncate (IV.11) after the second term in the series and place that result in (IV.13), we have

(IV.12)

(IV. I2)

1 (e)=(v'jj'I(( A)((() v w) cl(&v(„+)(e))+(v'z'.(( —A)l(v+v w) cl (( A)((r v+w) v()(z))

(IV.14)

Only V will contribute in the first term. Since the projection operator (1 —A, ) will be redundant in this
term, we can drop it. Then, the first term in (IV.14) becomes

(e' &Ilv, 11~' i(E)) .

In the second term of (IV. 14) we introduce a complete set of intermediate states 0, and obtain

(IV. 15)Z(e(( 'I(1 —Ac}1.(U+ v+ w), c11+ )(+"I(1—Ac)(U+ v+ w) le(„'&(E)} .
a'

In the second factor the matrix element (%,1(1 —Ac)Ulgi„'&) vanishes, while the term containing V connects
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only to the one-pion-two-nucleon state, and the term containing 8' connects only to the two-pion-two-
nucleon state .Defining g, , and g, , to be these two states, (IV.15) becomes

(IV.16a)

(IV.16b)

Only W will contribute to the first factor ln (IV.16a), and V will be the only nonvanlshlng element in the
first factor of (IV. 16b).

Collecting the above information, (IV. 14) can be written

(IV.17)

The three leading terms of the nonrelativistic amplitude are given by (IV.17). We wish to compare this
result with (IL21), which is rewritten here for reference:

~ &fli (o)ls& &sly:(o) IPisi&s(P2s2) 2„)36(.) - -)
~ ffo 4 ~10

(II.21)

Relating the F, dependence of (IV. 17) with the q, dependence of (II.21) as we did in Sec. IQ (i.e., E —=Pz,
+q, —2M), we see that

as in Sec. 111. If we use E, =—P„,—2M as in Sec. Ill, we find that the second term in (IV. 17) has a cut be-
ginning at the same value of qo as the cut corresponding to the two-nucleon-one-pion intermediate state in
the second term of (II.21). This process is shown in Fig. 3(c) and corresponds to cut c in Fig. 4.

Likewise, the process shown in Fig. 3(d) corresponds to the connected part of the third term in (IV.17),
Although the relation between the left-hand cuts and the nonrelativistic amplitude is not as transparent

as the above discussion, we note that, if one of the intermediate pions in the last term in (IV.17) is also
the final pion, the process is the same as that shown in Fig. 3(e). Thus, the cut e in Fig. 4 corresponds to
a disconnected part of the last term of the nonrelativistic amplitude, (IV.17).

In this section we have been able to show a connection between the corrections to the distorted-wave
theory and the cuts in the pion-mass dispersion approach. These correction terms have proven to be very
important in phenomenological calculations of pion production processes. For example, in production
processes at threshold Koltun and Reitan" have studied the subset of these amplitudes shown in Fig. 9.
They found the contributions of these processes to be much larger than the distorted-wave approximation
for the process p+p-4+m'. Using an improved phenomenological Hamiltonian, Reitan" has obtained a
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total cross section within 20%%uo of the experimental value. For laboratory kinetic energies from slightly
above threshold to about 650 MeV, Mandelstam" has shown that the second term of (IV. 14) dominates the
amplitude when W is approximated by assuming the v-iV scattering proceeds through a (3, 3)-resonance in-
termediate state.

V. CONCLUSIONS

In this study we have obtained the amplitude for pion production in nucleon-nucleon collisions by using
two rather genera. l results: (i) the value of the relativistic production amplitude at the soft-pion limit and

(ii) the nonrelativistic operator which "boosts" the corresponding nonrelativistic amplitude to the physical
energy from the off-shell energy, q, =0. We did not need to consider the details of the pion-nucleon inter-
action. The use of nonrelativistic theory allows us to use well-known wave functions for the nucleon-nu-
cleon distorted-wave correction to the soft-pion limit rather than attempt to estimate the corrections in
terms of relativistic interactions. " Further, we have shown that the lowest-order corrections to the dis-
torted-wave theory are very similar to those treated in earlier studies of this process. Since the results
of this paper depend on the off-energy-shell nucleon-nucleon interaction, we will discuss what can be
learned about this off-shell interaction by studying pion production in a future paper.
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APPENDIX A.

We define the following:

(A1)

(A2)

where V;(x) is the time component of the vector current.
We assume the ETCR

(A3)

Applying ( i0, -M-) on the right of (A3) we obtain

[Ql(y.),i (y)] = b (y) + 2M&(y)]r, 2 ~'+ iJtd'x[D. (yo x) V(y)h"

To evaluate the ETCR on the right side of (A4) we note that

ie„,[Q'(y, ),j (y)]= ie,[„i(y)2&'

Using the usual SU2 xSU2 ETCR's we may write (A5) as

[[@'(yo), @'(yo)],j (y)l =i&„,j (y)-'r' .

We use Jacobi's identity to write (A6) as

IQl(y. ), [ql(y.),Ay)]] —[Ql(y.), IQl(y. ),i (y)]]= ..j (y)l '.

(A4)

(A5)

(A6)

(Av)

Since the two terms of the left side of (A7) differ only by the interchange of a and b, we study the first
one:

[Ql(y.), [Q5(y.))i (y)]]=
I Ql(y. ), 4 (y)+ 2i[f ]t)(y)]r, ~27']+ i[I;(y,),JI

d' [D.(y„), II (y)]]

j])),' 'if d'*[ (y„=D), -(')]y,]—,
')' i[Q;[),), 'd'xiD, [)t„x),]'b)]]

In obtaining (A9) we have used (A3) and (A4) several times. We rewrite the last term of (A9) using
Jacobi's identity and obtain

(A8)

(A9)



[Q;(y.), [Q,'(y.),Ay)]1 =g (y)-'T'r'+ IJtd'~[D. (y., x), V(y)]r,

-i d'x Db, x, y, Q, , —i d'x, Q. ..Db, x

=sb)l~' ''~J&~(D b . I., 7(v, Hv

OpX 0 752~ + &~ah Opx

(A10)

where o„ is the usual scalar operator. (Recall that g,„ is symmetric in the isospin indices, and thus,

oau on~ )
Inserting (AII) into (AV) we obtain

ie.„j(y)-,'T' 2i d'x[D. (y„x), y(y)]y, —,'7' —2i
' d'x[D„(y„x), It'(y)]y, —,'7' = ic.„j (y)-,'r' .

Therefore,

d'x D, , x, =0 (A13)

and we have (in the notation of Sec. II)

dxA'x, j 5x -y =j y +2M

We define

8' =Jt(f I[f).(~),j (o)1~(~.) IP,s ) (P,s,)d'~,

L4t x ~) 0 5 x() plSl P282 d x

APPENMX B.

(81)

If C'o0, then (III.1) would be

C.„.~ t'&flj."(o,x)l~) (sly(0)Itis'&~(P. sa) d.
p~o

—no+%)+ s&

Using (111.2) and (111.3), we obtain

(82)

Setting E= E,=p&, +m, —2M, (83) implies

a' -fm, c'=(y&, &l[v, c]lx ) .

Since q0=0 at ~=+0

T(E.) =8'+(4'g &l[v, c]le". @0))- (4'8 &I«c]lx.) .
Using (84), (85) becomes

T(z,) =(y', -& l[v, c]I4".&(z,))+ zm„c' = z(q, =o) .

Therefore,

(4'8 'l[v, c]I4"(&.))= Ro) —'

Comparing (BV) with (II.4) we see that we need to know the ETCR's

,'l&l( & i (0)&s(*.) — Jd *[~.I &, ~ (.0~&~~. .
to determine

(y';& l[v, c]l4". &(~)) .
For the results of Sec. III to hold the ETCR (88) must be

(84)

(85)

(Ba)
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d'x m, A, x +iD, x,j 0 5 x, =m„j 0 +2M 0, 2v' (B9)

APPENDIX C.

In this Appendix we review the nonrelativistic two-potential theory. " We will use the following defini-
tions:

U=- nucleon-nucleon scattering potential,
V =- single-pion production potential,
K —=kinetic -energy operator,
H=—R+U+V .

We assume that once the pion is emitted, it does not interact with the nucleons.
If 4"(E) is the solution of the Schrodinger equation with the total Hamiltonian, then

e~„'~(E)= q„+,. (H —E)e'."~(E)
1

1

1
(CI)

where X is the plane-wave state, and

1

1

(C2a)

(C2b)

is the total wave function for the two-nucleon system.
The pion-production amplitude T (E) is defined by

T.(E)=(x, l[(I U), I]l~' (E)), (C3)

where ckf is the creation operator for a pion with momentum R. (For convenience cz 0$ =—c1' in the text of
the paper. } Substituting

() & ( )xa —48 —
@ ~+~ 4g

into (C3) we obtain

(c4)

T.(E)=(y',-'I[(~+I), c-,]l~' (E))-(y',-&IU . [(U+~), c;]lq' (E)) . (C5)

After some manipulating using (Cl) we arrive at

T.(E) =($~8 'I[(&+ I' —U), ck]l+". (E))

=(e', 'l[I;c;]l~' (E))

=(y';&l[I; -,]I&."(E))+(y' I[I;;]E „., I ly". (E)) .

(C6)

(CV)

(C8)

Equations (CV) and (C8) are exact results. The usual distorted-wave approximation assumes the second
term in (C8) to be small when compared with the first. Then, the distorted-wave amplitude To~(g) is

T'."(E)=(y' 'lh', -)l0". (E))

APPENDIX D.

To derive (III.16) from (III.15) the following relations are used:



BANERJEE, I EVINSON, SHUSTER, AND ZOLLMAN

a(»(z)-i=n(»v =t( »(z-)
Eo —E Zo —E

I=t'~ z( 0)z, -z= z, -J( —U

Since the second term in (HI. 16) requires a maximum amount of manipulation it is done here to show the
technique.

~ cn n g(-»(g )L(, ~w y(+)(g) — ~ cn n U me (+)(g)Xg ~ ~ 0 y. ~ 0'. X8 ~ ~ g g U 4P
8=3 0 rt= 3 0

+n n ~~ Ug{+) g

(All fa,ctors of F., contain a small positive imaginary part. )
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