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The maximum-overlap orbitals first proposed by Brenig, in which the overlap between
the true wave function and a Slater determinant is maximized, is shown to be equivalent to
Lowdin's exact self-consistent-field theory. By defining an energy functional and varying
it, some points in Lowdin's theory are clarified. The ground-state energy is expanded in

perturbation theory, and it is pointed out that some diagrams could become divergent. In
order to eliminate these diagrams, Bogoliubov's principle of compensation of dangerous
diagrams (PCDD) is extended to finite fermion systems. In these systems, the PCDD states
that the sum of,.all the diagrams leading from the vacuum to a single particle-hole state
must be set equal to zero. This condition is the Brillouin-Brueckner condition, which is
also obtained from the other methods. The form of the PCDD obtained here is different
from another form that leads to Lowdin's natural orbitals, and the difference is discussed.

I. INTRODUCTION

One of the fundamental pr'oblems of many-body
quantum theory is the reason for the success of
the shell model for nuclei. ' For atoms, the shell
structure is simply explained by Hartree-Fock
(HF) theory, ' which reduces the system of many
electrons interacting with each other and the nu-
cleus to a system of independent particles moving
in the average field produced by other particles.
In the nuclear case, the average field due to the
other nucleons becomes infinite in. HF theory when
the usual hard-core nuclear potentials' are used.

In order to surmount the difficulties associated
with hard-core potentials, Brueckner and co-work-
ers' developed the reaction-operator (or t-matrix)
approach. Instead of considering a single nucleon
moving in the average field of all the others, they
considered the interaction of two nucleons in the
average field of the remaining nucleons. ' This
"effective interaction" is then substituted into the
HF equations for finite systems, which must be
solved self-consistently with a Lippmann-Schwing-
er'-like equation for the two-body reaction opera-
tor (or t matrix). ' In order to test these ideas,

they have been tried on nuclear matter in which
the wave functions are plane waves. "Only re-
cently have some double-self-consistent Brueck-
ner -HF-theory calculations been carried out.

Even though Brueckner and Goldman' attempted
to find an energy variational basis for their theo-
ry, "their approach contains a serious error,
first pointed out by Brandow. " They varied a per-
turbation expansion of the ground-state energy and
obtained equations similar to the HF equations
with the potential replaced by the "t matrix, " and
an additional "rearrangement potential. " However,
the perturbation expansion is not an expectation
value of the Hamiltonian with some trial wave func-
tion, so no Rayleigh-Ritz principle exists. Hence,
there is no justification for the variation. The
double-self-consistency idea of Brueckner-HF the-
ory was nevertheless retained because, in Brown's
words, "of the intuitive feeling, . . . , that self-con-
sistency is a 'good" thing. "' The alternative to
self-consistency is not necessarily inconsistency.
It is possible to be consistent without being self-
consistent, as for example in the case of those
who advocate using any complete set of basis func-
tions and calculating all the diagrams occurring in

Copyright 197k by the American Physical Society.



418 DONALD H. KOBE

perturbation theory. '
In the absence of any sound variational principle

for determining the orbitals, Kirson, "following
Brandow, "proposed the "method of maximal can-
cellation of self-energy insertions" to determine
the shell-model potential and hence the orbitals.
The mathematical complications associated with
this procedure are formidable, " since extreme
care must be taken not to overcount diagrams. In
fact, in a recent paper, Brandow" has discovered
some over-counting in previous work" and has in-
troduced appropriate "over -counting corrections. "
Kirson" stated that this method will lead to the
most-rapid convergence of the perturbation expan-
sion, but has since altered his point of view. "

In a previous paper" it was shown that in the
perturbation expansion of the ground-state energy,
there are some diagrams which could become di-
vergent in arbitrarily high order. In order to elim-
inate these diagrams, Bogoliubov's principle of
compensation of dangerous diagrams (PCDD), first
used in the theory of superconductivity and super-
fluidity" was extended to finite fermion systems.
The sum of all the diagrams leading from the vac-
uum to a single particle-hole state was set equal
to zero. This procedure was shown to lead to
Lowdin's natural orbitals, "which satisfy a num-
ber of variational properties.

In this paper, it will be shown that by using a
simple expression for the ground-state energy, "
which is obtained using a Slater determinant as a
model wave function, '4 the application of Bogoliu-
bov's PCDD leads to orbitals which have the max-
imum overlap between the true wave function and
a Slater determinant. This criterion for choosing
the orbitals was first proposed by Brenig" as an
alternative to HF theory. It is still valid even if
the potential has a hard core, whereas HF theory
is not. If the overl. ap is maximized, the condition
obtained is that the true wave function cannot con-
tain any singly excited configurations. "

The vanishing of the singly excited configurations
is equivalent to the condition obtained by Lowdin in
his exact self-consistent-field (ESCF) theory which
he called the Brillouin-Brueckner condition. " It
is analogous to the Brillouin condition of HF the-
ory, "except that the perturbing potential is re-
placed by the corresponding reaction operator. "

The fact that the PCDD can be used to justify
both the maximum-overlap orbitals and the natur-
al orbitals should be no cause for alarm. Bogoliu-
bov's original prescription" was in terms of dia-
grams which eliminated divergences from the per-
turbation expansion of the ground-state energy.
Diagrams can be defined differently depending on
the formalism used. The reaction-operator for-
malism used in this paper to obtain the maximum-

overlap orbitals corre sponds to the "model de-
scription. "2~ It thus corresponds to the PCDD (I)
discussed for superconductivity ' and superfluid-
ity. " On the other ha»d, the natural orbitals dis-
cussed in the previou!' paper" occur in the "true
description" and it corresponds to the PCDD (II)
in superconductivity" and superfluidity. " A
Green's-function fora&alism is most applicable to
the true description. " The expression for the
ground-state energy is simpler in the model de-
scription presented h re, however. ~ The natural
and maximum-overlap orbitals have been com-
pared by Kutzelnigg "tnd Smith. "

In Sec. II, the salient features for our purposes
of HF theory will be pointed out and the notation
established. In Sec. III Lowdin's ESCF theory' is
clarified with the hei.p of an energy functional. It
leads to the Brillouin-Brueckner condition. The
condition of maximujn overlap, discussed in Sec.
IV, leads to the same condition. In Sec. V the
PCDD is applied to the ground-state energy in the
"model" description, and is also shown to lead to
the same condition. Thus, all. these formulations
are equivalent. The conclusion gives a compari-
son of the maximum-overlap orbitals with HF or-
bitals.

P=T+v. (2 I)

The single-particle cperator T is

(2.2)

which is the sum of t:he kinetic energy operator
and a single-particle potential, if it is present.
The two-body potenti:xl is

v = g (o.P~v ~ y6)a„tabula, a, . (2.3)
nsyh

In Eqs. (2.2) and (2.31 the a t and aa are the crea-
tion and annihilation operators for particles in the
states Q~ and (It) &, re;&pectively. ' They satisfy the
usual fermion anticorn. mutation relations. The ma-
trix elements are calculated in the representation
g =(PJ, and the one in Eq. (2.3) is antisymme-
trized.

II. HAR'1.'REE-FOCK THEORY

HF theory is so well known' it seems hardly nec-
essary to discuss it, &gain. However, a few salient
points of HF theory will be mentioned, in order to
show how it can be s)7stematically generalized to
systems in which the HF self-consistent-field
(SCF) does not exist, as for example, in systems
of particles with hart]. cores. The notation used in
the remainder of the paper will also be established
in a familiar context.

For a system of fe:."mions interacting with a two-
body potential v, the Hamiltonian is
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To Eq. (2.1) a single-particle operator

U = Q (a I UIP)a a o

and a constant E can be added to give

H=H, + V.

The unperturbed Hamiltonian H, is

(2.4)

(2.5)

(2.13)

where i is any occupied state, i.e., in the Fermi
sea (FS) and a is any unoccupied state, i.e. , out of
the FS. The Brillouin condition is shown graphical-
ly in Fig. 2. This figure is generalized in Sec. IG.

III. EXACT SELF-CONSISTENT-FIELD THEORY

HO=E+ T+ U,

and the perturbation V is

V=v —U —E.

(2 8)

(2.7)

The problem of the independent-particle model is
to choose the best eigenfunctions, in some sense,
of Ho.

In HF theory, the unperturbed wave function is
chosen to be a Slater determinant:

(2.8)

The state lvac) is the vacuum state of no particles.
The creation operator a, ~ is defined in terms of

the orbital Q, and the field operator gt(x) such that

= '(o;)-f& 0;( )5'( )

The field operators (t(x) and t/r(y) create and anni-
hilate a particle at the space-spin points x and y,
respectively, which correspond to particles with
unphysical 6-function wave functions. Even though
Frenkel" anticipated a generalization of HF the-
ory, he formally varied the field operators. Since
a 5 function would have to be varied, it is difficult
to understand in what space of functions the varia-
tions are made.

The orbitals used in Eq. (2.8) are such that the
Slater determinant 4, is an eigenstate of the un-
per turbed Hamiltonian

H4 =$,4, (3 1)

where 4' is the true ground-state wave function.
If the full many-body reaction operator t is defined
by4'

tCO= V4' (3.2)

Hoo

The HF theory of Sec. II has been generalized
by Lowdin in his ESCF theory. In his original
paper, Lowdin varied an expression for the true
ground-state energy, which is independent of the
choice of orbitals, as he pointed out. He ob-
tained HF-like equations, but without the so-called
"rearrangement potential. " In this section it is
explained how Lowdin's procedure can be justified
in a mathematically rigorous way by varying an en-
ergy functional, which also enables a comparison
with HF theory to be made. The procedure also
justifies the use of the word "exact" in the ESCF
theory. This method is similar in spirit to a vari-
ational principle used by Eden, Emery, and Sam-
panthar, ' which did not lead to a "rearrangement
potential" "either.

The true ground-state energy 8, is the solution
of the Schrodinger equation

HOC 0=EOC o, (2.10)

where the unperturbed energy is E,. The problem
is to determine the best choice of U and E in Eq.
(2.8).

The criterion of best orbitals in HF theory is
that the unperturbed ground-state energy is

fJooI4'1 = (@ol
(IJo+ 1')

I
C'o& = min, (2.11)

(C, l
Vle;.) = 0, f e FS, a eFS. (2.12)

The singly excited configuration 4; is defined as

which is schematically shown in Fig. 1. Because
of the Rayleigh-Ritz variational principle, this en-
ergy is always greater than the true ground-state
energy, 8,.

The variation of Eq. (2.11) subject to the con-
straint of orthonormality results in the Brillouin
condition" ~HF

FIG. 1. A schematic plot of the ground-state energy in
HF theory. The abscissa represents a multidimensional
function space.
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and intermediate normalization

(+le,) =1 (3 3)

tremum can be assumed, without loss of generality,
to be a minimum. The extremum is thus

~.= &'.l(~.+t)l~.) (3 4)

Equation (3.4) is analogous to Eq. (2. 11). The full
reaction operator t has been shown to satisfy a
Lippmann-Schwinger equation '

V+ VGo~. (3.5)

is used, the true ground-state energy can be writ-
ten as

' '='[~[x], x] (3.11)

This variational principle is not a Rayleigh-Ritz
principle, so the extremum can be anywhere. Of
course the Rayleigh-Ritz principle gives an energy
which must lie above the true ground-state energy
So. In our variational principle, however, the set
g can be chosen such that the minimum is equal to
the true ground-state energy,

The reduced resolvent operator G, is defined sym-
bolically as

&[~[x],x] = ~.

This condition obtains if

(3.12)

1 —I~.)&'.I

(3 5)
0[x]=x, (3.13)

~[@,x] = &@'.[@]I(~.[x] 't[x]) I@'.[@]&. (3.7)

This functional has the property that when Q
= y,

the true ground-state energy is obtained,

~[a, e] = ~[x, x] = ~. , (3.8)

because of Eq. (3.4). The functional $[Q, X] can be
varied with respect to Q keeping X. fixed:

and has been defined more precisely by Lowdin. "
The true ground-state energy is a constant, in-

dependent of the choice of orbitals, even though
both Co and Po+t are functionals of P =(P ). For
a given Slater determinant C,[P], the reaction
operator t calculated from Eq. (3.5) is also a func-
tional of P such that Eq. (3.4) is satisfied.

However, Eq. (3.4) can be used to define a func-
tional of two sets of orbitals Q =(Q~J and X =b~),

as can be seen from Eq. (3.8). Equation (3.12) is
shown schematically in Fig. 3.

To obtain the situation in Eq. (3.12), the condi-
tion in Eq. (3.13) is imposed on Eq. (3.9) after the
variation has been performed:

5.~[~, x]I.—,= o

If the functional form of h[Q, X] given in Eq.
(3.7) is used, Eq. (3.14) gives

(4 ltl4;)=0, EtF S, aSFS.

(3.14)

(3.15)

LOwdin" called this condition the Brillouin-Bxueck-
ner condition, since it is the natural generalization
of the Brillouin condition for HF theory given in

Eq. (2.12). A condition like this, but with only the
two-body part of the reaction operator, was first
called by Nesbet~' the Brueckner condition. Low-
din uses the full reaction operator defined in Eq.

5.~[a, x] = o, (3.9) 6 [',x]
which determines the extremum of the functional
for fixed y. In principle, this condition can be
used to determine the orbitals P as functionals of

Xp

(3.10)

Although not necessary to the argument, the ex-

~ESCF

FIG. 2. The Brillouin condition of Eq. (2.12) in
graphical form. The state i C FS and a%FS.

FIG. B. A schematic plot of the energy functional
8 I p, y] when the minimum occurs at Sp.
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(3.2). The Brillouin-Brueckner condition is shown

graphically in Fig. 4, and can be seen to be the
natural generalization of Fig. 2.

The derivation of the Brillouin-Brueckner condi-
tion given here has the advantage of clearly show-

ing the connection between HF and ESCF theory in
Figs. 1 and 3, and Figs. 2 and 4. The reason for
the word "exact" in the ESCF theory is also clear-
ly shown in Fig. 3. The condition in Fig. 3 is op-
timum, since a first-order change in the wave
function 4, would cause only a second-order change
from the true ground-state energy if the true reac-
tion operator t is used. Conversely, if the orbitals
used to calculate the true reaction operator are
varied in first order, only a second-order change
will be made in the energy. 4'

There has been much confusion in the literature
regarding the so-called rearrangement poten-
tial. "44 In their original paper, Brueckner and
Goldman" varied an expression for the approx-
imate ground-state energy using an equation sim-
ilar to Eq. (3.4), but with only the two-body part
of the reaction operator. They not only varied the
Slater determinant, but varied the reaction opera-
tor as well. The term obtained by varying the re-
action operator was called the "rearrangement po-
tential, "which was said to be related to the rear-
rangement energy of previous work. ' The rear-
rangement energy was needed for agreement with
the Hugenholtz-Van Hove theorem. ' An alterna-
tive proof of the theorem has been given by Villi. "
Since the expression Brueckner and Goldman var-
ied was not of the form of the expectation value of
the Hamiltonian with respect to a trial wave func-
tion, there is no Rayleigh-Ritz principle. " Thus
there is no justification for the variation, since the
variation might give further departure from the
true ground-state energy. This procedure was al-
so used by Brandow, "who later gave it up. "'"'"

The terms "rearrangement potential" and "re-
arrangement energy" continue to be used, howev-

er, in other senses which are legitimate. " Thus
in much work the "rearrangement potential" is
merely the contribution of some additional dia-
grams added to the perturbation expansion of the
shell-model potential. " The rearrangement ener-
gy is just higher-order contributions to the pertur-
bation expansion of the ground-state energy. ""

The most recent reaction-operator calculation
on finite nuclei~ also uses the variational principle
of Brueckner and Goldman" to obtain the rear-
rangement potential, which is shown to be impor-
tant in obtaining saturation. However, the rear-
rangement potential is approximated by an expres-
sion of the same form as the self-consistent poten-
tial, and is absorbed into it. On the other hand,
the effective interaction is adjusted to give the
proper binding in nuclear matter. Thus it is pos-
sible that a proper calculation of the two-, three-,
. . . body parts of the reaction operator t used here
would give results similar to Negele's, without us-
ing the rearrangement potential obtained by vary-
ing the effective interaction.

IV. MAXIMUM OVERLAP ORBITALS

f/@ —4, (/
=min. (4.1)

If this condition is expanded and the phases are
chosen properly, it can be shown to be equivalent"
to the condition of maximum overlap,

(4'~4,) = max, (4.2)

which was first proposed by Brenig" as a criterion
for choosing the orbitals when HF theory breaks
down.

If the variation of Eq. (4.2) is performed, the re-
sult is

Another criterion that can be used to determine
the orbitals in a many-fermion system even when
HF theory breaks down is that the distance in Hil-
bert space between the true ground-state wave vec-
tor 4 and the Slater determinant 4 p

(4'~4;) = 0, i 6 FS, a 6 FS, (4.3)

FIG. 4. The Brillouin-Brueckner condition of Eq.
(3.15) in graphical form. The state i 6 FS and a fFS.

S'40=4. (4.4)

Since 4 can contain complicated correlations, it is

which states that singly excited configurations do

not contribute to the true ground-state wave func-
tion. " This condition has been used by Coester"
in his theory of finite fermion systems, without
mentioning that it follows from the above variation-
al principles.

The condition obtained in Eq. (4.3) is, moreover,
completely equivalent to the Brillouin-Brueckner
condition obtained in Eq. (3.15). The true wave
operator 8' is defined as '
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obvious that 8'must be a sum of many-body opera-
tors. In the derivation of the Lippmann-Schwinger
equation in Eq. (3.5), it was first established that
the wave operator satisfies the equation"

8'= 1+Got. (4.5)

When Eq. (4.4) is substituted into Eq. (4.3) and use
is made of Eq. (4.5), the result is

&C, ifG, iC;.&
= 0. (4.6)

Since C; is an eigenfunction of H„Eq. (4.6) reduc-
es to the Brillouin-Brueckner condition of Eq.
(3.15). The equivalence of the maximum-overlap
criterion and the ESCF is thus established.

V. PRINCIPLE OF COMPENSATION
OF DANGEROUS DIAGRAMS

hQ~=E Q (5 1)

which is a sum of the single-particle operators

fb = T+ U+E/N, (5.2)

where N is the number of particles in the system.
The potential U and the constant E are as yet un-

determined. They will be chosen in this section
in such a way as to eliminate potentially divergent
terms from the perturbation expansion of the
ground-state energy. In the representation of Eq.
(5.1) the many-body Hamiltonian Hp in Eq. (2.6) is
in diagonal form

In addition to showing that the maximum-overlap
orbitals are equivalent to the ESCF theory, we will
show that an extension of Bogoliubov's PCDD, first
used in superconductivity and superfluidity theo-
ry, ' to finite fermion systems also leads to the
same conclusion. In previous publications on the
PCDD, two different forms of the PCDD, called
the PCDD (I) M and PCDD (II), ' were found.
They differed somewhat in their analytical expres-
sion, but not in their graphical representation. A
previous paper on finite fermion systems showed
that the natural orbitals of Ldwdin are given by
a condition that corresponds to the PCDD (II)." In
this section it is shown that the maximum-overlap
orbitals are given by a condition that corresponds
to the PCDD (I).

The orbitals used in the construction of the Sla-
ter determinant in Eq. (2.8) are eigenfunctions of
the single-part:icle operator h:

where the sums are over all i, j, . . . , k 6 FS, and
a, 5, . . . , cEFS. The last term in Eq. (5.4) is an
N-excited configuration. The general term in Eq.
(5.4) is an n-excited configuration (n=0, 1, 2, 3, . . . ,
N) consisting of n particle-hole pairs. It is ob-
tained by applying n annihilation operators for oc-
cupied states to 4„ thus creating n holes, and
then applying n creation operators for unoccupied
states. A general term in Eq. (5.4) can be written
as

C' "'=a ~a ~ a ~aa a Cij ''0 a b c i j 4 0 (5.5)

for i, j, . . . , k E FS and a, b, . . . , c 6 FS.
The true ground-state energy is given by Eq.

(3.4). The Lippmann-Schwinger equation in Eq.
(3.5) can be substituted into Eq. (3.4), and the res-
olution of the identity in Eq. (5.4) can be used.
The result for the difference between the true
ground-state energy and the unperturbed energy
is

where the sum is over all i, jE FS, and a, b f FS.
Since the excited configurations are eigenstates of
8„ the energy denominators are

and

D;=8p —(Ep+e, —e, )

Dqc=8p (Ep+6 +eb —
Eq

—e.)~

(5.7)

(5.8)

for the singly and doubly excited configurations,
respectively. There are no more terms in Eq.
(5.6), since the operator V can connect at most a
doubly excited configuration with the ground-state
4o.

Figure 5 shows the graphical representation of
the energy shift in Eq. (5.6). In order to interpret
Fig. 5, the correspondence between the mathemat-
ical quantities and graphical quantities shown in
Fig. 6 must be used.

If the arbitrary parameter E which was intro-
duced in Eqs. (2.6) and (2.7) is chosen to be zero,
then the energy denominators in Eqs. (5.7) and (5.8)
are of the Brillouin-Wigner type. " The expression

Hp QbpQp g~. (5.3)

The resolution of the identity in terms of zero-,
singly, doubly, . . . , N-excited configurations is
1= l@.&&4'.I+K I4l&&C iI+2 IC l)&&C'lbI+ "

~g (gab' ' c)&@cb'' 'c]' (5.4)

FIG. 5. The graphical representation of the energy
shift of Kq. (5.6). A sum is implied over the intermedi-
ate states. For the definition of the diagrams see Fig. 6.
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for the energy shift in Eq. (5.6) is then not very use-
ful. The energy denominators also contain the en-
ergy shift, and an iterative solution must be used.
However, the advantage of the Brillouin-Wigner
perturbation theory over the Rayleigh-Schrodinger
perturbation theory is its simpler structure. In
order to convert the Brillouin-Wigner perturbation
expansion into a Rayleigh-Schrodinger perturba-
tion expansion, it is necessary to expand out the
energy shift Sp Ep from the denominator. It can
be absorbed into the interaction V, changing it to
Vt 4P

An alternative to this clumsy procedure is to
choose the arbitrary parameter E such that the un-
perturbed energy and true ground-state energy are
equal,

Ep= &p. (5 8)

Then the energy denominators in Eqs. (5.7) and
(5.8) are automatically of the Rayleigh-Schrodinger
type, and the energy shift is contained in the per-
turbation V.

In the expansion of the ground-state energy 8p

there are some terms in which a single particle-
hole pair occupies the intermediate state. A typ-
ical term in nth order is

&C. I vlc;&&4 ll vlc;&. . . &c ll vlc l&&c;. I vie. &

(5.10)

where the perturbation potential V occurs n times.

This term is expressed graphically in Fig. 7.
The term in Eq. (5.10) is potentially "dangerous, "

since for a poor choice of basis functions it may
happen that

(5.11)

when the states a and i are both near the Fermi
surface, so the energy denominator is small. In
this case the absolute value of Eq. (5.10) would be
divergent as n —~. Since the perturbation expan-
sion is assumed to converge, the large contribu-
tions of the type shown in Eq. (5.10) and Fig. 7

would presumably have both positive and negative
signs which would tend to cancel. However, from
the numerical point of view, the difference be-
tween large quantities would lead to considerable
uncertainty in the final result.

In order to prevent the term in Eq. (5.10) or Fig.
7 from contributing, the condition that the end ver-
tices in Fig. 7 vanish can be imposed, which is
from Fig. 6 just the Brillouin condition given in
Fig. 2 and Eq. (2.12). The second term on the
right in Fig. 5 and Eq. (5.6) for the ground-state
energy will thus vanish for the HF orbitals.

However, the same term will also vanish if the
Brillouin-Brueckner condition of Fig. 4 and Eq.
(3.15) is imposed. Since the Brillouin condition is
the simpler of the two, it would appear that no ad-
vantage would be gained by using the Brillouin-
Brueckner condition. However, whole classes of
additional diagrams, shown in Fig. 8, vanish if
the Brillouin-Brueckner condition is used. The
diagrams of Fig. 8 are potentially dangerous also,
since it is possible to have a single particle-hole
pair in an intermediate state which can scatter an
infinite number of times.

The Brillouin condition results in only the com-
Pensation of the to+est order danger -diagrams
(CLODD), whereas the Brillouin-Brueckner condi-
tion compensates all the potentially dangerous dia-
grams. This argument, when combined with the
variational principles given previously, gives a
strong case for determining the single-particle
orbitals and potential such that the Brillouin-
Brueckner condition is satisfied. "

VI. CONCLUSION

The results of this paper are summarized in Ta-

a

I

b

FIG. 6. The correspondence between the graphical
quantities in Fig. 5 and the mathematical quantities in
Eq. (5.6).

FIG. 7. A contribution to the ground-state energy in
nth order in which there is only a single particle-hole
pair in the intermediate state.
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FIG. 8. A class of "dangerous" diagrams which will
not contribute to the ground-state energy if the
Brillouin-Brueckner condition is used.

ble I, which gives a comparison of the maximum-
overlap orbitals with HF orbitals. The HF orbitals
have the advantage over the maximum-overlap or-
bitals only in that the unperturbed ground-state en-
ergy is minimized. However, a comparison of
Figs. 1 and 3 shows that the minimum of the unper-
turbed energy is always an upper bound to the true
ground-state energy, whereas in the ESCF the min-
imum (or extremum) of an energy functional lies
exactly on the true ground-state energy. Even

though the Rayleigh-Ritz variational principle is
not applicable to the ESCF, the occurrence of the
minimum on the true ground-state energy has ad-
vantages if approximations are to be used. In par-
ticular, it is usually only the two-body part of the
reaction operator t, that is calculated If tp[Q] is
equal to the true reaction operator with a set of
orbitals that differ only in first order t[Q+ 5$],
the energy will be changed only in second order
because of this stationary property.

Hartree-Pock theory is of course determined by
the Brillouin condition in Eq. (2.12), whereas the
maximum-overlap orbitals are determined by re-
placing V with t in Eq. (3.2), and calling the re-
sulting Eq. (3.15) the Brillouin-Brueckner condi-
tion. If the Brillouin-LGwdin condition defined pre-
viously' for natural orbitals is expanded in pertur-
bation theory, the first-order term in t is just the
Brillouin-Brueckner condition. If both the Brillou-
in-LGwdin condition and the Brillouin-Brueckner
condition are expanded in perturbation theory, the
first-order term in V is just the Brillouin condi-
tion. From this point of view the maximum-over-
lap orbitals thus stand somewhere between the HF
and the natural orbitals. "

The true Hamiltonian P in Eq. (2.1) is obviously
independent of the choice of orbitals, so as an op-
erator it cannot be varied. However, the "effec-
tive Hamiltonian" IJ, +t does depend on the choice
of orbitals, and can thus be varied as an operator.
The condition obtained for its expectation value is
completely equivalent to the Brillouin- Brueckner

TABLE I. A comparison of HF orbitals and maximum-overlap orbitals.

Properties

Ground-state energy

Diagonalization conditions

Energy operators

Distance between 4' and 40

HF orbitals

IIpp = &epi &Hp+v&iep&
= minimum ~

Brillouin condition d

&e, ivi e„&=o

&epio&Hp+v&ie, &-=o" '

Not minimum

Maximum-over lap orbitals

Sp= &epl&&p+tllep&
= constant "

Brillouin-Brueckner condition
&e, it i e„&=o

&e, io&ap+t) ie,&
o'=

Minimum

Overlap (4 ~CO)

Singly excited configurations
in 0

Dangerous diagrams

Not maximum

Contribute in second
order in V

CLODD" (Fig. 2)

Maximum

Do not contribute

P( DD (I) (Fig. 4)

@0 is a Slater determinant in Eq. (2.8) .
$0 is the true ground-state energy in Eq. (3.1).
t is the full reaction operator in Eq. (8.2).
C,~ is a singly excited configuration in Eq. (2.18).

~This expression denotes the expectation value of the variation of the operator with respect to the orbitals.
The Hamiltonian is independent of the orbitals [cf. Eq. (2.1)].

~4' is the true ground-state wave function. in Eq. (8.1).
"CLODD- compensation of lowest-order dangerous diagrams.
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condition, as can be seen by varying Eq. (3.4) for
S„which gives zero identically.

The minimum distance in Hilbert space and the
maximum overlap between the true and model wave
functions are, of course, equivalent. They both
imply that no singly excited configuration contrib-
utes to the true ground-state energy. However,
because of the Brillouin condition in HF theory the
singly excited configurations contribute only to sec-
ond order in V. Mf(lier and Plesset pointed out
that for the single-particle density matrix in HF
theory there are no first-order contributions in V

to the perturbation expansion. '
The HF theory corresponds to the CLODD shown

in Fig. 2, whereas the maximum-overlap orbitals
correspond to the PCDD shown in Fig. 4. Natural
orbitals were also shown to correspond to the
PCDD, but to a different form. In order to dis-
tinguish these two forms, they can be referred to
as the PCDD (I) and (II), respectively.

The HF orbitals have the advantage over the max-
imum overlap orbitals in that for potentials for
which their equations exist, they are easier to cal-
culate. The Brillouin-Brueckner condition must
be imposed on the reaction operator calculated
from the Lippmann-Schwinger equation in Eq. (3.5).
However, since this is a sum of many-body opera-

tors, it is notoriously difficult to solve. Even in
the two-body approximation, the solution is still
difficult. However progress in solving the Lipp-
mann-Schwinger equation in scattering theory has
been made by Weinberg, "who points out some of
the difficulties which would be encountered in con-
sidering the full many-body problem. His line of
attack appears to be fruitful, and work in this di-
rection is in progress. If only the two-body part
of the reaction operator were retained, the result.
would be a self-consistent Brueckner-HF theory.
If only the two- and three-body parts of the reac-
tion operator were retained, the result would be a
self-consistent Bethe- Faddeev-Brueckner -HF the-
ory 61
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