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An off-shell t matrix is developed for the boundary-condition model in the genera1 case of
coupled partial waves. This development is facilitated by the use of a method for solving the
Lippmann-Schwinger equation directly for potentials of the square-well type. The t matrix
obtained is shown to be unique under some rather mild assumptions as to anatyticity and as-
ymptotic behavior. An integral equation of the Lippmann-Schwinger type is obtained for the
t matrix in the more realistic problem of boundary condition plus external potential.

INTRODUCTION

Perhaps the chief difficulty in constructing poten-
tial models to represent the effective nucleon-nu-
cleon (N N) interaction is the-question of what to
do about extremeIy short-range effects. In the re-
gion of sma11 internucleon separation, it has Iong
been recognized' that a local potential cannot ade-
quately describe multimeson exchange and other
inherentIy nonlocal higher-order effects suggested
by the meson theory of nuclear forces. Consequent-
ly, attempts have been made to simulate the infinite
complexity of the interaction in this region by in-
troducing either highly repulsive short-range po-
tentials (soft cores), ~ or simple nonlocal devices
such as the hard core' and its generalization, the
boundary-condition model (BCM).4

Together with appropriate longer-range compo-
nents, all of these approaches can be employed to-

yield models' which give theoretical predictions in
quite good agreement with the N-N scattering data
up to the vicinity of 350 MeV. However, because
of continuing improvements in computer facilities
and computational techniques, it should be possible
in the near future to discriminate between these
models by employing them in the Faddeev equa-
tions' to calculate properties of the three-nucleon
system. In doing so, one must learn how to prop-
erly incorporate singuIar two-body interactions
such as the hard-core and BCM into the three-body
framework. One of the virtues of the Faddeev for-
mulation from this standpoint is that the depen-
denc on the two-nucleon potentials can be entire-
ly eliminated in favor of the off-shell two-nucleon
t matrices. ' On the other hand, it is not entirely
clear what one should regard as the appropriate
off-shell t matrix in such cases. It cannot, for
example, be defined as the solution of the Lipp-
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mann-Schwinger (LS) equation with an energy-in-
dependent potential. '

In this paper we develop an off-shell I, matrix for
the BCM in the general case of coupled partial
waves (tensor mixing). Furthermore, we show

that the prescription is unique, providing one
makes some mild assumptions regarding its ana-
lyticity and asymptotic behavior as a function of
the energy. The BCM t matrix obtained is used to
formulate a modified LS equation for the total t ma-
trix in the general problem of BCM plus external
potential; the convergence properties of the kernel
of this equation are essentially identical to those
of the LS kernel with the external potential alone.

We begin in Sec. II by developing a technique for
directly solving the LS equation for potentials of
the square-well type. In Sec. III we consider the
special case of uncoupled partial waves; in this
case it has been shown by Kim and Tubis that the
BCM can be formulated as the limit of a certain
potential model. We give a derivation of the BCM
t matrix for this case by employing the method of
Sec. II to explicitly solve the LS equation for this
potential, and subsequently going to the limit. Al-
though necessarily equivalent, the expressions we

obtain in this fashion are considerably simpler in

form than those of Kim and Tubis. This simplicity
of form, together with the considerations involved
in this method of derivation, suggest a straight-
forward generalization to coupled partial waves.
This is discussed in Sec. IV, where we also derive
the modified LS equation described above.

The question of uniqueness is considered in Sec.
V, as part of a discussion of our results. Here
we note some special features of the BCM I; matrix
which should facilitate its use in the Faddeev equa-
tions.

II. SOLUTION OF LIPPMANN-SCHWINGER
EQUATION

In this section we consider the direct solution of
the LS equation for the off-shell t matrix in the
case of a square-well potential. As is well known, "
the square-well problem may be solved trivially in

the differential-equation formulation (Schrbdinger
equation), and the off-shell t matrix constructed
from the result. However, it is of some interest
to learn to solve directly the type of integral equa-
tions which occur frequently in scattering theory,
not all of which correspond to well-studied differ-
ential equations. The method to be described is
based on a simple analyticity argument and is, in
spirit, an extension of earlier work" by the author
on quite different classes of potentials. The pres-
ent problem, however, has rather special features
of its own which require a modification of the ear-
lier approach.

The method will first be developed in the context
of the s-wave LS equation with a single square well,
and will then be generalized to higher partial waves
and superpositions of such potentials. The solu-
tions thus derived are, of course, identical to
those obtained by other means, although they are
represented somewhat differently. However, it is
not the solutions themselves but rather the consid-
erations involved in their derivation which will be
useful in the subsequent sections.

We consider the potential V(r) =g 8(a -r), for
which the l = 0 LS equation has the form

oo d 3

ao(p ',p; s) = vo(p ', p)—
~p

&&v,(p', q)a, (q, P; s),
where

v.(P', P) =,pp, ti.(a(p' P)) i.(a(p-'+P))-l.

Here for convenience we have taken the reduced
mass to be —,'; a, (lt, s;s) is the s-wave scattering
amplitude (x=s"') with normalization such that

i&a, (lt, s;s) = ——e "Osinh, .

Regarding p and s as fixed parameters, a,(p', p;s)
can be considered as a function of the single vari-
able p'. Assuming that a solution exists, "Eq. (1)
serves to determine this function for real positive
values of p'. However, Eq. (1) can also be used to
extend the domain of a, (P', P;s) to negative and
complex values of p'. To see this we first note
that Eq. (2) implies that v, (p', p) is an even func-
tion of p', and hence, from Eq. (1),

ao( —P ',P; s) = ao(p ', P; s),
which defines ap for negative values of P'. With
this definition we can rewrite Eq. (1) in the form

a, (p', p;s) =v, (p', p) —( /1P') (1p),

with

I(p') =—t, jo(a(p' —q))ao(q—.—,p;s) .

Thus a,(p', p; s) can be expressed in terms of the
known function vo(p', p) and a function I(p') defined
through a certain integral representation.

From the known properties of the spherical Bes-
sel functions it is trivial to verify that vo(p', p) has
the following properties:

(a) vo(p', p) is an entire function of p',

(b) lim [e"~ v, (p', p) j = 0,
Imp'~+~

(c) lim [e "~ v, (p', p)]=0.
Imp'~- ~
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Furthermore, we assert that these same proper-
ties hold for I(P') as well. To prove this, we first
note that the integrand of the integral defining I(P')
is an entire function of p' for fixed q. Hence, by a
standard property of integral representations, we
infer that I(P') will also be entire providing that
the integral converges for all finite complex val-
ues of p'. It is clear that the existence of a solu-
tion to Eq. (1) insures this convergence for real p'.
Thus, for real P', ~I(P') j &m, where m is. some
positive bound. Moreover, since v0(P', P) is also
bounded, Eq. (4) implies that for real p'

I p'a. (p', p; s) I &I,
where M is finite. Applying Eq. (6) to the quantity
qa0(q, p; s) appearing in the integrand of Eq. (4),
and using the explicit formula for j,(x), it is
straightforward to show that I(p'), for ~Imp'~ &0,
satisfies a bound of the form

We next observe that, as a result of the analytic
and asymptotic properties determined above, the
integrals defining J'(p') can be evaluated by the
method of residues. Thus the integral for J'(P')
can be closed with a semicircular contour of in-
finite radius in the lower half plane; the contribu-
tion from this contour vanishes because of Eqs.
(5) and (9). Within this contour the only singulari-
ty is a simple pole at q = —s"' (the ie condition is
equivalent to Ims'~2 ~ 0). Thus, recalling that we
have used K=s

J'(p') = nih0-(a(p'+ x))a0(x, p;s) . (»)
Similarly, the integral for J (p') is closed in the
upper half plane and there are poles at q =s"' and
q =p'; hence

J (p ') = wi h, (a (p
' — ))xa (0'; s )

2t p .a.(p', p;s) .
lI(P')I & 1, [c,e' ™I~C2e D™rj. (7)

Combining terms, we arrive at

From Eq. (7) and the above comments we see im-
mediately that I(p') satisfies the properties stated
in Eq. (5).

Returning to Eq. (4), we conclude that a, (p', p; s)
can easily be extended to complex values of p'; in-
deed, it is an entire function of p satisfying the
properties of Eq. (5). With this information it is
trivial to construct the solution to Eq. (1). We
first define the functions'

sinax2 (x, a, ) ) = e'" (co sax —i) (14)

/

I(p ') =,2 [-a0(p ',p; s) +B(p ', a, tc)a0(tc, p; s)j,
(13)

where we have defined

h,'(x) =j,(x) + in, (x), (6) By inserting this result for I(p') in Eq. (4) we
obtain

where n, (x) is the spherical Bessel function of the
second kind. With this definition (p ' —s)v0(p ',p) +gB(p ', a, x)a0(x, p; s)

0 p )p) p)2

(9)

I(P') =—„[~'(P') ~ (P')j, (10)

with

Thus h,'(x) is analytic except for a simple pole at
x=0. We can now rewrite the definition of I(p')
in the form

which determines the off-shell amplitude in terms
of the half-on-shell function a0(x,P;s). To deter-
mine the latter, we note that if we insert the par-
ticular value p'= x into Eq. (15) it simply reduces
to an identity. However, we also note that the
right-hand side of Eq. (15) appears to have poles
at p'=+p„where p,'=s -g. Since a, (p', p;s) can-
not have poles by the facts established above, it is
clear that the numerator of Eq. (15) must also van-
ish at these points. This gives us a relation from
which to determine a0(x, P; s), and we obtain

dg Q'J'(P')=, . h0(a(P' —q))a0(q, P;s) . a0(x, p; s) = v (p 0p)/0'B(p a,0x) . (16)

We note that due to the pole of h,' the functions
J'(P') are not defined when P' is real; to avoid
this ambiguity we will assume Imp' &0 when eval-
uating them. Our result will obviously not depend
on this choice.

Equations (15) and (16) provide the explicit solu-
tion to Eq. (1).

Before considering some simple generalizations
of this result, we note the following useful integral
formula 1f F(p') i. s any even function of p' which
satisfies the properties stated in Eq. (5), then
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J
—. . ..,v.(P', q)&(q)

[F(p') B(-p', a, K)E(K)] .

(17)

The two parts of the integral can again be evaluat-
ed by the method of residues through consideration
of the properties given in Eqs. (5) and (9). In this
case the only singularities are the simple poles at
q =as'", and we obtain the result

This is a simple consequence of the fact that our
evaluation of I(p') above depended only on the ana-
lytic properties of a, (q, p;s).

Ne next consider the solution of the LS equation
in partial wave L; for definiteness we will assume
L to be an even integer (the method will work
equally well for odd-integer L). The problem sim-
plifies through use of the formula

Kl =
2 lllhl ~ l(a K)al (K) p q s) .

Defining

fi(P, a, K) =B(P,a, K) + (p' —K')la'
L-2

(2$ +8)h+ ( )
~2+1( P)

l=0, 2. ..,
aP

(24)

vg(p', P) =v, (P', P)—
which implies that fz(K, a, K) =1; we have deter-
mined that the integral of Eq. (19) has the value

x g (2l + 3)j,„,(ap'j)„,(ap), (18)
l-0, 2, o ~

[a~(p', p; s) f~(p', a—, K)a~(K, p; s)] .
(25)

which is valid for even L. In order to determine
a~(p ', p; s) it is necessary to evaluate the integral Thus,

J vt (p', q)ai(q, p;s) .dqq
p q —s —zc

(19)
(, , (p"-s)v~(p', p)+gf~(p', a, K)ai(K, P;s)

This is accomplished by using the same reasoning
as above to verify that aL satisfies the conditions
of Eq. (5); hence, by writing vz in the form of Eq.
(18), the part of the integral involving v, can be
evaluated via Eq. (17). It only remains to deter-
mine the integrals

dqq ,jl „(aq)a&(q, p; s). .
0

(2o)

because of the general properties of the partial-
wave amplitudes. We only require K, for l & L —2,
and for such I Eq. (21) implies that h'„, (aq) a(q, p;
s) is finite at q =0. The integrand of K, is an even
function of q, thus

K, =—, . [h,'„(aq)+h, „(aq)]a~(q,p;s).

Writing 2j, (x) =h,'(x)+h, (x), which follows from
Eq. (8), it is easy to verify that

h', (x) ~ c/x"',
(21)

a~(q, p;s) ~c'q~,
q —+0

As in the s-wave ca,se, the half-on-shell amplitude
is determined by requiring the numerator of Eq.
(26) to vanish when p'=p, . We then obtain

a~(K, P;s) =v~(P„P)/f~(P„a K). (27)

We conclude this section by outlining how the pro-
cedure may be extended to handle potentials of the
form

v(r) = g g e(a. l ), —
m=1

where we assume the ranges are ordered such that

a, &a, » ~ a„. For simplicity, we consider only
the s-wave case. Defining v, (P', P;g, a) to be what

we called v, (p', p) in Eq. (2), our present vo be-
comes

v.(P', P) = Z v.(P', P;g., a.} (29)

It is easy to verify that a,(p', p; s) now satisfies
the properties of Eq. (5), but with a replaced by a, .
Henceforth we shall say that such a function satis-
fies the "a, condition. " Thus, applying Eq. (17),

a, (p', p;s}=vo(p', P) -—„' -[ao(p', p;s) —B(p', a„K)a,(K,p;s)] —t, . v',"(p', q}a,(q, p;s) (80)

where we have defined

o"(p', p) = 0(p', p) —v, (p', p; g„a,) .
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We now define a new function a',n(p', p; s) by the relation

(32)

where

Pl =S

It follows from Eq. (30) that a',"(p',p;s) satisfies the new integral equation

dp Q' (g (g

o

with

d 2

z',"(p',p;s) =v',"(p',p) —,, v',"(p', q) v, (q, p;g„a,)+g, , ' " '. a, («,p;s)
I

*2 s ( II(* a * gf e 1~&1

(33)

(34)

In evaluating Z~o" we have used Eq. (17) and the fact that v, (q, p;g„a,) =v, (p, q;g„a,), as well as the new
formula

dqq'
( )

B(q, b, y) wi e"'""'G(
)

Jo q —« —Ee q y —fe 2 x+p (35)

which holds providing that G(q) is an even function
of q satisfying the b condition.

The half-on-shell function a, («, p; s) is deter-
mined from Eq. (32) by requiring the right-hand
side to be finite at p'=p„ this gives us

a'."(P,p; s)+vo(p„p; gi, a,)
(38)

III. BCM t MATRIX: A SPECIAL CASE

Considering Eq. (33), we note that p, is the "on-
shell" value for the function a',". Thus, the prob-
lem has been reduced to the determination of a',"
through the solution of Eq. (33). However, this
equation is equivalent in structure to Eq. (1), and
our by now familiar argument shows us that ao"
satisfies the a, condition. That is, we may repeat
the procedure which led us from the equation for
a, to the equation for a',", obtaining a similar equa-
tion for a new function a@', etc. With the solution
of the equation for a'," "the solution of the total
problem is complete.

A. ,
= Wg+ ag' —1/a (38)

..,v, (P, q)G(q)
go Q' —S —SE

2 [G(p) f&(p~ a~ «)G(«)l ~

(39)
which holds providing that G(p) = (-1)'G(-p), be-
haves like p' as p -0 and satisfies the a condition.
This expression has been derived for even / in
Sec. II [compare Eqs. (19) and (25)], in which ease
f, is given by Eq. (24). The derivation for odd l
is similar, and one obtains

remains finite (clearly the limit must be taken
separately in each partial wave). This fact en-
ables us to obtain the BCM t matrix by solving the
LS equation with potential V(r) and going exp1icitly
to the above limit in our result. This approach is
facilitated by using the method of the previous sec-
tion to solve the appropriate Ls equation.

In obtaining the solution we shall make use of the
generalization of Eq. (17) to arbitrary l,

V(r) =gs(a —r)+g'ab(r -a), (37)

withg&0, g'&0, in the limit as g, g'-~ such that

In this section we consider a derivation for the
BCM t matrix in the particular case of uncoupled
partial waves, i.e., in the absence of tensor forc-
es. For this case it has been shown by Kim and
Tubis that the boundary condition can be formulat-
ed in terms of the potential

f, (p, a, «) = C(p, a, «) + (p' —«)ia'
E-2

x g (2m+3)h'„(a«)
m-l, 3...o

where

C(p, a, «) =f,(p, a, «)

jgK

[(1—
~a«) sinap —a''«'j, (ap)] .

(40)
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As is the case for even /, f, (tc, a, K) = 1.
The LS equation now has the form

oo d 2

a, (p', p;s) =w, (p', p) —
~

gp g S lE

As before, v, (p', p) corresponds to the square-
well potential. It is easy to see that the analyticity
argument introduced in the preceding section can
be carried over without change. Thus a, satisfies
the a condition and

where

xwt(p', q)ci, (q, p;s) ~ (41) j,(aq)a, (q, p;s) = h,'(a«)a, (»,p;s).
f" dqq'
p Q' S —gC

(43)

w (P'») =v (P', P)+ ,g''a'i—,(ap)f, (ap').I 3 '
(42)

Together with Eq. (39), this implies that the solu-
tion to Eq. (41) is given by

(p" —s)w, (p', p)+[gf (p', a, K) —i»g'a (p" —s)h,'(a»)j t(ap')]at(», p;s)
pf2 p 2 (44)

wl'th Pp s
The value of a, (», p; s) is obtained by requiring

the numerator to vanish when p'=p„. hence

where

Rt(P', P; s) = (P"—s)v, (p', p)

+f, (p', a, «)(p' —s)v, (p, K).

f, (po, a, K)+itcg'ath;(atc)j, (apo)
'

(45)

It is straightforward, but somewhat tedious, to
show that

Clearly R, (p', p; s) must be symmetric in p' and p,
as may be verified directly. Using the relation

ft(p~ a~ K~) —(-1)'f,(p, a, K ) ttt»(p s)vt(pq K),

K =(s+ie)"'=~K (52)

t, (s) = lim a, (K K s), (48)

(47)t, (p', p;s)= lim a, (p', p;s)
g~g -+oo

in terms of the half-on-shell quantity t, (K,p; s).
Thus

t,' (p ',p; s ) = (p
" s)v, (p ', p) +f, (p ', a—, K)t,' (», p; s),

(48)

where we have defined

vt(P', P) =v, (P', P; l, a), (49)

corresponding to a square-well potential of range

a and unit strength.
The half-on-shell t matrix t, (K,p; s) may be ob-

tained by taking the limit of Eq. (45); however, it
is simpler to set p = K in Eq. (48) and use the sym-
metry of t, (p', p; s) under exchange of p'and p to

infer that

t, (K P s) = (P' —s)v, (P, «')+f, (P, a, K)t, (s).
(50)

Finally, substitution of Eq. (50) into Eq. (48) gives
the result

t, (p', p;s)=R, (p', p;s)+f, (p', a, K)f, (p, a, K)t, (s),

(51)

the limits being taken as prescribed in Eq. (38),
where t, (s) is the usual BCM scattering amplitude.
Likewise, the limits can be performed in Eq. (44)
to obtain the off-shell BCM t matrix

which is easily established via Eq. (39); it is
straightforward to show that our expression for

t, satisfies the off-shell unitarity relation

(p ~pqs+te) —tt (p qp1s —te)

tttKtt (P q»1S+tE)tt (K&Pq S —tf) .
(53)

We have thus obtained a remarkably simple for-
mula for the off-shell BCM t matrix which has a
number of interesting properties. For example,
the dependence of the off-shell t matrix on the log-
arithmic-derivative parameter A. , is contained en-
tirely in its explicit dependence on t, (s). Second-

ly, contrary to what one might expect from a pseu-
dopotential formulation of the type proposed by

Hoenig and Lomon, ' the BCM t matrix obtained is
not separable. Also, although our t matrix is ana-
lytic in s except for the right-hand cut, and (possi-
bly) bound-state poles contained in tstc(s), it ap-
proaches -sv, (p', p) as s -~. In contrast, t ma-
trices resulting from conventional potentials ap-
proach the corresponding potential in this limit.

It is instructive to examine the manner in which
the BCM t matrix produces the desired boundary
condition on the wave function g„t(r). The two are
related by the expression

4., (r)
j./2 ~ dp p2i' j,(»r)—, . j,(pr)t, (p, K;s)

p P —S —SC

(54)
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The integral in Eq. (54) can be performed analyt-
ically with the aid of the following simple formulas:

The wave function then satisfies the boundary con-
dition

dg g f, {q,a, «)G (q) = 0;
g —8 gE'

Jt g t
i((bq)G(q)= 2 ht(b«)G(«),

dq q'~, {q,p)G{q) = G(P) .

(b &a);

(55)

t)', '(+ )

, , 4., (a+~)

provided that

t, ssc 2 l iji{«a)—«f i'(«)
«i «Xgh,'(«a) —«h,"(«a) '

(57)

(56)

These formulas hold provided that G(q) satisfies
the conditions discussed in relation to Eq. (39) and
are easily obtained in a similar fashion.

Using the expression of Eq. (50) for t, (p, «; s),
we therefore obtain

g„,(r) =0, r &a;

i' j,(«r) — h,'(«r)t, c(s), r &a.

the prime denoting differentiation with respect to
the argument. Equation (58), of course, is the
usual expression for the on-shell BCM t matrix.

In a sense, therefore, the expression given in
Eq. (50) "works" because, in addition to satisfying
unitarity and reducing to t, (s) when p = «, the inte-
gration properties summarized in Eq. {55) lead to
Eq. (56). This observation provides the key to the
generalization considered in the next section.

IV. BCM t MATRIX: GENERAL CASE

In the case of coupled partial waves, there is at present no counterpart to the deve1opment given in the
previous section. That is, one does not know of a potential analogous to that of Eq. (37) which gives the
BCM t matrix in some appropriate limit. Instead, we shall adopt an alternative approach based on the con-
siderations discussed in the latter part of Sec. IG. The t matrix obtained in this fashion is a simple general
ization of Eq. (51), and reduces to that expression when the parameter coupling the partial waves tends to
zero. In the latter part of this section we shall employ this result to obtain a modified LS equation for the
problem of a boundary condition plus an external potential.

%e first note that in a state of total angular momentum J; the wave function and t matrix are related by

g„,(r)= — i' j,(«r) — p Jl, . j,.(pr)t;i,' (p, «;s) (59)
r'=)z-st D

where 8 ls the 'total spin. In analogy with Eq. (56), we want a form for tiki (p, «;s) such that

|)fg(r) =0, r &a;

(6o)

[The relation between

t'ai,

(s) and the BCM amplitude of Feshbach and Lomon (FL) is given in the Appendix. ]
Such a form is immediately suggested by Eq. (50) and the integral formulas of Eq. (55). We consider

t~', (p, «„s)= 6, , (p' - s)b, (p, «) +f, (p, a, «)tisc{s) . (61)

It is easy to verify that this expression, when substituted into Eq. (59), results in Eq. (60). Furthermore,
it reduces to t, i, (s) when p = «and satisfies the unitarity relation

tf), (p, «;s+is) —t, ', (p, «;s —se) = iv«gt~P (-p, «;s+te)t ', (s —te), (62)

provided that t'ai, (s) satisfies on-shell unitarity, i.e., Eq. (62) with p = «. Clearly, Eq. (61) reduces to Eq.
(50) as the coupling between partial waves vanishes; that is, as t~~'. , -0 for I'xi.

%e note that the tully off-shell t matrix we are looking for must satisfy the unitarity relation

t~i', c(p', p; s+i&) t'ai,'c(p', p; s i~) = -—wtQ«tg~i„s( c'p—«; s+is)t~'('c(«, p; s —t~), (63)
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the right-hand side of which is known because of Eq. (61), and the relation

t, I, (p', p;s)=t„' (p, p';s), (64)

which is a consequence of time-reversal invariance. Analogy with Eq. (51) leads us to consider the form

t, i, (p', p;s) =6, )ft, (p', p;s)+f, (p', a, z}f,(p, a, v)t, i, (s), (65)

which satisfies Eqs. (63) and (64) and reduces to
Eq. (61) when p is on shell. Except for the right-
hand cut, this expression is analytic in s except
for (possibly) bound-state poles contained in

t'ai,

(s) Furt. hermore, the residue at such a pole
is consistent with that of the half-on-shell form
and the factorization property. " We can thus as-
sert that Eq. (65) is unique, given Eq. (61), pro-
vided that we make some mild additional assump-
tions concerning asymptotic behavior. We shaH

return to this point in Sec. V.
%'e now turn to the physically more interesting

problem of a boundary condition plus an external
potential V, (r), where we assume

V,(r) = 0, r (a;
IimI r V,(r)] = 0.

(66)

In general, V, (r} will contain tensor and spin-orbit
as well as central terms. For our two-particle
state characterized by J and 8 lt ls convenient, to
introduce the states Ilp), such that

«'p'Ifp) = 6, , 6(p'- p)/p',

(r Ifp) = (2y.)"'~'~,(pr}.
We will regard t~ as an operator on these states,
in terms of which V, has the representation
(I'p'I V, Ilp) (the dependence of this matrix element
on J and S is implicit).

In order to derive an integral equation for t~ we
shall take the point of view that there is a well-
behaved potential V,(r), analogous to that of Eq.
(37), which in some limit gives rise to the BCM

t matrix of Eq. (65). This allows us to perform
the standard manipulations relevant to scattering
from two potentials to the equation

(68)

where

V= V, +V, .

Thus, introducing

~'= V, —V,G,a',
we obtain

7'= a'+K -KG,7',

= t'Bc+K-KG t'
0

(71)

with K=(l —t~' Go)V, . Taking matrix elements
between the states I/P), Eq. (71) becomes an inte-
gral equation for t~~, (p', p;s). By using the explicit
form for t~' c given in Eq. (65), it is easy to verify
that K has the same convergence properties as V,.
Together with the second part of Eq. (66) and stan-
dard arguments, '6 this implies that t~ as given
from Eq. (71) is well defined.

Since our derivation of Eq. (71) was not rigorous,
it is worth checking that t~ does give rise to the
proper boundal y condition with arbitrary V . The
wave function I()~,(r) and t~ are related by

P~, (r) =(rIl —G,t~Ilrc).

Hence, defining

e', :"(.,p) =& ll —G.t':"IV»,

we have

K= (1 -a~G~)V, .

By assumption, c~ - t~' when the appropriate lim-
it is taken Since only a~ (and not V,) appears in

Eq. (70), we pass to this limit to obtain

t~ =lim~~

Explicitly,

(t""(r p) =o
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Clearly, g(~' (r, «) is the wave function for the pure BCM given in Eq. (60).
In order to show that (tj~, (r) does indeed satisfy the boundary condition, we write

where

(r,p) =
X„,(r, p) +f, (p, a, «)g, ' (r, «), (76)

2 1/2

S„,(r p)= (
— i' j, (pr) j(p, s,-s)j, (sr) — )s;(sr)(p' —s)s, (p, s), (r s), (77)

1('„,(a) g(~" (a, «)
' (78)

as a consequence of Eq. (61). We now assert that
)(~, (a,p) =y~K, '(a, p) =0. This can be verified direct-
ly with some labor, but one can make a much sim-
pler argument based on analyticity. We note that
for fixed r and p, y~„(r,p) is an entire function of
s; that is, there is an apparent cut due to the de-
pendence on v, but the discontinuity vanishes by
Eq. (52). In other words, y~ (r,p) is an even func-
tion of ~. Checking next the asymptotic behavior,
it is easy to see that y~, (a,p) is bounded by a con-
stant as s -~. However, the only entire function
with this property is a constant, and the constant
must be zero since y„(a,p) vanishes when «=p
Similarly, we observe that X~„'(a,p) is bounded by
a first-degree polynomial in K; this implies that
y~, '(a, p) is a first-degree polynomial. However,
the above argument implies that y~ '(a, p) is an
even function of K, and hence it is a constant.
Again, y~ '(a, p) vanishes when «=p, completing
the proof.

This result, when combined with Eqs. (74) and

(76), shows that

I

leave the wave function g)~' (r, «) unchanged, Eq.
(73) requires that

(78)

for all r. This implies that A~~l«) =0, or that
jp f, ,(p', p; s) vanishes half on shell. Let us now

consider Af, (p', p;s), for fixed p' and p, as a func-
tion of the complex variable s. It seems reason-
able to suppose that the proper f fi, (p', p; s) should
be analytic in s except for the unitarity cut and

(possibly) poles for negative s corresponding to
bound states. This is certain1y the case for t ma-
trices arising from energy-independent potentials,
or limits of such potentials such as considered in
Sec. III. Moreover, if one allowed the possibility
of additional singularities, it would be necessary
to relate them to some dynamical mechanism in
the core region. It is just our ignorance of such
effects which leads us to consider the BCM in the
first place. Therefore, since we have previously
shown that the form given in Eq. (65) for t~' has
precisely the correct singularities, we must nec-
essarily conclude that b, (~., (p', p, s) is an entire
function of s.

It follows from the above that 4~ may be written
in the form

Thus g~, (r) satisfies the same boundary condition
as the pure BCM function Pf' (r, «).

a, ., (p', p; s) = (p" —s)(p' —s)r), ,(p', p; s),
(80)

V. DISCUSSION

In the preceding sections we have developed an
expression for the off-shell BCM t matrix. Our
result, Eq. (65), was chosen such as to produce
the correct wave function and to satisfy off-shell
unitarity; the particular form being suggested by
analogy to the special case discussed in Sec. III.
We have used this result to formulate an LS-type
integral equation for the off-shell t matrix in the
more realistic problem of BCM plus external po-
tential. However, up until this point we have put
aside questions as to the uniqueness of the expres-
sions we have obtained. We now consider to what
extent our results are ambiguous in the sense that
one could make the replacement t~' —t~' +b
without affecting the desired characteristics.

We first note that if such a replacement is to

Ist- S
(81)

which is satisfied by the form of Eq. (65), we can
conclude that 6 =—0. In support of the assumption
stated in Eq. (81) we recall that our intention is to
use t ' in the Faddeev equations, the kernel of
which contains terms of the type

t, , (p ',p; s)/'(p" —s), (82)

where Aj~. , (p', p;s) is an entire function of s; here
we have used the fact that h, ., (p', p;s) vanishes
half on shell and is either even or odd in the vari-
ables p' and p. As a consequence of Eq. (80) and
the standard properties of entire functions, ' we
observe that as s - ~ in some directions, h j~, , (p',
p;s) increases at least like s'. Thus, if we addi-
tionally require that
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where s = W —qs/M„. Therefore, if one does not
require Eq. (81), there will be directions in the
variable q, or in the three-body energy 8', in
which the Faddeev kernel is unbounded. Although
this would not necessarily be pathological, it is
difficult to think of exceptions which would not pro-
duce unusual and undesirable effects in the three-
body amplitudes.

We have thus shown that our result for t ' j.s
unique if one makes rather reasonable assump-
tions as to analyticity and asymptotic behavior. It
is worth noting that a corresponding question of
ambiguity arises in attempts to represent the BCM

by a pseudopotential. " In such cases the only argu-
ment one has with which to discriminate between
pseudopotentials is simplicity of form. In compar-
ison, our restrictions on the t matrix seem much
cleaner and more closely related to the physical
situation.

In conclusion, we note two aspects of our BCM
t matrix which make it well suited for practical
three-nucleon calculations. Most important is the
fact that one can define a very natural and accurate
separable approximation" to t, i, (P', P;s). We ob-
serve from Eq. (65) tl'at it is separable for l'0 I,
while for the diagonal elements tiiBc ti'+i', Bc 1s
separable because of Eqs. (51) and (18). Since the
two-nucleon data require that tJ"be much smaller
than t, it is natural to approximate t» by just
the separable difference between it and t, ~", ~'

This is consistent with the fact that one common-
ly ignores tJ" in comparison with t in the Fad-
deev equations anyway. This rather unusual prop-
erty is shared by the t matrix resulting from the
square-well potential, and was successfully em-
ployed by this author in a comparable calculation. "
Secondly, the BCM t matrix for the triplet s- and
d-wave system is extremely efficient in incorporat-
ing both repulsive core and tensor effects into a
very simple form. For these reasons the pure
BCM would appear to combine ease of calculation
with a relatively sophisticated two-nucleon inter-
action.

APPENDIX

shifts g'J' and the mixing parameter e J in the con-
vention of Blatt and Biedenharn. " Thus

(x) (2)
S =cos'~ e""J +sin'e e""Jll J J 7

i (1) 2 j (2)S„=S„=cose~ sine~ (e""~ —e""&),
S =sin e e"~J +cos'& e""J. (i) (2)

22 J J

(A2)

(A4)

and 4'z'(r) is the (two-component) wave function

(A5)

Here
(

. (n)
p J J s8 s(r) = U 8 cosg~"' e'" &

&&[j~,» s(Kr) —tang, ' 'n~„8 s(Kr)],

(A6a)

with

COBE' J SlnE' JU —slnE J cose J

It is straightforward to show from (AS) that

1
tang'~' = ——[8 + (—1)"(B' —4AC)"'],

(A6b)

(A7)

with

A = 1 —p, n~, (Ka)n~„(Ka),

B = —tang J —tang J

+p, [n~, (Ka)j ~„(Ka)+n~„(Ka)j~,(Ka)],

C = tang~ tang~ —pj ~, (K a)j ~„,(Ka) . (A8)

The quantities in (A8) are defined by

In the boundary-condition model, & J and the q'J'

are determined by requiring that

aC'z'(a) =F4'z'(a),

where

In this Appendix we give the connection between
our amplitude t~i, (s) and the BCM f matrix of FL~
in the case of S= 1. The values of /' and E are thus
restricted to J+ 1 for the coupled partial waves,
and the S matrix S is a 2X2 matrix with the ele-
ments

p, = (f~')'Q f~ ~,n~, («a) —Kan~, '(Ka)]

&&[f~ ~„n~„(Ka) —Kan~„'(Ka)])

Kaggyy (Ka) fg gpyjgyy(Ka)
tang J =

Kan J$g (Ka) fJjpg gygn(K )a-'
(A9)

J — J;BC
~8 ~8 z+sa-s, z+ss-s( ) ~

(Al)

Note that as fz"'-0, g~"-g~, and g~~'-g~. Final-

ly,

fz z,nz, (Ka) —Kanz, '(Ka) tang&" —tang&

S may be expressed in terms of the eigenphase (A10)
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Binding Energy of a A Particle in Nuclear Matter
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The results of a complete calculation of the binding energy D of a A particle in nuclear mat-
ter using the method of the independent-pair approximation, which systematically take into
account the second- and third-order Born corrections, are presented. It is found that these
corrections are small and that the Born series converges rapidly. A eompari. son of our re-
sults with those obtained using other methods based on the Brueekner theory shows that they
are identical.

I. INTRODUCTION

Calculations of the binding energy D of a A parti-
cle in nuclear matter have lately increased in tem-
po, ' ' for they provide information about the A-nu-
cleon interaction in angular momentum states
higher than zero and the possible presence of non-
central components. ' The calculations which have
been performed using central &-N potentials with
hard cores have primarily used two approaches—

the variational approach of Jastrow' and various
versions" of the Brueckner-Bethe theory. Both
of these approaches give results for D which are
much larger than the experimental estimates of
about 30 MeV. " Calculations using the Jastrow
method give values for D about 20 MeV higher than
those obtained by methods based on the Brueckner
theory.

The disparity of about 20 MeV between the two
approaches was first noticed by Ram and James"


