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The energies and the detailed structure of the excited states of Pb with negative parity
are well described by a conventional shell-model calculation which uses a "simple" phenom-
enological residual force. The calculated position of the analog of the ground state of Pb
in Bi is also in agreement with the experimental resuIts.

I. INTRODUCTION

During the past ten years there have been a
great many advances in the field of experimental
nuclear physics. These advances have been made
possible by better accelerators with both high in-
tensity and good energy resolution. The develop-
ment of solid-state detectors with their narrow
resolution in conjunction with improved accelera-
tors have enabled people to resolve close-lying
levels which heretofore has not been possible.
This increased resolution is particularly impor-
tant in the lead region where many excited states
appear just a few MeV above the ground state.
For example, there are something like 45 ob-
served levels" (some of which may be multiplets)
between 3 and 6 MeV in Pb'".

This increased resolution has enabled one to ob-
tain much better and more precise information on
the excited states and ground state of nuclei in the
lead region. Most of the recent experimental re-
sults on the structure of the energy levels in Pb'
are found in Refs. 1-23 and in references con-
tained in these papers.

With this increased experimental information,
it is interesting to see if current microscopic nu-
clear models can explain these results. Of all the

regions in the Periodic Table, the lead region has
in the past been the most amenable to conventional
shell-model calculations where the Pb"' nucleus
played the role of an "inert core." Thus one would
hope to explain the structure of the low-lying
states of Pb'", for example, by a shell-model cal-
culation"' "(usually called TDA for the Tamm-
Dancoff approximation) or by some extension of
the shell model" "(one such extension is called
RPA for the random-phase approximation).

This paper will describe a shell-model calcula-
tion which describes most of the observed struc-
ture of the low-lying negative-parity states in
Pb and of the analog of the Pb ' ground state
which appears as a highly excited state in Bi
Section II will briefly summarize the pertinent
theory which is required to do a TDA calculation
for Pb'". The parameters, the single-particle
orbitals and the residual nucleon-nucleon force
will be discussed in Sec. III where it will be seen
that the simple residual force used also consis-
tently explains the structure of other nuclei in the
lead region"' "and elsewhere. ""The details
of the agreement between theory and experiment
will be discussed in Secs. IV and V while the wave
functions for the lower-lying levels in Pb"' are
given in Table X.
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It should be noted that the excited positive-par-
ity states of Pb'" will not be discussed in this pa-
per because we feel that they cannot be adequately
described by the truncated basis and the residual
force assumed in this paper.

II. THEORY

In this section we will discuss briefly the hole-
particle matrix elements necessary for TDA cal-
culations. The most convenient formalism for de-
riving these matrix elements is that of second
quantization. An uncorrelated Pb'" ground state
is taken as a "vacuum" state or core, and crea-
tion and annihilation operators are defined rela-
tive to this core. Then the Hamiltonian can be
written as

H~ + H~ p- H~~+ V- - + V~p~~+ V- ~~+ V-t, -~+ V

In Eq. (1), Hc is the core energy and consists of
the total kinetic energy of all the particles in the
core plus their mutual interaction energy. Since
all our results will be related to this core energy,
we will define this as the zero point in energy.

The term H~ consists of the kinetic energy of
a particle outside the core plus its interaction
with the core nucleons. Likewise H~„represents
the kinetic plus potential energy of a hole. The
method of obtaining matrix elements of Hpp and

H~h from experiment is discussed in Carter,
Pinkston, and True. '4 These matrix elements are
diagonal in TDA and RPA ealeulations. The single-

particle energies will be given in the next section.
In our TDA calculation for Pb'", the basis

states will consist of neutron hole-neutron parti-
cle configurations and of proton hole-proton parti-
cle configurations. In Bi'", the basis states will
only be neutron hole-proton particle configura-
tions. For Pb"', V„-„„-„, V;»„and V„-„;, will give
nonzero matrix elements while only V„-,„-, will con-
tribute in Bi"' as will be explained below. V' will
consist of everything else in the Hamiltonian and
will not connect the above one-hole-one-particle
configurations to each other. For example, sev-
eral terms in V' will have three-hole operators
and one-particle operator and clearly these terms
will not connect the one-hole-one-particle states
above. Consequently, we will drop V' from now

on.
V„-„„-„willact only within and between the neu-

tron-hole-neutron-particle configurations while

V~», will act within and between the proton-hole-
proton-particle configurations. Since they are
both of the same form, we can discuss both of
them together as the "like-particle" case. We
shall let j represent all the quantum numbers of a
particle orbital and j represent all the quantum

numbers of a hole orbital. Then our basis states
will be given by lj,j,JM&, where for Pb'", j, and

j, both refer to neutrons or both refer to protons.
In the Bi"' case, j, refers to a neutron hole while

j, refers to a proton particle. The coupling scheme
used is to couple l to s to give j (i.e., 1+s = j) and

to couple j~ to j2 to give J (i.e., j,+j, = J).
For the like-particle case, we have

&j,j.J I V;.;.Ij,j4 J& = -Z[(1+ f )(1+~ ))' '(2' +1)IV(i & j.j~isa J@.&i2isrf I
V li4i i&&. (2)

where V is the residual two-body interaction which will be discussed in the next section and the subscript
a indicates that antisymmetrie states are used in the evaluation of its matrix element. The square-root
factor makes Eq. (2) more general than is needed for the TDA calculation because j, and j, are holes and

are never equal to the j, and j4 of the particles. However, in a RPA calculation, this may not be the case
and this factor is needed. Note that we could have just as well used V~~~~ above instead of V„-„„-„.

As implied in Carter, Pinkston, and True' and proven in Talman and True, "the matrix element in Eq.
(2) can be expanded in terms of LS matrix elements and then some of the sums can be made formally. The

result can be most conveniently expressed when the residual central force is written in the form

V = V(r )(W +M P" + BP + HP" P '),
where P" and P' are space-exchange and spin exchange operators, respectively. With A(l, 1,LS l)j,j,J)
representing the LS to jj transformation coefficient, Eq. (2) can be rewritten as

(jj,Jlv„-„„-„lj.j,J& =gA(l, I,LSl)j,j,J)A(f, l4LS l)j~j4 J)V„-„„-„(LS),
L, S

where V„-„„-„(LS)is given by

V„„„„(LS)= -[(8'---H) +2(B-
)M5 ](s-1)"'"(l,L, LlVS(r) ll, f4LS&

+[(B—M)+2(Iv —H)&s.j(-I)'H'(I, I, I.I,)&t, II
c'

ll I4&& I, II
c'

ll I&&/(2L+I) .

(4)



» Ea (5), It'(i i l i ) is a Sia«»n«grai and &t, lf
C'

ll 4& =
I «/(2L+ l)]"'&f II l'ill fg, ~h~~~ &f, II i; II f & is the

reduced matrix element" of l'«(8, P}.
The V„„» term has matrix elements which are given by

&qj, ~lv„„;,If-, I,~&=g(ac+i)u (I,i, q, I„zz)(q, q,~fv fi, q,z&,

where j, and j2 refer to neutrons and j3 and j4 x'efer to protons or vice versa. These elements will only ap-
pear as off-diagonal matrix elements in the TDA calculation of Pb'". As with the V„-„„-„and V~»~ cases
above, we can transform to the I.S coupling scheme and do some of the sums. One finds the same equa-
tion as is given by Eg. (4) with V„-„„-„replaced by V„„~~ and V„-„„-„(LS)replaced by V„„~~(LS},where

v„-„;,(LS) = (II+2M' „)(-i)"'"«,t » Iv(~) Ii, l LS& +(Ii+2w~„)(-l)'It'(i. i, i, l )&l, II&' ll V&f, II C'll i &/(2L+ l) .

In Bi'", V„-„„-„, V~»~, and V„-„~~ do not enter and we only have V„-~„-~ whose matrix elements are given by

where Dow j, and j, refer to neutron holes and j, and j4 refer to proton particles. Again we can transform
to the IS coupling scheme and the expression for V„-~„~(LS)which replaces V„„„„(I.S) in-E-g. (4) is given by

V;,;,(») = -(lv+»& .)(-i)"'"&l,4» fv(~) Ill L» -(I+2» .) (- i)'It'(l. l l.f )&@II&' Ill &&i, fl &'ill &/(2L+ l)

III, SINGLE-PARTICLE ORBITALS
AND THE RESIDUAL FORCE

A. Single-Particle Orbitals

Because of practical limitation of computers
and available time on the computers, one is forced
to several but reasonable approximations in any
shell-model calculation.

One of the first considerations is the size of the
configuration space which needs to be considered.
Before a residual interaction is "turned on, " the
zeroth order configurations are made up of prod-
ucts of single-particle orbitals where like parti-
cles are properly antisymmetrized. In this TDA
calculation of Pb'", the zeroth-order configura-
tions consists of one hole in the Pb'o' core and one
particle (same type of particle as the hole} outside
the Pb"' cox'e. Neutron and proton particles will
only be considered in the major shells just above
the N = 126 and Z = 82, respectively. Likewise, we
will only consider those neutron and proton holes
in the major shells just below N= 126 and Z = 82,
respectively.

One might consider one-hole-one-particle states
which Rx'8 two mRjox' shells Rpalto Fox' harmonic-
oscillator orbitals, this would consist of consider-
ing orbitals which are separated in energy by 25(L)

instead of 15(d as is the case considexed here. One
must be very careful in the 2k~ case as two-hole-
two-particle coQflgllrations fr om the ox'bltals sep-
arated by 18~ will lie as low or lower in energy in

zeroth order and should be considered also. Sec-
ondly, it is not certain what radial dependence
should be used for these high-lying orbitals in or-
der to calculate the matrix elements of the resid-
ual fox'ce. Furthermore, most one-hole-one-par-
ticle states formed in this way would have even
parity, and only odd-parity levels are considered
in the present work.

UQder 1deRl condltionsq the single-pRx'tlcle ox'-
bitals used should come from some sort of a self-
consistent ox Hax tree-Pock-type calculation. Un-
fortunately the current Hartree-Pock calculations
ax'e not yet good enough to yield a single-particle
basis for a shell-model calculation. Consequently,
one usually takes the quantum numbers of the sin-
gle-pax'ticle orbitals Rnd their relative separa-
tions from the experimental results whenever they
are known. It is believed that these single-parti-
cle orbitals and their energies are what one would
have obtained from a correct self-consistent or
Hax'tree-Fock calculation. The neutron and proton
particle Rnd hole orbitals and their relative spac-
ing used in this paper were taken from the paper
by Baxnes et al."and are shown in Fig. 1. Refer-
8Dce 35 Rlso contains RddltloQRl refex'eDces con-
cerning the structuxe and spacings of these single-
particle orbitals. The energy "gap" between the
holes and particles was taken to be 3.44 MeV for
the neutron gap and 4.26 MeV for the proton gap
as determined by Carter, Pinkston, and True. ~
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FIG. 1. The experimental single-particle spacings in
the lead region from Ref. 35. All energies are in MeV.

Once the single-particle orbitals are selected,
one must decide on the radial form of these or-
bitals before one can calculate matrix elements.
Mathematically it is simpler to use orbitals which
have an harmonic-oscillator radial shape since
products of two radial orbitals can in a straight-
forward and relatively simple way be transformed
to relative and center-of-mass coordinates. '~"
Since most conventional residual forces only de-
pend on the relative separation between nucleons,
this transformation facilitates the calculation of
the radial part of the matrix element.

For the foregoing reasons, the radial depen-
dence of the single-particle orbitals were taken to
have an harmonic-oscillator shape with v = 0.1842
fm ' (see Ref. 29) which corresponds to h&u =7.6
MeV, where P(x)-e '" ".The tail of the har-
monic-oscillator wave functions fall off much

more rapidly at large ~ than, for example, do the
wave functions in a Woods-Saxon well. Since most
of the contribution to the matrix element comes
from the interior region for bound orbitals, one
does not expect to have much of an error even
though the tails of the wave functions do not behave
properly. Indeed, a recent calculation by Kahana,
Lee, and Scott (KLS)" showed that for the calculat-
ed spectra of Pb"' and Pb'", the changes caused
by replacing the harmonic-oscillator wave func-
tions with Woods-Saxon wave functions were gen-
erally small. Clearly this would not be the case
for a stripping reaction where the shape and am-
plitude of the tail are very important. It is also
clear for excitations to the higher-lying orbitals
which are 2k~ or higher in energy that the radial
shape of these single-particle orbitals will be
poorly described by an harmonic-oscillator shape.
That is, the radial part of the wave function will
be more "spread out" than the harmonic-oscillator
radial wave functions. In fact, some of these high-
er-energy single-particle orbitals may lie in the
continuum. As a result, the matrix elements of
the interaction will be overestimated unless one
compensates for this effect.

Kuo, Blomqvist, and Brown in a calculation" on
the dipole states in Pb'" mentioned that one should
use a larger oscillator parameter 5+„ for neutron
orbitals than for proton orbitals. In order to in-
vestigate how these different prescriptions of the
value of Sco for the single-particle orbitals will
affect our results, we have calculated the levels
of Pb'" and the analog of the Pb"' ground state in
Bi' ' in three different ways. These calculations
all use, however, the same residual force as de-
scribed in Sec. B. In the first calculation a fixed
v of 0.1842 fm ' (or equivalently h~ = 7.6 MeV) was
used for all orbitals. In the second calculation the
(h&u) „as determined by KLS" are used. They
adjusted the k~ of each of the orbitals so that max-
imum overlap between the Woods-Saxon wave func-
tion and its main oscillator component was ob-
tained. Finally in the third calculation, the oscil-
lator parameter for the proton orbitals is again
set to ken~= 7.6 MeV while that of the neutron or-
bitals is raised arbitrarily to hen„= 9.4 MeV which
is equal to the (h&u) „of the neutron 1j»„orbital.
Some of the results are presented in Table I. We
observe first that except for a few states, most
of the energy levels change by less than 50 keV
and many by less than 10 keV as one goes from
one Av prescription to another. It is interesting
to mention here that our choice of v=0.1842 fm ~

is identical to the average value of v~„of KLS"
taken over all proton and neutron orbitals, i.e.,
(v „),» = 0.184 fm ', and is also equal to the aver-
age value of v, taken over only the neutron-hole
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and proton-particle orbitals, i.e., (v „)„-~ = 0.184
fm '. This probably explains why the first two
calculations are so similar in general (see Table
I). We see next that the well known 2.61-MeV, 3

collective state and the 18.0-MeV isobaric analog
state gAS)" in Bi"' undergo somewhat larger
changes. However, the trend is that if one pre-
scription improves the agreement of the calculat-
ed 3 state with the experiment then the agree-
ment of the calculated analog state will be spoiled
or vice versa. It is felt that the additional com-
plication of a different v for each orbital does not
give' sufficient additional information on the struc-
ture of the excited states. Furthermore, the
change caused by different prescriptions of 5+ for
the single-particle orbitals can be compensated to
a large extent by properly adjusting the force pa-
rameters in a phenomenological shell-model cal-
culation, consequently all the results quoted in
this paper are obtained with a v = 0.1842 fm ' for
all orbitals.

B. Residual Force

Because the Hilbert space used in shell-model
calculations is severely truncated, the appropriate
residual force for use in such calculations may be
considerably different from the free nucleon-nucle-
on interaction, V&„,. Included in some way in the
residual force must be the effect of virtual transi-
tions outside the model space. It is generally
agreed that it makes sense to think of dividing the

remainder of Hilbert space into a nearby part and
a distant part. Transitions to the distant (very
high energy) part, which produce the short-range
correlations in the wave function caused by the re-
pulsive core in V&„, , are accounted for by replac-
ing V&„, by the Brueckner reaction matrix, G.
Once G is determined, the effect of the lower-en-
ergy configurations excluded from the model space
can be included explicitly by perturbation theory.
This is referred to as core polarization.

Numerous authors have calculated G, using pro-
cedures which are all formally similar but involv-
ing different approximations. We mention here
only the pioneering work of Kuo and Brown. ~"
Great success, especially in light nuclei, has been
achieved by this approach; however, it is not clear
to us that the method is sufficiently accurate or
that the approximation methods are even sufficient-
ly well understood to warrant abandoning the phe-
nomenological approach in heavy nuclei. We feel
that this latter approach is justified p posteriori
by the fact that a relatively simple interaction has
been produced which can be used to explain the
properties of several nuclei in the lead region.
In particular we have been able to obtain a satis-
factory simultaneous fit to the 1 and 3 collective
levels in Pb and the analog in Bi of the Pb'
ground state. All of these levels are rather sen-
sitive to the input parameters of the calculation.

It was found by True and Ford" that the energy
level structure of Pb'" could be fairly well ex-

TABLE I. The calculated positions of the lowest four eigenstates for the 3, 4, 5, and 6 levels in Pb and the
positions of the isobaric analog state (IAS} of the ground state of Pb when the harmonic-oscillator parameters are
fixed by three different prescriptions as explained in the text. All energies are in MeV and the residual force described
in Sec. III B was used.

Experimental
values Iu& =5~„=7.6 MeV

he& ——7.6 MeV
he@„=9.4 MeV

2.61

3.47

3.19
3.70

(3.96}

18.0

2.49
4.15
4.30
4.71

3.51
4.07
4.10
4.42

3.35
3.68
4.00
4.18

3.98
4.26
4.56
4.58

17.2

2.60
4.15
4.17
4.67

3.52
4.06
4.11
4.43

3.35
3.73
3.96
4.18

3.99
4.27
4.55
4.58

16.6

1.83
4.17
4,20
4.68

3.53
4.06
4.12
4.44

3.17
3.60
4.00
4.18

3.99
4.27
4.56
4.62

17.4
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plained if a singlet-even central force with a Gauss-
ian shape was used for a residual force. Further-
more, observed E2 transitions in Pb'" and Pb'
indicated the need of including excitations to high-
lying orbitals which tend to deform the core and
to allow electric multipole transitions to take
place which would otherwise be forbidden in the
assumed truncated configuration space. By weak-
ly coupling the lower-lying configurations to a
high-lying L = 2 phonon state, it was possible to
explain the observed E2 transitions and to "mock
up" the effect of the phonon admixture on the ener-
gy levels by a P, -type force which we shall call a
weak-coupling force and designate it as V«. With
the inclusion of the V~c force, the best fit to the
Pb'" levels was obtained when the strength of the
original singlet-even force (called V«) was re-
duced. The "best" residual force was found to be
0.70 VzE+ V~c in the calculations of True."

Kuo" has applied the Kuo-Brown method'~" in
the lead region and has found that core-polariza-
tion effects do give a P, -type force correction to
the Hamada-Johnston potential which he used as
a residual force. The matrix elements in Pb'"
obtained by Kuo ' are in good agreement with those
of True. '

The 0.70 Vs, +V« force will now serve as a
guide in our search for a residual interaction to
be used in the calculation of Pb~ and Bi . First
one generalizes the force to include a triplet-even
part. Assuming that it has the same radial depen-
dence as the singlet-even part, we obtain4'

V=nVoe " (P +qP )+V~c (10)

with

Vwc=+C QV~P(fbi)V2*i (f12) i

where P' and P are the singlet-even and triplet-
even projection operators, respectively, P = 0.2922
fm ', V, =-32.5 MeV. The+ sign in V« is given
by (-1)"""'"' ""', where the n, 's are the radial
quantum numbers of the harmonic-oscillator wave
functions which start out with a positive slope at
r = 0. In the case of Pb'~, n = 0.70, g = VT~/VsF
=0 and k'/C= 1.4 MeV. Although one does expect
a residual force of this type to change somewhat
as different nuclei are considered; one still hopes,
however, that a force can be found which will ex-
plain satisfactorily the experimental data for Pb'~,
Pb, and Bi as well as other nuclei in the lead
region. Thus in adjusting the two parameters e
and )P/C for Pb'" and Bi'08, we shall mainly vary
them around their best values as fixed by the cal-
culations of Pb'", namely, 0.70 and 1 4 MeV,
respectively.

The triplet-even force does not enter in the

TABLE II. The calculated positions of the isobaric
analog state (IAS) of the ground state of Pb208 and the
lowest 3 level in Pb as the over-all strength, n, of
the residual force, and the triplet-even to singlet-even
strength ratio, g=VTE/Vs&, are varied with V&c ——0 [cf.
Eq. (10) in text].

IAS
(MeV)

E(3-)
(MeV)

1.0
0.7
0.7

0.75

1.50
1.50

1.70
1.75
1.80

1.70
1.75
1.80

18.2
14.8

16,1
16.5
16.8

16.8
17.2
17.5

1.26
2.59

2.35
2.29
2.23

2.12
2.05
1.99

Experimental value 18.0 2.61

Pb"' calculations andso no guide astoits strength
can be obtained from those calculations. Low-en-
ergy scattering data indicate that the triplet-even
part of a nucleon-nucleon force is approximately
1.4 to 1.6 times as strong as the singlet-even part
of the force. It was found that a ratio of V~E/V«
= 1.6 gave the best fit in a shell-model calculation"
of the N' nucleus. The calculation for Pb"' and
Bi"' described in this paper indicates that a slight-
ly larger ratio of g = VTE/VsE is needed as will be
discussed below.

Experience has shown that the first excited
state, a 3 collective level at 2.61 MeV, in Pb'"
is very sensitive to the force strength used and to
the configuration space adopted. For example,
Carter, Pinkston, and True" failed to explain the
position of this 3 level because only five hole-
particle configurations were considered. In this
paper, we have 45 hole-particle configurations
which exhaust all the 1hz excitations that can
couple to J = 3 . The analog of the ground state of
Pb " a highly excited 0' state in Bi'08 around
MeV" above the Pb"' ground state is also sensi-
tive to the residual force used. Kuo~~ has done a
calculation of the energy levels of Bi'" using a
Hamada- Johnston potential with core-polarization
effects included. He found that the calculated po-
sition of the analog state was about 4 MeV too low.

It is felt that whatever force one used, it should
give about the correct positions for this first 3
state and the analog state. Indeed, with the infor-
mation provided by the Pb'" calculations, these
two states are almost sufficient to fix the force pa-
rameters of Eg. (10). We have performed several
calculations with different sets of parameters
(n, q) while setting V~c= 0, and some of the re-
sults are tabulated in Table II.
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It is interesting to observe that by using a force
with q =1.5, the analog state is calculated to be at
18.2 Me V, which is in good agreement with the ob-
served value. The amplitudes of the various com-
ponents of this analog state are very close to that
predicted for a pure analog state. (See Sec. IV for
further discussion of this analog state. ) However,
this force predicts the first 3 state to be at 1.26
MeV which is much too low in comparison with the
observed position. In fact this force with q =1.5
would have to be reduced by a factor of about 0.7
in order to give the correct first 3 state. How-

ever, this large reduction in the force strength
would completely destroy the previous good agree-
ment of the analog state which would now be at
14.8 MeV. It is seen that by adjusting the V„and
VTE alone one cannot improve the positions of
both the first 3 state and the analog state at the
same time. Table II shows that the best fit is ob-
tained for n =0.7 and q =1.8, where the singlet-
even part has the same strength as that in the
Pb'" calculations. If we now add to it the P, -type
force also with the same strength taken from the
Pb20' calculations, namely k'/C = 1.4 MeV, we ob-
tain the first 3 state to be at 2.49 MeV and the
analog state to be at 17.2 MeV; both are close to
the experimental positions. We will use this as
our residual force in the present calculations,
namely

c. =0.7, q= VTF/V« =1.8, and —= 1.4 MeV.

We would like to mention here that the other en-
ergy levels of Pb"' are insensitive to small vari-
ations in the residual force. The singlet-odd and
triplet-odd parts of the residual force are expect-
ed to be small and have assumed to be zero since
there is no evidence to the contrary. However, it
is quite possible that including the V» and V,o
central forces could improve the agreement be-
tween theory and experiment. The inclusion of
these two odd-state forces would introduce sever-
al new parameters into the calculation and this
does not appear desirable at this point.

C. TDA or RPA

The lowest 3 state in Pb"' is strongly collec-
tive and is observed to have an E3 transition
strength of about 40 single-particle Weisskopf
units. ' " In TDA, the collective property for
this transition is a result of the hole-particle am-
plitudes adding coherently in the E3 matrix ele-
ment. Further enhancement is expected from cor-
relations in the ground state (and excited states)
from admixtures of n-hole-n-particle configura-
tions. It is believed that most of these correlation

effects are taken into consideration by an RPA cal-
culation.

The appropriate residual interaction to use de-
pends on the truncated model space considered.
Because RPA calculations allow n hole-n particle
admixtures, RPA calculations effectively encom-
pass a larger model space than do the correspond-
ing TDA calculations. Consequently, one does not
expect to be able to use the same residual inter-
action in both a TDA and a RPA calculation. Al-
though TDA and RPA calculations give essentially
the same results for most of the levels, the col-
lective levels depend sensitively on the size of
the model space and the strength of the force and
will differ greatly in position depending on which
calculation is done. For example, the TDA cal-
culation described in this paper gave the position
of the lowest 3 level, a collective level, at 2.49
MeV while a RPA calculation with the same re-
sidual force gave the position of the energy squared
eigenvalue at -3.52 MeV'. Clearly, this is not the
correct residual force to use in a Pb'" RPA cal-
culation with the assumed truncated model space.
On the other hand, Rowe" points out that "higher"
RPA treatments tend to increase the energy of
low-lying states.

Table II demonstrates that adjustment of the pa-
rameters in the potential to make the analog state
energy sufficiently high tends to make the energy
of the lowest 3 level too low. Consequently a re-
sidual force which would make the lowest 3 level
"correct" in an RPA calculation would give poor
results in the TDA calculations of Pb and Bi
It should be emphasized that, for the most part,
the structure of Pb' ', Pb' ', and Bi"' can be fit-
ted by a single phenomenological interaction and
using conventional shell-model procedures which
ignore ground-state correlations. Furthermore,
it is felt that the structure of the negative-parity
excited states of Pb' ' are adequately described
by this residual force even though ground-state
correlations have been neglected.

Effective charges"" for electromagnetic tran-
sitions are also needed because the space is trun-
cated. These are normally assumed to arise from
core polarization, virtual excitations of protons
in the core to high-lying orbitals. Since ground-
state correlations also are known to enhance elec-
tromagnetic transitions, and they are not included
in our calculations, the effective charges intro-
duced phenomenologically in this work must con-
tain the effects of both core polarizations and
ground-state correlations. In the case of E1 tran-
sitions, our effective charges must be regarded
as compensating for the absence of ground-state
correlations. There is no core polarization cor-
rection to our E1 transitions since the E1 strength
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to the closed-shell ground state is exhausted by
the configurations used.

D. Coulomb Energies

In the Pb'" calculation, the proton hole-particle
matrix elements will also have a contribution
from the Coulomb force. It was observed by Car-
ter, Pinkston, and True'4 that the diagonal ma-
trix elements were quite constant and had a val-
ue of about -0.23 MeV while the off-diagonal ma-
trix elements were small and oscillated in sign.
Consequently, we shall adopt the prescription"
of replacing all diagonal Coulomb matrix ele-
ments by -0.23 MeV and all off-diagonal Coulomb
matrix elements by zero.

IV. ANALOG STATE IN Bi

The r'esidual force described in Sec. III was
used to calculate the structure of ground state and
the excited states of Bi with a, neutron-hole-
proton-particle basis in the 82 to 126 single-par-
ticle orbitals. These results are similar to those
obtained by Kim and Rasmussen" who used a cen-
tral potential and a strong tensor component both
of which had a Gaussian radial dependence. Our
results are also similar to those obtained by Kuo44

who used an effective force derived from the Ham-
ada-Johnston potential. The details of these cal-
culations for Bi "will be published elsewhere.

However, it is desirable at this point to discuss
briefly the position and structure of the analog of
the Pb"' ground state which is a highly excited 0+
state in Bi"'. This analog state is found experi-
mentally to lie approximately at 18 MeV above the
Pb"' ground state. This value of 18 MeV is ob-
tained by subtracting the neutron-proton mass dif-
ference of 0.78 MeV from the Coulomb displace-
ment energy of Pb"' which is 18.8 MeV as given
by Temmer. "

%'ith the residual force described in Sec. III, the
analog state is calculated to lie at 17.2 MeV which
is close to the observed value of 18 MeV.

The pure analog state is obtained by operating
on a closed core for the Pb"' ground state with
the isospin lowering operator T . The squared
amplitudes of the neutron-hole-proton-particle
states are 2j +1/2T+1, where j refers to the j
of the neutron hole and of the proton particle while
T =22 is the isotopic spin of the Pb' ' ground state.
The squared amplitudes of the calculated analog
state are compared with the 2 j+1/2T + 1 factors
in Table III.

It is interesting to note that although our resid-
ual interaction is charge independent, that we
have assumed a pure closed core for the Pb"'
ground state, and that there is only one 7'= 22

state (the others are T =21) in our hole-particle
configurations, the squared amplitudes for the cal-
culated states are not exactly equal to the 2 j+1/
2T+ 1 values for a pure analog state.

There are two reasons for this lack of perfect
agreement. One is that Coulomb forces cause
small deviations from isotopic spin purity. The
other, more significant reason, is the lack of con-
sistency between the residual interaction and sin-
gle-particle energies used in the calculation. 4' If
the Bi state jn question j.s the analog of the Pb
ground state, then their binding energies differ
only by the Coulomb shift. In a shell-model cal-
culation there must be a perfect cancellation of
contributions from the nuclear part of the Hamil-
tonian, so that the energy eigenvalue of the analog
state will come only from the extra Coulomb inter-
action of the "last" proton in Bi"'. This perfect
cancellation would occur automatically if the sin-
gle-particle energies used were calculated theo-
retically from the assumed residual force by
means of a Hartree-Pock calculation. This is be-
cause the neutron-hole-proton-particle matrix
elements are closely related to the difference be-
tween the neutron and proton single-particle ener-
gies." Since shell-model calculations are ba, sed
on single-particle energies obtained from experi-
ment, there is no guarantee of this consistency.
The near agreement of the present results with the
analog-state energy is a check of the force used
against the experimental single-particle energies.
The reproduction of the analog-state wave function
expected from isotopic spin purity is indirect evi-
dence for "almost" charge-independent nuclear
forces.

V. DISCUSSION OF RESULTS FOR Pb

The residual force described in Sec. III was used
in a TDA calculation to obtain the detailed struc-
ture of the excited states of Pb'". The calculated
energies and eigenfunctions for the low-lying neg-
ative-parity states are given in Table X. In this
section, we will describe in some detail the agree-
ment between the calculated results and the experi-
mental ones. The four lowest excited states have
been studied in more detail, since it is more dif-
ficult to resolve the individual levels for higher
excitation energies. Consequently we will be able
to discuss the first four excited states one at a
time and only compare the higher-lying states in
groups which is also how the experimental results
are given in general.

A. 2.608 MeV, 3 Level

This well-known collective state in Pb"' was cal-
culated to be at 2.49 MeV which is in good agree-
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TABLF ID. Comparison between the squared amplitudes of the calculated 17.2-MeV 0+ state in Bi and those of a
pure analog state. T is the isospin of the Pb ground state.

IfV sf gys& i'isis sos& lfsisfsis& lf std ss&

This
calculation

2j+1
2T

0.24

0.23

0.19

0.18

0.26

0.32

0.15

0.14

0.12

0.09

0.05

0.05

ment with the observed value of 2.61 MeV. The
collectivity of this state is demonstrated by the
fact that it has a large ES transition strength
(about 40 Weisskopf single-particle units" ") for
decay to the ground state of Pb'M. The (p, P') ex-
periments of Zaidi et al.' to this 3 state show
resonances at the analog states in Bi'" of all the
single-particle neutron states in Pb'". These ob-
servations imply that the 3 state has many neu-
tron hole-particle components which is also con-
sistent with it being a collective state. Indeed our
calculated eigenfunction (see Table X) for this
state is a multiconfiguration eigenfunction with no
one or two components dominating it.

Bjerregaard et al. '" ~ and McClatchie, Glas-
hausser, and Hendrie" have studied the proton
hole-particle structure of the lowest four excited
states in Pb"' by (t, o.) and (d, He') reactions, re-
spectively, with Bi'" as a target. These experi-
ments enable one to deduce the relative spectra-
scopic factors of the larger i lj, h»s)s components.
The relative proton hole-particle spectroscopic
factors are defined as

cle component in the eigenfunction. The calculated
S„'s given by Eq (11.) are compared with the ex-
perimentally measured S„.'s in Table IV. Bjerre-
gaard et al." have put upper limits on many of the
spectroscopic factors. This only means that if
the spectroscopic factors were larger than the giv-
en upper limit, then they would have been observed.
On the other hand, they could be smaller and our
calculated values seem to indicate this. In gener-
al, the measured and experimental spectroscopic
factors are in agreement.

We would also like to point out that the calculat-
ed results given in Table IV are similar to the un-
published results of Kuo and of Gillet which are
quoted by Bjerregaard et al."

We have used our wave function to calculate the
quadrupole moment of this 3 state adopting an
effective charge of 0.5e as described in Sec. V H.
The calculated result is Q„&,= -0.061 b which is
about 20 times smaller than the experimental val-
ue of Q,„p= -1.3+ 0.6 b as measured by Barnett and
Phillips. " It is not clear to us why the discrepan-
cy is so large.

where J is the spin of the Pb'" excited state, I = ~
is the spin of the Bi"' ground state, and

)C „.( p) is
the amplitude for the i lj, h„s)s proton hole-parti-

B. 3.192 MeV, 5 Level

The lowest 5 level is calculated to be at 3.35
MeV which is in agreement with the observed en-
ergy of 3.19 MeV. The calculated is»„h„s), spec-

TABLE IV. The relative spectroscopic factors for the ilj,hsis)s proton hole-particle states in Pbsss. The
experimental results were taken from Ref. 12 and Ref. 13.

(MeV) Ia1p» ~s/s)s ides &sos&s i dsys &sos&s la'&is. &sit&s

2.608

3,192

3,469

3.702

exp (Ref. 13)
exp (Ref. 12)

This calculation

exp (Ref. 13)
exp {Ref.12)

This calculation

exp (Ref. 13)
exp (Ref. 12)

This calculation

exp (Ref. 13)
exp (Ref. 12)

This calculation

0.08
0.06
0.044

-0.004
0.000 02

0.42
0.31
0.30

0.18
«0.10

0.11

&0.09
0.023

«0.007
0.0001

&0.52
0.038

«0.07
0.005

&0.06
0.003

—0.005
0.000 02

&0.36
0.002

«0.28
0.023

&0.28
0.002

~0.02
0.000 008

&1.7
0.002
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troscopic factor of 0.044 for this level is in agree-
ment with the two measured values of 0.08 and
0.06 which are given in Table IV.

Bardwich and Tickle (BT}'have studied this lev-
el by the Pbgg'(d, P)Pb"' reaction which should pop-
ulate the

~ p„„l j&„components of this state. They
found that this state is dominated by the

~ P»„g„,)„
component —a result also favored by Sastry" in
his study of the P decay of Tl'". The calculated
result is in agreement with these experimental re-
sults and has a value of 0.92 for the amplitude of
the

~ p„„g„,&„configuration (see Table X).
BT have also extracted relative neutron hole-

particle spectroscopic factors which are defined

by

(2J+ l)S„(n) = (24+ 1)x„.'(n), (12)

where J is the spin of the Pb'" level and y» (n) is
the amplitude of the ~P„„ lj)„neutron hole-parti-
cle component. For the

~ p„„g„,&„component of
the 3.19-MeV level, the calculated value of 9.4 is
in excellent agreement with the experimental val-
ue of 9.5. The relative spectroscopic factors for
the other

~ p„„l j&„components of this level and

for other levels will be discussed in Sec. V E.

neutron and proton hole-particle configurations
are very small. Indeed this is the case for our
calculated eigenfunction and the squared ampli-
tudes of all the hole-particle components except
those mentioned above are less than 1%.

D. 3.702-MeV, 5 Level

Our second 5 level is calculated to be at 3.68
MeV and

4-t. (2 68 5 ) = o 28
I pl/g gg/. &. + 0 18

I pg/w gg»&.

0.5—7 Ifg/5, gg /&5.
+0.M

I pl/gl ill/g&n

+0»Ifg/g ll/g&n '
~ lg/g~l5/g&n &

where only the large neutron hole-particle compo-
nents are given (see Table X for more detail).
Richard et a/. ' have experimentally determined
the neutron hole-particle structure of this level to
be

(2 70' 5 ) (0 41 + 0 02) apl/gy gg/5)

+ (0 10 7 0 18) i pg /gp gg/5)

- (0.76+ 0.12) ~ J„„g„,)„.
C. 3.469-MeV, 4 Level

Our lowest calculated 4 level lies at 3.51 MeV
and the eigenfunction is given by

Scale(2 51~ 4 ) = o 941Pl/w gg»&n

—0.22 I pg/2, gg/g&
—0.25 Ifg/g, gg/g&n ~

where the other components which are less than

1% have been neglected. This level has been stud-
ied experimentally by Bondorf, von Brentano, and

Richardg by a (p, p') reaction and they found a
structure for this level of

(2.47, 4-) =(0.96*0.02)
~ p„„g„,&„

—(0.26 + 0.08) I pg /5 ~ gg/5& n

+ (0.07 + 0.16) lf5/5, gg/g&n ~

The first two amplitudes agree very well. The

~
f»„gg/g&„amplitudes do not agree. On the other

hand, this amplitude is not too well determined
experimentally.

BT' have measured the relative spectroscopic
factor as defined by Ell (12) to be .8.7 for the

~P»„g„,)„component and the calculated value is
8.0 which is in good agreement.

This level does not resonate at the other analog
resonances in the (P, P') experiments besides
those three mentioned above and is absent in the
Bi"'(t, o. )Pbggg and Bi"'(d, He')Pb"' experiments
which indicate that the amplitudes of all the other

Here the agreement of the amplitudes is not as im-
pressive as before but the agreement is still rea-
sonably good. Richard et al. ' however point out
that the experimental amplitudes given above
could possibly be questioned since their analysis
was made by assuming a pure compound cross
section which ignored a measurable direct compo-
nent.

The proton hole-particle relative spectroscopic
factors defined by Elf. (11) of this level are com-
pared to the experimental results of Bjerregaard
et al."and McClatchie, Glashausser, and Hen-
drie" in Table IV. Again good agreement between
the calculations and the experimental results are
obtained. Also the calculated configurations are
in agreement with the P-decay studies of Tl by
Shastry. ~'

Mukherjee and Cohen' and BT' observed the
broadening of a line in this region in their Pb'"-
(d, P)Pb"' experiments and concluded that there
was a doublet of levels at 3.73 and 3.76 MeV. BT
concluded that these states were dominated by the

( p«g, gg»&„component although they failed to re-
solve the two levels. The (p, p'), (t, o ), and (d, He')
experiments mentioned above observed only one
level, a 5 level at 3.702 MeV, in this energy re-
gion. Our next higher calculated level lies at 3.98
MeV and is dominated by a very pure

~ f„„g„,&„

hole-particle configuration. Furthermore if one
calculates the spectroscopic factor of the 5 level
at 3.70 MeV using the experimental determined'
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value of 0.41 as the amplitude of its
~ p»„g„,)„

component; one obtains, according to Eq. (12),
(2/+1)S(n) = 1.85 which is in excellent agreement
with the value of 1.9 as measured by BT for the
conjectured doublet. Thus it is quite possible that
there is only one 5 level in this energy region.

E. Relative Spectroscopic Factors

and Centers of Gravity

Above about 3.8 MeV the excited levels in Pb"'
became so dense that it is difficult to resolve them

and to experimentally study them in detail as has
been done for the lowest four levels. For the high-
er-energy regions, the experimental results are
given in the form of spectroscopic information for
groups of levels, centroid energies for various
hole-particle multiplets, and total strength for
various hole-particle multiplets. We will now

compare our calculated results for the negative-
parity states in this manner.

As mentioned above, the relative spectroscopic
factors defined by Eq. (12) for the neutron hole-
particle configurations,

~ P»„ lj)„, have been mea-
sured by BT' by the Pb"'(d, P)Pb"' reaction. The
relative spectroscopic factors defined by Eq. (11)
for the proton hole-particle configurations,
~l j, h„,)„have been measured by Bjerregaard et
alF by the Bi'"(t, o.)Pb"' reaction and by McClat-
chie, Glashausser, and Hendrie" by the Bi'"-
(d, He')Pb"' reaction. These measured spectro-
scopic factors provide a direct test of our calcu-
lated wave functions.

Our first comparison will be for the total strength
of a given hole-particle multiplet. For the (d, p)
reaction the total strength of a given neutron hole-
particle multiplet is defined by

Q(u+ 1)S„(n)= Q(2m+ 1),
J

where S„.(n) is defined in Eq. (12) and the J's are
the possible spins which can be obtained by cou-

TABLE V. Sum rule of the total strength for the neu-
tron hole-particle multiplets in Pb . The experimental
results were taken from Ref. 9.

pling a P„, neutron hole to a Ij neutron particle.
The summation at the left-hand side is to be taken
over all states which share the ~P»„ l j)„hole-
particle strength. For the (f, o. ) and (d, He') reac-
tions, the total strength of a given proton hole-
particle multiplet is defined by

QS„(P)= 2 j+1, (14)

where S»(p) is defined in Eq. (11), j is the spin of
the transferred proton hole, and the sum is over
all the levels which share the ~l j, h„,), hole-parti-
cle strength.

The total theoretical strengths, the experimental-
ly measured strengths, and the calculated strengths
for neutron and proton hole-particle multiplets
are compared in Tables V and VI, respectively. In
summing up the calculated total strength we have

- omitted the contributions from those levels in
which the amplitude of the hole-particle compo-
nent under consideration is smaller than 0.06. In
Table V, the experimental measurements only con-
sidered excited states below 6.1-MeV excitation
and consequently the calculated strengths also in-
cluded only those calculated levels below 6.1 MeV.
It can be seen from Table V that the experimental
and calculated strengths agree very well. Both
the

~ p»„g7/, )„and ~p„„d»)„experimental and
calculated strengths are somewhat below the sum-
rule value. This is mostly due to the energy cut-
off at 6.1 MeV. Indeed, if all the levels below 7.1
MeV were included, the calculated total strength
will increase to 7.51 and 15.5 for the ~P»„d„,)„
and ~P»„g»,)„multiplets, respectively. The ad-
ditional missing strength is expected to be shared
by levels lying at even higher energy.

In Table VI we see that the experimental and cal-
culated proton total strengths of the ~s„„h„,)p and

~ds/„h», )p multiplets agree very well. They are
slightly below the values predicted by the sum rule
which is to be expected since only the states below
5.V MeV were considered in determining both the

experimental and calculated strengths. The agree-
ment for the total strength of the ~d»„hs/, )p mul-
tiplet is not as good as the above two; its calculat-
ed value is less than the experimental one even

5 l/2' gp/2&n

~ I/2 ~ ~u/2)n

~ &/2~ d 5/2)n

Q i/2 S i/~&n

Lp u» z~p&.

@i/2~ds/2)n

20

16

P {2J+1&S
Multiplet Sum rule

20.7

23.2

10.4
3.6

11.7
4 3

19.7
23.8

14.2

5.8

P {2J+1&S~ Q {28+1&S~~

Multiplet
S

Sum rule

lsi/2 ~s/2&p

lds/2s ~8/2)p

Id 5/~ &p/g&p

3.83

5.61

1.97

3.95

4.77

TABLE VI. Sum rule of the total strength for the pro-
ton hole-particle multiplets in Pb . The experimental
results were taken from Ref. 13.
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though in this case all calculated levels up to 5.9
MeV are included in the summation. We also no-
tice in Tables V and VI that in general the agree-
ment of the calculated strengths with the experi-
ment is better for the low-lying multiplets than
for the high-lying multiplets.

It is rewarding that the calculated and experi-
mental strengths of the neutron and proton multi-
plets are in the same energy region. If the experi-
mental strengths were considerably lower than the
calculated strengths, one would have been forced
to conclude that the fractionation of the strength
had occurred with some of the strength appearing
at higher energies due to mixing of more compli-
cated configurations with the one-hole-one-parti-
cle configurations. Then our truncated space of
one-hole-one -particle configurations would have
been inadequate to explain the experimental ob-
servations.

Our next comparison between the calculated re-
sults and the experimental results will be to look
at the spectroscopic factors in more detail. Since
it is essentially impossible to identify level by lev-
el the calculated and the observed levels, the com-
parison will be presented by graphs. The relative
spectroscopic factors defined by Eq. (12) for the
neutron hole-particle components are compared
with the experimental results of BT' in Fig. 2.
Similarly the relative proton hole-particle spectro-
scopic factors defined by Eq. (11) are compared
with the experimental results of McClatchie, Glas-
hausser, and Hendrie" in Fig. 3.

Figures 2 and 3 indicated clearly that the agree-
ment between the experimental and calculated re-
sults are generally good. The general features
like the occurrence of clusters, their widths, and

their locations are well reproduced by the calcu-
lations.

Another comparison which can be made is the

center of gravity of the hole-particle multiplets.
The center of gravity of the proton multiplets is

2
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and the center of gravity of the neutron multiplets
is defined by

Z„(n) = g(2Z+ l)S„(n)E,/g(2J+1) . (16)

In Egs. (15) and (16), the sum over J is over all
levels which contain the given multiplet.

The calculated and experimental centers of grav-
ity for the Ip„„ l j)„hole-particle multiplets and

the Il j, h», )~ hole-pa, rticle multiplets are com-
pared in Tables VII and VOI, respectively. In Ta-
ble VIII, one notes that the calculated centers of
gravity of the proton multiplets are about 150 keV
larger thag the experimental ones and that both

are lower than the zeroth-order energies. In Ta-
ble VII, one sees that the calculated and experi-
mental neutron centers of gravity are in better
agreement with each other.

FIG. 2. Relative spectroscopic factors for the

Ip & &, lj)„neutron hole-particle configurations. The
experimental results were taken from Ref. 9. The dou-
ble lines indicate a doublet.

defined by

EXP
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CONTA IN I N G

THIS STRENGTH

r 11

4 5
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6
rTrT 1 .v T
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FIG. s. Relative spectroscopic factors for the 1lj, h&l&)& proton hole-particle configurations. The experimental re-
sults were taken from Ref. 13. The double lines indicate doublets.
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TABLE VII. Centroid energies of the neutron hole-
particle multiplets in Pb . Eo is the zeroth-order en-
ergy. The experimental results were taken from Ref. 9.

TABLE VIII. Centroid energies of the proton hole-
particle multiplets in Pb 8. Ep is the zeroth-order en-
ergy. The experimental results were taken from Ref. 13.

Multiplet
Eexp Eca,&c

(MeV) (Me V) (MeV)
&mac —Ee~

(MeV) Multiplet
Eo Eel Em&c

(MeV) (Me V) (Me V) (Mev)

(p z/z gz/z)n

[Ptz~zzgz&n

L t'z»dz/z)n

Q i/i2t, sz/z&n

5 z/t ~ gz/z)n

~t t dz/z&.

3.44

4.21

5.00

5.47

5.91

5.96

3.39

4.25

5.00

5.28

5.94

5.92

3,50

4.26

5.07

5,46

5.90

5.90

0.11

0.01

0.07

0.18

—0.04

—0.02

F. Total Inelastic Proton Partial Width

Richard et al.' have measured the proton partial
widths I"

~ for exciting the ~lj, g»,)„hole-particle
configurations in Pb"' from a Pb'M( p, jz')Pb'I
analog resonance reaction. The proton partial
width is given by

~ (2d+ I)i.sP &t„, ,
'

j

where J is the spin of the final state in Pb"', l' j'
are the quantum numbers of the neutron in the par-
ent analog state —

ggf2 ln this case, lj are the quan-
tum numbers of the neutron hole state, y$ j $ j is
the amplitude for the ~l j, I' j')„component, and I",,

P

is the single-particle width. In this sum over j,
we will neglect the i$3gz and k„, neutron hole states
because they are only weakly populated due to the

Idz/z, hz/z)n

I dz/z, hz/z)z,

4.23

4.58

5.90

3.90

4.25

5.55

4.09

4.42

5.66

0.19

0.17

0.11

high angular momentum barrier. Note that the par-
tial widths depend on the g„„g„,)„, ~ f»„g»,)„,

provides a further test of these neutron hole-par-
ticle configurations in our calculated wave func-
tions. This is in contrast to the spectroscopic
factors obtained from the pb'"(d, p)pb"' experi-
ments which only tests the

~ p»„ t' j')„amplitudes.
Using the single-particle widths in the paper by

Richard et al.' and our calculated wave functions,
the I ~'s can be calculated and compared with the
experimentally measured ones. This comparison
is'made in Fig. 4 and one notes that the agree-
ment is quite good. It is seen from Fig. 4 that the
calculated levels as a whole shift up about 100 keV
compared with the experimental positions.

Some remarks are in order. First, in calculat-
ing the proton partial width I"~, we have neglected
its dependence on the energy of the level under
consideration. Secondly, it is pointed out to us by
Richard" that the partial width I"~ of the lowest 3
state was not well measured due to the interfer-

EXP 4

20-

IO-

(keVPo

t' I
4.5 4.0

CALC
3.5

4

3.0

20-
6

IO-

4 2
r

4.5

5 5
&4

76

1

4.0
ENERGY (MeV)

3.5 3.0

FIG. 4. Proton partial widths for exciting the ) Ij,gz/z)n neutron hole-particle states. The experimental results
were taken from Ref. 7. The calculated level energy scale has been arbitrarily shifted upwards by 100 keV.
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I I I I I I I I

5.0 4.5
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2,3
T'

2'
2

r rT
6.0

(~,4)
T
I

I5- 4
2

42 5" - --3

lib It
5.5

ENERGY (Mev)
5,0 4.5

FIG. 5. Proton partial widths for exciting the
I
fj,d5i&)„neutron hole-particle states. The experimental results

were taken from Ref. 8. The double lines indicate doublets.

ence of the direct background, hence it is not in-
cluded in Fig. 4. Our calculated I'~ for this lowest
3 state is I"~ =1.63 keV, a rather small value.

Very recently, Kulleck et al. ' have published
their study on the isobaric analog resonance of
the Pb"'d„, single-neutron state in Bi"'. They
have measured the proton partial width I'~, which
according to EIl. (17), provides a test of the

Il j, d„,)„neutron hole-particle components in our
calculated wave functions. This will supplement
the information one gathers from the g», ground-
state analog resonance in Bi'" which merely con-
cerns the Il j, g„,)„hole-particle structure as has

EXPERIMENTAL PHOTONEUTRON
CROSS SECTION

already been discussed above.
Using EIl. (17) and the single-particle widths

quoted in the paper by Richard et al., ' the I'~'s
were calculated and are compared with the experi-
mental results in Fig. 5. The calculated results
roughly resemble the measured data, however,
the agreement is not as impressive as that for the
Il j, g», )„hole-particle states. This seems to be
expected since the Il j, d„,)„hole-particle states
are all highly excited, for example, their ener-
gies generally range from 4.5 to 6.5 MeV. Kulleck
et al. ' have assigned the spin of the measured
4.692-MeV level as J"=3 which has a measured
I'~=8.7 keV. This seems to be confirmed by our
calculation where we find a calculated level at
4.706 MeV with J = 3 and a calculated I'~= 12.4
keV.

I—

4-
CO

CQ

O
CL
CL

O
I—
Q) 2

CL

IT
I

8 9
I I I

IO I I 12
ENERGY (MeV)

I I

l4 l5

FfG. 6. Distribution of electric dipole strength in
Pb . The experimental results were taken from
M. Danos and E. Q. Fuller, Ann. Hev. Nucl. Sci. 15, 29
(1965) .

G. Giant Dipole Resonance

Shell-model calculations of the dipole states in
Pb'" have been performed by Gillet, Green, and
Sanderson, "and also by Kuo, Blomqyist, and
Brown (EBB)." We have calculated the El transi-
tion strengths using an effective charge of 0.5e
(see Sec. V H). The results are plotted in Fig. 6.
Our dipole strength is mainly concentrated in the
three highest-energy states ranging between 12 to
13 MeV which is about 1 MeV below the experi-
mental peak. The concentration and the location
of the peak of the dipole strengths in the present
calculation are an improvement over previous
calculations which gave less concentration and
were centered at lower energies. All the energies
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of the dipole states together with their strengths
are listed in columns 1 and 2 of Table IX, the wave
functions of the lowest nine 1 states are given in
Table X.

It is well known" ", for a shell-model calcula-
tion of this type where the internal motion and the
center-of-mass motion is not separated, that spu-
rious states can be admixed in the calculated eigen-
states. The most important spurious state in this
case is the state which has the center-of-mass
motion in a 1P state and with an internal motion
the same as the ground state which is known to be
in the 1s center-of-mass state. In addition to the
28 1 states given in Table IX, the calculations al-
so produced a 1 state at -1.62 MeV. This level
was not included in Table IX since it is almost
completely a spurious state. The amount of spu-
llous-state admixture ln Rny 1 stRte cRn be found

by operating on the Pb'" ground state with the cen-
ter-of-mass raising operator" and then taking the
overlap with the 1 state in question. For the 1
state at -1.62 MeV, the overlap integral was cal-

culated to be 0.947.
In contrast, the overlap integrals to the 1

states at 4.96, 5.39, 5.61, and 5.74 MeV were
0.05, 0.02, 0.06, and 0.10, respectively. Within
the accuracy of these calculations, it is concluded
that the -1.62-MeV state is essentially a spurious
state and that the other states contain very little
spurious state admlxtures.

EBB"mentioned in their paper that the choice
of the oscillator parameter h(d for the single-par-
ticle orbitals may have a large effect on the calcu-
lated results of the dipole states. In order to in-
vestigate this effect, we have, in addition to the
present calculation, performed another two addi-
tional calculations using the same residual force
as described in Sec.ID 8, but with different values
of hv. One of the calculations used the (h&u) „'s
as determined by Kl 8" (see also Sec. III A) for
each of the orbitals. The other one used the oscil-
lator parameter adopted in this paper for the pro-
ton orbitals, i.e., S(d~= 7.6 MeV and the oscillator
parameter (h&u) „of the neutron I j»» orbital for

TABLE IX. The calculated positions of the 1 levels in Pb 08 and their respective El transition rates in Weisskopf
spu to the ground state of Pb when the harmonic-oscillator parameters are fixed by three different prescriptions as
explained in the text.

S~& =5+„=7.6 MeV
Energy T (E1)
(MeV) (spu)

Sv& = 7.6 MeU
5u)„=9.4 MeV

Energy r(E1)
(MeV) (spu)

4.96
5.39
5,61
5.74

5.97
6.06
6.37
6.67
6.81
7.14
7.22
7.26
7.46
7.58
7.68
7,85
8.02
8.19
8.42
8.65
8.95
9.11
9.16
9.71

10.90
11.81
12.64
13.05

0.243
0.000
0.057
0.210
0.158
0.071
0.000
0.019
0;000
0.033
0.069
0.001
0.017
0.002
0.005
0.000
0.069
0.001
0.176
0.227
0.030
0.023
0.035
0.149
0.493
6.086
0.824
2.697

4.74

5.38
5.47
5.64
5.94
6.05
6.37
6.69
6.89
7.15
7.24
7.29
7.56
7.63
7.77
7.84
8.04
8.23
8.50
8.63
8.94
9.00
9,21
9.77

11.07
12.04
12.72
12.94

0.071
0.093
0.841
0.469
0.213
0,042
0.000
0.022
0.007
0.054
0.028
0.101
0.015
0.068
0.041
0.084
0.063
0.000
0.020
0,892
0.015
0.021
0.455
0.157
0.080

10.11
0.659
2,267

4.64

5.27
5.38
5.58
5.95
6.06
6.39
6.72
6.90
7.18
7.27
7.32
7.59
7.64
7.80
7.91
8.09
8.27
8.51
8.63
9.00
9.06
9.28
9.98

11.14
12.29
12.74
13.27

0.176
0.485
0,017
0.094
0.050
0,004
0.000
0.010
0.005
0.048
0.035
0.026
0,012
0.021
0.000
0.023
0.008
0.020
0.004
0.586
0.004
0.000
0.094
0.110
0.104
4.440
O.M2
6.289
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TABLE X. This is a tabulation of the eigenvalues and eigenfunctions of the negative-parity states in Pb . 7f more
than 10 states of a given spin were calculated, only the lowest 10 states are given. Whenever the calculated amplitude
of a given hole-particle configuration is less than 0.1 in magnitude, it is not given. An exception to this rule is that in

every case the four largest amplitudes for all states are given even though some may be less than 0.1 in Inagnitude.
The 3 level at 2.6 MeV is also an exceptional case and its complete wave function is given at the end of the table. The
first column gives the spin and parity of the level, and the second column gives the calculated excitation energy. The
third column gives the transition rate T(EA) in spu which was calculated by using an effective charge of 0.5e as dis-
cussed in the text. For each spin, the remaining columns give the hole-particle configurations on top and the corre-
sponding amplitudes below. For example, the amplitude of the li/tt/s s[3/s)s configuration for the 1 level at 4.964 MeV

is +0.275. Note that in general, many more configurations were considered than are listed. None of them will appear
if their amplitudes are always less than 0.1 for the states given.

z r(zz)
I " (MeV) (spu)

0

Eigenhctions

Ipt/sat/»n Ifvs&vs)n Ihs/sgs/»n Ips/s&s/»n I&s/sps/s), Ia&/spt/s&s If7/sgg/s&n I/7/sfps&s l&vsfv»,

lg's/s @s/»s

6.198
7.332
7.693
7.803
8,079
9.147

-0.469 —0.817

-0.074

0,284
0.196
0.127
0.904

-0.107

-0.100

—0,170
0.919
0 n 111

-0,117
0.691

0.635

0.673
—0.203
-0.638
-0.183

-0.156
0.158

—0.296
—0,235

-0.122

0.283
-0.716

9.412
9.771

-0.132 -0.116 0,273
0.214 0.185

-0.398
0.619

0 854 ~ ~ n

0,275 -0.573

0.960
0,076

Ipi/seu»n If s/s&s/s&n IA/sos/»n

I&s/sf 7/s), lhs/sgs/». Ips/sA/».

le~/s@s/s)p I a&/sp &/s&s IA/sp w&p

Ãs/s~ s/s&n Ipus~ vs&n IP vs et/»n IHs/s&s/»n lf vsgv»n lf s/sA/»n

Ihivssts/s&s Ifps~v»n Iat/sps/s)p IA/sfv»s lhs/ssii/»n l~s/sps/»s

I&vsp s/»s

4.964 0.24

5.392 0.00
5.614 0.06

5.744 0.21

5.971 0.16

—0.374
0.168

-0.857
-0.333

0.245
0.154

-0.751
0.110

0.258

-0,458

0,168
—0.429

0.160
~ n ~

-0.260
0.275

—0.302
0.650

-0.101
0.158
0.352

—0.205
0.157

0.427

0.194
0.287

-0.604
0.192

0.166
0.266
0.115

0.349
—0,246

—0.270
0.228,

—0.156

—0.101

0.216

0.248
-0.106

0.453

6.055 0.07

6.368 Q .00

0,389
-0.117

0.217

0.139
0.236

-0.201

0.142
-0,259

0.129

0.440
0.262

0.204
-0.188

—0.282
0.1Q1

—0.194 0.497

6.670 0.02

6.813 0.00
0.502

-0.166

I

-0.467
—0.365

-0.173 0.217
-0.251

0.181
0.174

0.556
-0.176
-0.378
0.102
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TABLE X (Continued)

E T (EA,)
I" (Mev) (spu) Eigenfunctions

4.422
5.179
5.586

Ifvggsn&n

IP3/2 S 1/2)n

I ~11/2213/2)p

0,912
-0.244
0.166

IP 1/2d5/2)n

I
2 73/2J ts/2&n

I
e ugP 3/2&p

-0.353
-0.836

0.166

ldwgf p2&p

lf 5/2&7/2&n

I dg/gf 5/2&p

0.104
-0,204
-0.532

0.237

If5/2d 5/2&n

If5/2 d3/2&n

I/ 3/2 211/2&n

0.194
-0.223

0.318
—0.388
0.284

If 7/2 8'3/2&n IPgn d5/2&n Id 5/2 ~g/2&p IP us dgn&n If5/2 + 1/2&n

Ifv/25tt/2&n ldg/2f v/2&p l@s/ggs/2&n IP3/2dg/2&n I+7/gf v2&p

I av/2 "sn&p

-0.153
0.158
0.487 ~ ~ ~ ~ ~ ~ ~ ~ ~

5.672

5,766

0.205
—0.103

—0.198 0.714

0.117
—0.889

-0.130

-0.167

0.508

0.218

-0,297
0.124

0.205 0.196

5.938

6.009

0.117
—0.121

0,318

-0.124
0.187
0.398

0.472

0.208

0.219 0.216
—0.294

0.271
0.102

0.106 —0.543 0.373

0.556 —0.306
0.116 ~ ~ ~

6.120

6.129

6,266

0.328
-0.117
0.261
0.140

-0.134

-0.176
0.237 —0.275

-0.113
0.104

0.316

0.210

0.247

-0.197
0.359

0.214
—0.309

—0.119

-0.457
-0.216

0.379
0.120

-0.197

-0.917

-0.118

-0.425

—0.474

0.174
0,262

-0.567

3 Ifsn &3/2&n

IP 3/2 d5/2)n

I "3/2 itu»n

IP 3/2 g'5/2)n

I ds/2 Its/2&p

ld3/2P3/2)p

3/2 ~g/2&p If5/2 21 1/2&n IP 1/2 dug&n I +1/sf p2&p I d3/gf p2&p If 5/2 dg/2&n Ifps gs/2&n

IP usa'7/2&n If5/geu2& lsnts/2215/2&n lf 5ng vn&n lds/sf v/2&p I et/sf 5/2&p l~tu2273/2&p

I/'7/2 "sn&p

4.149 0.01
4.299 0.02

4.706 1.82

4.996 0.06

5.106 0.01

5.255 1.25

5.550 0.25

5.627 0.42

5.763 0.23

0.921

0.218

0.190

0.103
-0.114
0.107

0.110

0.757

0.327
-0.592

—0.447

-0.251

0.202
—0.299

—0.126

0.258

0.141
0.600

-0.108
-0.395

—0.496
-0.216

0.125

0.127

0.143

0.365

0.315

0.690

—0.261

0.159

—0.251

—0.101

-0.140

—0.607
0.130
0.299

0.163

0.607
0.198

—0.189

0.121
0.216

0.126
0.161

—0.302

0.234
0.104
0.675

—0.306

0.141

-0.257

—0.306

-0.105
0.111
0.480

-0.129
-0.189

—0.262

0.483

0.575
0.123

—0.108

-0.101

-0.385

-0.670

0.499

0.190

—0.069

0.223
0.106

0.290
0.111

—0.228
0.144

0.239
0.226

—0.477

3.509

IP t/2gs/2)n

lf V2 "V2&n
—0.940

Ifg/2 g'3/»n

If 7/2 A/2)n

0.245

I+ u2 ~3/2&p IP3/gas/2& ldgn ~ns/2&p If5/2stug& IP3/22 ntu2&n I+7/gf 7/2&p ldg/2f 7/2&p

IP 3/2 d5/2&n ld Vg @3/2&p IP 1/2 A/2&n If7/2 511/2&n ld 5/sf 7/2&p

~ ~ ~ 0.227 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

4.066 0 ~ ~ -0.056
0.048

—0.873
0.080

—0.474
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TABLE X (Continued)

E T {EA,)
I~ (Mev) (spu) EigenfU. nctions

4.104

4,424

4.478
4.859

5.341

-0.200
0.089

-0,238

-0.949

0.117

0.075

0.118
0.113

—0.434
0.103

0.174

0.806
-0.266

0.282
0.916

0.847

0.483 0.826

5.357

5.551 woe

0,965 0.088 -0.114

~ 0 0

-0.273
0.212
0.102

—0.176
—0.926

ifS/2A/2&n L &piipa&n l&gpsap&p IP3pg9i~&n l&3i2hsi2&p If@2&igig&n lpsip&imp&n ldgpf(p&p

if»2"5i2&» i~7n&~n&. id5n"9n&u l&~312&Sg~&n If~i2gVp&. IfVp~ug~&. F'3pgVp&. IT&g,piggy&p

3.350 10.21
3.680 14.37

4.002 0.01
4.179 1.69
4.228 0.16
4.337 0.28

-0.923
0.289

-0.139
0,130

-0.698
0.347

0.147
0.357

-0.212
0.110
0.746
0.420

0200
0.524
0.111

-0.634
-0.286
-0.283
-0.136

0.560
—0.509

0.602

0.144
0.186

0.117
0.647
0.209

—0.561

n n 4

0.194

0.137
—0.191
-0.318

-0.119
-0.126

-0.122
—0.189

4.789 1.52 0.146 -0.273
0.206

5.083 4.25

5.197 5.17

5.596 2.22

-0.132

-0.830

0.130
0.199
0.149
0.331

0.136
—0.161

0.328

0.146

0.110

0.111 0.101
—0.190

0.107
~ n ~

0.103

0.765

—0.593

0.121

-0.390

—0.585

If 5nZV 2&n IP i)g ~tgi2&n IP3i2g9i2&n l~y2 ~sip&p lf Si24i12&n IP F2 iti/2&n IfYi'2kai2&n ld5i2 ~cia&p 1~13i23 i5ia&n

If512 gp2&n Ifp2iigip&n I~gi28'9/2&n I~igizitaig)p Ifyi24ip)n I@ei2ini2&n

—0.142
—0,037

4.255
4,562
4.581
4.843
5.120

-0.107
0.107

—0.939

-0.237
0.200

~ ~ 4

0.852
0.464

0.430
-0.839
0.291

0.290
0.211

-0.224
—0.872

0.222
-0.283
—0,940

-0.105

5.701

5.834

6.483

6,582

0.106

0.074

0,416

-0.116

0.106
~ i n

0.125

0.978

0.799

-0.414
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E T (EA,)I" (Me V) (Spu)

4.047 6.4 7

~f 5/2 gs/».

~&8/2itt/2).

-0.991

TABLE X (Continued)

0.068
0.059

0.049

Eigenfunctions

lfs/situs&. I&5/situs&. Ifv/sgs/2&. IdsnIsn&p ltts/255/2&. Ifv/2itt/2&. I/8/2gs/2&. I&tv/2tts/2&p

lgvntvsn&p Ifv/sgv/2&n lgv/sfv/2&p

4.715 3.29
5,092 6.26
5.693 11.90

5.786 0.11
6.392 4.97

0.075

-0.104

0.978
—0.095
0.163

0.945
0.261

0.130

0.176
0,275

-0.740

-0.416
-0.336

-0.215 -0.261

-0.117
0.105

-0.118

-0.103 0.377

6.589 0.11
6.827 1.10

-0.250 0.924
-0.143 -0.171

-0,128
-0.961

7.021 3.45

7.450 0.43
-0.195

0.397

-0.089

0.119 -0.148 —0.8 68

-0.236

If5/2 stu2&tv IfV/2gS/2&n 1515/2215/2&n lfV/25tu2)~ l@SngS/2&n l@tussts/2&p l~s/25tus&n lgV/2~8/2)p l~s/2 gt/2&n

lgs/2/vs/»p l gs/2f v/2)p

5.026
6.103
6.487
6.585
6.879
7.038
7.663
7.957
9.679

11.46

—0.032
-0.058

0.998

0.984
0.115
0.111
0.056

0.037

-0.160
0.880
0.343
0.037
0.279

-0.064
0.060
0.363

—0.927

-0.049

-0.032

0,265
0.079
0.046

—0.953
—0.107

-0.066
0.905

-0.403
-0.069
-0.015

0.051

-0.063
0.399 —0.065
0.913 0.033

~ p ~ 0 995
-0 033 . ~

tsn&tsn&n ~fv/vitu2&n l~s/fags/2&n ltvtusits/2&p I/vsnittn&„ Igsn tvsn&p

6.373
6.621
6.974
7,012
7.686

11.55

17.79
4.88
4.95
0.40
0.34
8.55

0.862
-0.446
0.168

-0,168
-0.031
-0.031

0.361
0.850
0.382

—0.030

-0.134
-0.245
0.697
0.660

0.321
0.138

-0.580
0.725

-0.124
0.096
0.991

—0.046
0.043
0.998

If5/sgs/2)n &8/sgs/2& ldsn "sn)p Ifsnstt/»~ IP tnds/2)~ let/sf vn)p l&snf v/2)p I&5/sds/2&~ Ifv/2 gs/2&~

W 2/2ds/2)n lds/2 @8/2)p IP 1/sgv/2)n If5/2 81/2&n

Los/sgvn&n I/vsngs/2). Its/2ds/2). Ieusfs/2)p

lits/265/2&n If5/2 gv/2)n

I/'5tt/2 tsn)p Ifvnds/2&n

~fs/sds/2)n ~fv/25tt/2)aids/2fv/2)p

Ids/2fs/2)p ~I 8/2 tt/2&nods/82/2)p

lgvn@sn)p Ifvnet/2)n If zn gvn)rg Ifv/2dsn)» ltssndsn)n Igvnf vn)p IIds/sf 5/2&p ldsnP 8/2&p I/58/sgv/2&~

I/58/2 dsn)~ I d 5/2P tn&p I zv/2f sn&p I gv/2P sn)p I gvnP tn&p I gsn @sn&p It'8/sf vn)p It'8/2f 5/2&p I gs/2/2 2/2&p

2,487 39.37 -0.170
0.075
0.075
Q.182
0.015

0.372
0.081

—0.025
0.033
0.060

0.394
0.155
0.081
0.058
0,041

0.332
-0.037
0.137
0.029

—0.014

—0.101
0.287
0.267

-0.006
0.023

0.307
0,141
0.056

-0.031
0.038

-0.144
0.050
0.105
0.070
0.038

-0.046
0.054
0.20Q

0.057
0.013

0.212
0.167

-0.084
0.039
0.021
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the neutron orbitals, i.e., k~„=9.4 MeV. The re-
sults of these two calculations are presented in
columns 3 to 6 of Table IX for comparison.

It is interesting to see from Table IX that the
calculated energies of the dipole states are simi-
lar in all three cases. The transition strengths,
on the other hand, are quite sensitive to the types
of prescriptions used for @co. Nevertheless, the
position of the giant dipole resonance remains ap-
proximately the same in the first two calculations.
The third prescription causes the giant dipole res-
onance to shift upwards to about 13 MeV which is
now closer to the experimental value. This up-
ward shift was anticipated by EBB."

H. Electromagnetic Transition Rates

As pointed out in Sec. III, an effective charge
concept is necessary because we have used too
small a model space in our calculations to be able
to describe the observed electromagnetic transi-
tions in Pb"'. Although there is no reason to ex-
pect the effective charges for different multipolar-
ities to be the same, an effective charge of 0.5e
for the neutrons and 1.5e for the protons gives a
fairly good fit to all the observed EX transitions.
The El transitions to the ground state of Pb"' have
been discussed in Sec. V G. Bernstein" has re-
viewed the status of transition rates in Weisskopf
single-particle units for various nuclei which in-
clude Pb"'. For Pb"', he refers to the experi-
mental results of Alster"'" and of Zeigler and
Peterson" and gives a transition rate of 39.5 + 2.2
single-particle units (spu) for the decay of the 3

level at 2.61 MeV to the ground state and two val-
ues of 15.8+1.8 and 14~5 spu for the decay of the
5 level at 3.19 MeV to the ground state. With an
effective charge of 0.5e, we find transition rates
of 39.4 spu for the 3 level and 10.2 spu for the 5

level which are in good agreement with the experi-
mental results.

VI. CONCLUSIONS

During the past five years or so a large amount
of experimental information about the structure of
Pb"' has become available. Only because of this
wealth of experimental data has it been possible
to make such a detailed comparison between the-
ory and experiment as has been done here. It is
rewarding to see that a conventional shell-model
calculation using a simple residual force is able
to correlate and explain in a consistent manner
much of the detailed structure of the levels in
Pb'", Pb"', and Bi'". This is especially gratify-
ing since it was generally believed previously that
a TDA calculation would be inadequate for a de-
tailed description of Pb~ '.

However, one does not expect a calculation of
this type to explain all the nuclear structure of
Pb"' and indeed this is the case here. For ex-
ample, the positions of the positive-parity states
were calculated to be at 3.64 MeV (2'), 4.95 MeV
(4'), 4.94 MeV (6"), and 4.81 MeV (8') which are
to be compared with the experimental results of
4.08 MeV (2'), 4.32 MeV (4'), 4.42 MeV (6'), and
4.60 Me V (8'), respectively. The high-lying neg-
ative-parity states are not as well described as
the lower-lying states. The giant dipole resonance
and the analog of the Pb'" ground state in Bi"'
are still 1 MeV below the measured data, etc. It
is possible that by using an even larger model
space and by making a more careful choice of the
residual force, the above discrepancies may be
removed even within the scope of a conventional
shell-model calculation.

The authors would like to thank Professor B.
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