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The structure of low-lying states in “Ti is studied in terms of a conventional shell model.
The calculated spectrum is in reasonable agreement with available experimental information.
The results of the “exact” shell-model calculation are compared with calculations of the 4Ti
spectrum in terms of the stretch scheme and the deformed Hartree-Fock with projection
scheme. We find that these two approximations are not in good agreement with the exact cal-
culation. We study the effects on the calculated spectrum of varying the single-particle ener-
gy spectrum. We find that the “rotational” character of the calculated spectrum is sensitive
to the single-particle energies. The sensitivity can be accounted for by assuming that the
wave functions of the members of a rotational band are projections from an intrinsic state
with a strong quadrupole deformation. The effect of the T =0 part of the residual interaction,
and of the Pauli principle, on the rotational character of the calculated spectrum of low-lying

states is discussed.

I. INTRODUCTION

A subject of long-standing interest in nuclear
physics is the relationship between microscopic
and collective descriptions of nuclear phenomena.
One region of the Periodic Table in which investi-
gations into this question have been made is in the
lower end of the s-d shell. *Ne is one nucleus
which has received particular attention. This in-
terest has been stimulated by the fact that many
of the observed features of the structure of ?°Ne
at low excitation energies can be rather well de-
scribed in terms of collective rotational models,
while at the same time the structure of ®Ne is
amenable to various microscopic many-particle
models. From the observed sequence of spins in
20Ne, the low-lying spectrum has been interpreted
in terms of five rotational bands.! The structure
of *Ne has been studied in terms of an SU, model,?
and in terms of various deformed Hartree-Fock
calculations.® Conventional shell-model calcula-
tions of ?°Ne have been made.* In these, an inert
180 core is assumed and the four active particles
are distributed in the s-d shell single-particle or-
bits. These various microscopic models have all
been able to display “rotational” behavior. Thus,
20Ne has been a very useful theoretical laboratory
in which to study how a many-body system might
develop collective properties.

“4Ti is the f-p shell analog of 2°Ne. In terms of
a conventional shell model, it consists of two neu-
trons and two protons outside an inert *°Ca core.
Is the structure of *Ti similar to the structure of
*0Ne; i.e., does it display properties which can be
described as rotational? What are the features of
the calculations which lead to significant differ-
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ences in the structure of the two nuclei? In this
paper, we discuss the results of a conventional
shell-model calculation of **Ti. An inert “°Ca core
is assumed, and the f,,, Py, f5,2, and p,,, orbits
are included in the active space. We find that **Ti
does not display obviously rotational features. We
compare the shell-model results with the results
of a projected Hartree-Fock calculation® of *4Ti,
and with a shell-model calculation on a truncated
basis in'which the truncation is made in terms of
the so-called stretch scheme of Danos and Gillet.®
We find that both of these approximation schemes
lead to results in poor agreement with the shell-
model results. Finally, we discuss a series of
shell-model calculations of “/Ti which are aimed at
determining what role the single-particle energy
spectrum and the T =0 part of the effective two-
body interaction play in determining whether or
not the shell-model calculation gives results which
display rotational properties.

In Sec. II, we discuss the details of the shell-
model calculation. In Sec. Il we discuss the re-
sults of the calculation, and compare them with
the existing experimental information on **Ti. In
Sec. IV, we compare the shell-model results with
the results of a projected Hartree-Fock calcula-
tion and stretch-scheme calculations of *‘Ti. In
Sec. V, we discuss the effects of varying parts of
the effective interaction on the character of the
calculated results. In Sec. VI, we summarize the
results of this paper.

II. DESCRIPTION OF THE CALCULATION

All the calculations we have made have been in
the framework of the conventional shell model.

2293



2294 K. H. BHATT AND J. B. McGRORY

An inert *Ca core is assumed, and we include the
0f7/2» 1b5/5, Ofs,5, and 1p,, single-particle orbits
in the active space. In this model, *Ti is de-
scribed as four particles outside the *°Ca core.

We include all Pauli-allowed states of all possible
configurations of four particles in the f-p shell or-
bits in the model vector space. In this space, we
diagonalize an effective one-body-plus-two-body
Hamiltonian. The resulting eigenvalues we asso-
ciate with the energy levels in *Ti. The eigenvec-
tors are associated with wave functions for *Ti
states, and are used to calculate various relevant
observables. The construction and diagonalization
of the matrices in these calculations were carried
out with the use of the Oak Ridge-Rochester shell-
model computer programs.”

The effective one-body operator is specified by
four single-particle energies (s.p.e.). We deduce
these s.p.e. from the spectrum?® of **Ca. The exact
values which we used are
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FIG. 1. Calculated and observed spectrum of Ti. The
calculated results are those obtained with the “realistic”
interaction of Kuo and Brown and experimental single-
particle energies. The observed spectrum is composited
from Ref. 12, All observed and calculated states up to

the highest energy state shown are included in the figure.
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The two-body part of the effective Hamiltonian can
be specified by 195 two-body matrix elements.

We use the set of matrix elements derived by Kuo
and Brown® from the Hamada-Johnston nucleon-
nucleon interaction for the f-p shell region of the
Periodic Table. This set of matrix elements was
designed for a space in which the Og, , orbit is al-
so included in the active model space as well as
the four f-p shell orbits. The g, orbit probably
lies at least as high in energy as the f; , orbit.
Since the parity of this g orbit is opposite to the
Jf-p orbits, any configuration with any active g,
particles which can contribute to the positive par-
ity levels of **Ti must have at least two particles
in the g, ,, orbit. Thus, these configurations would
be at rather high energies in zero order. If we in-
cluded the g, , orbit in the active space, the ma-
trices would become prohibitively large, and we
would also introduce problems associated with
spurious center-of-mass motion.® The T =1 part
of the Kuo-Brown interaction was used in a study
of the structure of the calcium isotopes.!' It was
shown there that the only significant effect of in-
cluding two-particle excitations to the g, orbit
was to slightly depress the ground state relative
to the excited spectra. We, therefore, feel that
the omission of the g, , level from the calculations
discussed here is not a serious one.

III. DISCUSSION OF THE CALCULATED
SPECTRUM OF *Ti

The spectrum of **Ti which is calculated with
the model described above is shown in Fig. 1. In
the calculated spectra shown, all states calculated
to be below the 8" state at 5.57 MeV are shown.
Also shown in Fig. 1 is the experimental spectrum
of **Ti.

The calculated spectrum does not exhibit a clear-
ly rotational ground-state band. The excitations
up to the first 6" state are equally spaced as op-
posed to the J(J +1) spacing of the rigid rotor.

The spin assignments in the experimental spec-
trum are still too uncertain to allow any detailed
comparison of theory with experiment. The only
definite statement which can be made is that the
observed 0" -2* gplitting is reproduced by the cal-
culation to within 180 keV. If the observed state
at 2.44 is a 4* state, then this state is also ac-
counted for by the calculation.

The state observed at 1.90 MeV is the first state
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not accounted for by the shell-model calculation.
There is one obvious possible explanation for this
state. In the observed spectrum?® of °Ca, which
nucleus we have treated as a closed core, the first
excited state is a 0* state at 3.35 MeV. This state
is some sort of multiparticle multihole or de-
formed state. In **Ca, there is an excited 0" state
observed at 1.84 MeV. This state is not accounted
for by the conventional shell-model calculation.!
A reasonable interpretation is that this state is
the result of a coupling of the lowest shell-model
0* state in “2Ca to a deformed 0* state in the “Ca
core. In **Ca, there is a 0* state at 1.89 MeV in
the experimental spectrum. There is evidence!?
that this 0" state is probably not a shell -model
state, and that it, too, represents a coupling of
the shell-model ground state to a deformed state
in °Ca. Thus, it is an obvious extension of this
pattern to identify the 1.90-MeV state in **Ti as
the coupling of the shell-model ground state of
44Ti to a deformed 0* level in *°Ca.

It is tempting to account for the 2.52-MeV 2*
level in **Ti in a similar fashion. In *°Ca, there
is an excited 2* level at 3.90 MeV, 550 keV above
the deformed 0* state. In *2Ca there is a J=2*
state at 2.42 MeV. This state is 580 keV above the
0" state in **Ca that we have identified as a “de-
formed” state. In *’Ca, there is a 2* state at 2.66
MeV which could reasonably be called a deformed
2" state. This is close enough in energy to the
2.52-MeV level in “*Ti to suggest that the latter
also has a strong parentage with an excited state
of the *°Ca core. In the absence of any further ex-
perimental information, it is difficult to make any
other comparisons between the calculated and the
observed spectra of **Ti.

IV. COMPARISON OF SHELL-MODEL, PROJECTED
HARTREE-FOCK, AND STRETCH-SCHEME

CALCULATIONS OF *Ti

In this section, we comment on some recent cal-
culations® of Ti in the so-called stretch scheme,
and in terms of projected Hartree-Fock states.
Both these calculations were done using, for the
residual interaction, a central force with a Yuka-
wa shape and a Rosenfeld exchange mixture, and
single-particle energies similar to the ones we
have used.

The stretch scheme is a coupling scheme pro-
posed by Danos and Gillet® to give a simple micro-
scopic wave function which displays rotational
features. The scheme emphasizes neutron-proton
correlations in contrast to the usual pairing wave
function which emphasizes like-particle correla-
tions. So far the stretch-scheme formalism has
been developed only for the cases where there are

2N neutrons and 2N protons. Given such a situa-
tion, N protons and N neutrons are coupled to the
maximum total angular momentum allowed by the
Pauli principle. The other N neutrons and N pro-
tons are similarly coupled, and then the two
“chains” are coupled to the total angular momen-
tum of the system.

Khadkikar and Banerjee® have calculated the
spectrum of **Ti in a configuration-mixing calcu-
lation in which the basis space is truncated by
limiting the basis states to stretch-scheme states.
The further restriction is made that in any given
basis state, both protons are in the same orbit,
and both neutrons are in the same orbit. (The
stretch-scheme formalism has been developed
only for this case, so far.) This restriction has
at least one very important consequence, which is
that the p-» interaction cannot mix different basis
states. (Each basis state differs by at least two
neutrons or {(wo protons.) Those neutron-proton
correlations which are not already introduced into
the wave function by the choice of representation
are thus eliminated from the calculation. Khadki-
kar and Banerjee also carried out a projected Har-
tree-Fock (PHF) calculation. They found that the
general character of the spectra of low-lying
states of **Ti as calculated in the PHF and stretch
models was similar. However, the stretch-scheme
spectrum was compressed with respect to the PHF
spectrum. The ground-state energy of the PHF
solution was -12.5 MeV as compared with -8.2
MeV in the stretch scheme.

We have repeated the complete shell-model cal-
culation of #“Ti in the (f, p) shell with the same in-
teraction as the one used by Khadkikar and Baner-
jee. The resulting “exact” spectrum is shown in
Fig. 2. We also show there the PHF spectrum and
the T'=0 stretch-scheme spectrum. The main sim-
ilarity between the three calculated spectra is that
the spectra of the “ground-state-band” levels all
show marked deviations from the I( + 1) spectrum
of the rigid rotator. The main qualitative differ-
ence in the ground-state bands in the three calcu-
lations is that the 8" state is much too compressed
in both the PHF and stretch-scheme spectrum.
The PHF calculation is a significantly poorer ap-
proximation to the exact calculation here than in
%Ne.® The PHF calculation is essentially a “rota-
tional” calculation. The fact that *Ne looks much
more like a rotational nucleus than *‘Ti is certain-
ly a significant factor in the better results of PHF
in *Ne than in *Ti.

There is a serious breakdown in the agreement
between the stretch scheme and the exact calcula-
tion for states outside the ground-state band.
There is a large gap in the stretch-scheme spec-
trum, between the ground-state band and the ex-
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cited states, which does not exist in the exact cal-
culation. For the excitation spectra, one must
conclude that the configuration-mixing in the
stretch scheme as performed by Khadkikar and
Banerjee is a poor approximation to the exact cal-
culations.

Insofar as the ground-state binding energy is
concerned, the exact calculation gives a binding
energy of —-12.7 MeV. The PHF binding energy
of —12.5 MeV is thus in excellent agreement with
the exact calculation.

There is little relationship between the wave
functions generated in the stretch scheme and in
the exact calculation. In Table I, we summarize
the composition of the ground-state wave function
in the T =0 stretch scheme and in the exact calcu-
lation. In the stretch scheme, the signature
(f2,2% D 5°) indicates that there are identical par-
ticles in the f, ,? orbit, and identical particles in
the p,,,* configuration. The exact calculation was
done in the isotopic spin formalism. In that case,
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FIG. 2. Calculated spectra of low-lying states of 44Ti
in three different models. The first column shows re-
sults of stretch-scheme calculations of Khadkikar and
Banerjee (Ref. 5), where we show the results for the
case where states with good T =0 are produced. The se-
cond column shows results for complete diagonalization
in f-p shell-model space. The third column shows re-
sults of a projected Hartree-Fock calculation.

in the configuration (f, 2, p, ,?) the particles in the
J7,5 Orbit can be like or unlike, as is the case for
the p,,, orbit. Thus, the numbers in each column
of Table I cannot be compared directly, but as we

_shall see, this does not prevent us from drawing

conclusions as to comparisons of the two wave
functions. In the description of the exact wave
function, the percentage of j* configuration is the
sum of all probabilities for all j*-configuration
states in the calculation. In the case of (j,2 j,?)
configurations, the percentage shown is the sum
of all percentages for states of the [(j,2, T'=1),
(4,2, T=1)], which are the only states of the type
(4,%,7,°) allowed in the stretch scheme. We see
that in the stretch scheme, the ground state is al-
most entirely f;,,* (92%). In the exact ground
state, this configuration constitutes less than half
of the total wave function. In fact, almost 40% of
the exact wave function consists of configurations
not even included in the stretch-scheme basis
space.

One source of difficulty in the stretch-scheme
calculation discussed here is the limitation of like
particles to the same orbit. We have already noted
that in the representation used here, the p-» inter-
action cannot connect different basis states. The
energy of the state with two protons in the f,,,
shell and two neutrons in the p,,, shell lies only
300 keV below the state with a neutron-proton pair
in each orbit. In addition, as we pointed out above,
40% of the exact wave function consists of states
with an odd number of particles in at least two or-
bits, and such configurations cannot be included
in the stretch-scheme calculation.

Shah and Danos' have also reported calculations
of **Ti in the stretch scheme. They use different
s.p.e. for neutrons and for protons. Thus, their
states do not have good isotopic spin. We are un-
able to make an exact calculation with their inter-
action easily since our programs are designed to
work with states quantized in isotopic spins.

TABLE I, Composition of 0" ground-state wave func-
tion of 44Ti in stretch-scheme calculation and complete
shell-model calculation. The amplitudes not shown for
exact calculation are either not allowed in stretch
scheme, or they are less than 0.1 in the ground-state
wave function.

Exact
Stretch scheme calculation
Configuration &%) (%)
Fat 92 46
(frr’s T=1) 3y T=1) 1 5
(Fals T=1) (fopehs T=1) 6 10
(f7/22s T=1) (Ps/zZ: T=1) 0 1
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V. DEVELOPMENT OF ROTATIONAL SPECTRUM

A. Effect of Single-Particle Energies

Since the experimental information on **Ti is
still rather sparse, our primary interest here is
in the qualitative nature of the calculated struc-
ture of the'low-lying states. We have already com-
mented that the calculated spectrum of the low-
lying states shows a significant departure from
the strict rotational behavior, as opposed to the
two-neutron two-proton s-d shell nucleus *Ne.

A tentative explanation of the difference in the be-
havior of these two spectra is suggested in a letter
by Bhatt and Parikh.!® Their hypothesis can be
described briefly as follows. A rotational band of
levels will exist if the members of the band can be
projected from an intrinsic state with a strong
quadrupole deformation. One way to form such a
deformed intrinsic state is to construct a deter-
minantal wave function in which the single-particle
orbits have large quadrupole moments. The sin-
gle-particle orbit with the largest possible quadru-
pole moment in a given space is obtained by dia-
gonalizing the single-particle quadrupole operator
in that space. The single-particle orbits of the

SU, representation are eigenstates of this quadru-
pole operator. Now assume that the single-major-
shell Hartree-Fock procedure gives a good first
approximation to the effects of the residual inter-
action in a given shell model; i.e., assume the
two-body interaction generates an effective one-
body force in which the active particles move. If
this effective Hartree-Fock potential is the quadru-
pole field; i.e., Vyr <7,2Y %(;), then the Hartree-
Fock orbits will be identical to the SU, orbits. In
this case, there will be a strongly deformed intrin-
sic state, and a rotational spectrum will develop.

The deformation of the self-consistent field is
sensitive to botk the two-body and one-body parts
of the residual interaction. The dominant compo-
nent of the residual interaction is the quadrupole
component. If the two-body interaction was pure
quadrupole-quadrupole, then a rotational L(L +1)
spectrum would result if the spectrum of single-
particle states showed an [(I+1) spacing. This
can be shown as follows:

Let @=); q; be the total mass quadrupole opera-
tor of the nucleons. Then

- -

Q-Q=c-3L-L, (1)
where C is the SU, Casimir operator,? and L. is

the angular momentum operator. Then the Hamil-
tonian

H=H0—b_é'6) (2)
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where H,, is the single-particle harmonic-oscilla-
tor Hamiltonian and b is a same constant, gives
rise to an L(L +1) spectrum. This Hamiltonian
can be rewritten as
H=H,-b),C;+3b),1%-2b3,q;+q;. (3)
i i

i<j

Here C; is the SU, Casimir operator for a single
nucleon. The eigenvalues of C; are equal for all
single-particle states in a major shell. From
this expression it is clear that a quadrupole-qua-
drupole two-body interaction will yield an L(L+1)
spectrum if the single-particle spectrum has an
U(1+1) spectrum. Empirically, the single-particle
potential is such that the single-particle orbit with
the largest [ value lies lowest in energy. This is
due to the large spin-orbit force in the single-par-
ticle potential, and to the fact that effects due to
the finite size of the well lead to a depression of
single-particle orbits with high I. (This effect is
introduced in the Nilsson potential by the addition
of an attractive 2 potential.) This situation hin-
ders the two-body interaction from giving rise to
rotational spectra.

Let us apply these general arguments to the
particular cases of the s-d shell and the f-p shell.
If we restrict the calculation to the s-d-shell or-
bits, the single-particle orbit with the largest
mass quadrupole moment has the form 0.82d,—
0.58s,. (Here d, is the single-particle orbit
with orbital angular momentum /=2 and /,=0.)
This orbit contains more d state than s state. If
we had performed the Hartree-Fock calculation
in a space with the s, ,, orbit at 0-MeV excitation,
and the d;,, and d,,, orbits at a very high energy,
it is hard to conceive of any reasonable residual
interaction leading to a lowest Hartree-Fock orbit
which contains more d state than s state. In fact,
however, in the s-d shell region around 0O the .
ds,, single-particle orbit lies below and close to
the s, ,, orbit. This s.p.e. situation favors the
generation of Hartree-Fock orbits which are very
close to SU, orbits. This in turn favors the forma-
tion of an intrinsic state for 2°Ne with a large qua-
drupole deformation. Thus, ?°Ne displays a rota-
tional spectrum.

Now consider the f-p shell. In a space restrict-
ed to f-p-shell orbits, the orbit with the maximum
quadrupole moment has the form 0.63 £,-0.78,;
i.e., this orbit has more p state than f state. The
single -particle spectrum which would favor the
formation of such an orbit would have the p state
below the f state. But, as seen in the observed
spectrum?® of *!Ca, in the lower end of the f-p
shell the f,,, orbit is 2 MeV below the p,,, orbit.
Thus, one might expect nuclei at the beginning of
the f-p shell would not display clearly rotational
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FIG. 3. Calculated spectra of Ti and %Ca in completef shell-model space. In each column a different effective
interaction is used, as described in the text. The subheading of each column shows whether (a) just T' =0 interaction or
complete T =0 plus T =1 interaction is used, (b) what single-particle energy spectra were used, and (c) to what nucleus
the spectrum refers. The spectrum labeled J(J +1) is pure rigid rotor predicted spectrum. In all cases the energy

scale is renormalized so that the J =2" state is at 1 MeV.

features. This is consistent with the shell-model
results we have found for **Ti.

As a theoretical experiment, we have repeated
the **Ti calculations with two sets of s.p.e. differ-
ent from those used in the calculation described
above. In one calculation, the p,, and p, ,, orbits
were chosen to be degenerate, as were the f,,, and
fs,, orbits, with the p doublet 2 MeV below the f
doublet. If the argument summarized above is
valid, the spectrum calculated with this last s.p.e.
spectrum should be more “rotational” than the
spectrum calculated with the experimental s.p.e.
In Fig. 3, the spectra calculated with the “experi-
mental” s.p.e. and with this altered s.p.e. spectra
are shown in the first two columns. In this figure,
the spectra have been renormalized so that the
first 2* state is at 1.0 MeV; i.e., if the calculated
2* state is at 2.0 MeV, we divide the excitation
energies of all the members of the ground-state
“band” by 2. For comparison, we also show in
this figure the J(J +1) spectrum of the rigid rotor.
We have also calculated, but do not show here,
the spectrum which results when all single-parti-
cle orbits are degenerate. This spectrum is quite
similar to the spectrum calculated with the “ex-
perimental” s.p.e., although the wave functions in
this case are quite different from the wave func-
tions generated with the “experimental” s.p.e. In

the calculation in which the p orbits are 2 MeV be-
low the f orbits, a rotational spectrum is clearly
present, as predicted in the previous discussion.
We have transformed the j-j coupled wave func-
tions for the “Ti ground-state band into wave func-
tions expanded in terms of representations of the
SU, group. For the calculation with the experi-
mental s.p.e., the wave functions display consider-
able mixing of SU, states. For example, the (A, u)
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FIG. 4. Calculated spectra of 2’Ne in full s-d—shell-
model space. See text for details of calculation. The
column labeled J (J +1) is pure rigid rotor predicted spec-
tra. In all cases the energy scale is renormalized so
that J =2" state is at 1 MeV.
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=(12,0) state of maximum weight constitutes only
26% of the 0" ground state, and there are nine SU,
states with amplitudes greater than 0.1 in this
state. In contrast, in the wave function calculated
in the model with the p orbits below the f orbits,
the (12,0) state constitutes 93% of the 0" ground
state, and there are only two SU, states in this
wave function with amplitudes greater than 0.1.

The next test we made of the sensitivity of the
“rotational” structure to the s.p.e. was for *°Ne.
In this case the results are not so dramatic as for
“4Ti, and in fact the results are somewhat unex-
pected. In the 2Ne calculation, we used the fol-
lowing sets of s.p.e.:

€5,, (MeV) €,,, (MeV) €, (MeV)
(a) -4.15 -3.28 +0.93
(o) 0 0 0
(c) 0 -2.0 2.0
(@) 0 o 3

Set (a) consists of the experimental s.p.e., the set
(b) s.p.e. are degenerate, in set (c) the s, , is
moved below the d;,, and d,,, level, and in set (d)
the s.p.e. are such that the states in the ground-
state band are pure d;,,° states. The excitation
spectra of the ground-state band in **Ne as calcu-
lated with these sets of s.p.e. are shown in Fig. 4.
Only the pure d;,,* spectrum does not display any
rotational character. The degenerate case is not
so different from the experimental case insofar
as the d; ,-s, , splitting is concerned, so the ro-
tational result for this case is not so surprising.
For the case where the s, orbit is below the dj,,
orbit by 2 MeV, we see that the ground-state-band
spectrum is, if anything, more rotational than is
the case when the experimental s.p.e. are used.
We pointed out above that in the s-d shell the sin-
gle-particle orbit with the maximum quadrupole
moment contained more d state than s state, so
that a spherical single-particle spectrum in which
the d orbit is below the s orbit favors the forma-
tion of a rotational structure. An inspection of
the wave function for the ground state of 2°Ne as
calculated with the experimental s.p.e. gives a
hint as to the cause of this apparent discrepancy.
In this wave function the (d;,*,J=0) state makes
up 20% of the total function, and the (s,,*, J=0)
contribution is 3%. Now consider the determinan-
tal wave function for ?**Ne formed by putting two
neutrons and two protons in the SU, orbit with
maximum quadrupole moment. Since the SU, sin-
gle-particle orbit contains more d state than s
state, this SU, intrinsic state contains more d*
than s*. It is a straightforward procedure to ex-
pand this wave function in j-j coupling as a linear
combination of states of good total angular momen-

tum and isotopic spin. The J=0 part of this ex-
pansion is the 0" state projected from the SU, in-
trinsic state. In this projected state the (s, ,*, J=0)
state has a larger amplitude than the (d;,,*, J=0)
state. This is intuitively reasonable, since the
configuration s, ,* is uniquely J=0, while the con-
figuration d;,* is a linear combination of several
J values. In the process of projection, the dg,*
strength is spread over several states, while the
S,,." strength all remains in the 0* state. Thus,
while the intrinsic state has more d* than s*, the
process of projection inverts this situation in the
0* state. In the shell-model calculation of **Ne,
when we lower the s, orbit relative to the d;, or-
bit, we enhance the contribution of the (s, ,* J=0)
state to the ground state. This lowering of the s, ,
orbit, then, leads to a ground-state 0* state which
more nearly represents the 0* state which is pro-
jected from an SU, intrinsic state.

The single-particle spectrum can also play a sig-
nificant role with respect to the so-called “centri-
fugal stretching” in rotational nuclei. This effect
is introduced to account for the observed depres-
sion of the energy of the states with high-J values
relative to the position predicted by the pure
J(J+1) dependence. We have argued that the best
theoretical single-particle spectrum for generat-
ing rotational spectrum is one in which orbits with
small j are lowest in energy. But, experimentally,
orbits with high j lie lower than orbits with low j.
The states with high total J are dominated by con-
figurations with particles in high-j orbits. In #°Ne,
for instance, the 8" state is purely dj,,*. Such
states are very sensitive to the single-particle en-
ergies of the high-j orbits, as compared with
states with smaller total J which have configura-
tions with particles in all orbits. Thus, the em-
pirically observed lowering of the single-particle
orbits with high j contributes to the lowering of
high-J states. This effect can be seen in Fig. 4,
where we see that the apparent centrifugal stretch-
ing effect in *Ne is reduced when the s orbit is
lowered with respect to the d orbit.

B. Enhancement of £2 Transitions

We have calculated B(E2) values for transi-
tions between members of the ground-state band
in **Ti and **Ne. In these calculations we use
state-independent one-body effective charges of
0.5e for both neutrons and protons (i.e., the total
proton charge is 1.5¢ and the total neutron charge
is 0.5e). This prescription has been used previ-
ously in the s-d shell,* and there is no obvious
reason to change it in the f-p shell. The calcu-
lated B(E2) values for transitions involving states
in the ground-state bands of ?**Ne and *'Ti are
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summarized in Tables II and II. The absolute
transition strengths for the 2*— 0* transitions as
calculated with each set of s.p.e. are given. For
transitions between higher states in these ground-
state bands, the transition strengths relative to
the strength for the 2— 0 are given. We also give
the relative B(E2) values within a K =0 rotational
band as calculated in the strong-coupling rotation-
al model.’® In this case,

BE2);, ., |CL 72
This strong-coupling model is an approximation
to the results obtained by an exact projection of
states of good angular momentum from a deformed
intrinsic state. For *Ne, there are no striking
differences in the B(E2) values calculated with the
various different models, with the exception of the
absolute value of the B(E2) for the 2- 0 transition
in the pure d;,,* model. This value is roughly 3 of
the absolute value for this transition in the other
models. Remember that the SU, single-particle
orbit with the maximum quadrupole moment has
the structure 0.82d, - 0.58s,. Thus, by eliminat-
ing the s, , orbit from the calculation, as is the
case in the d;,,* calculation, we significantly re-
duce the possible maximum value of the quadru-
pole moment. The significant diminution of the
B(E2) value in the d;,,* calculation certainly re-
flects this fact.

There are more significant differences between
the B(E2) values calculated with the different mod-
els in **Ti. We saw the clear development of a ro-
tationlike band in **Ti when the p orbit was low-
ered with respect to the f orbit. We see, in the
first and second columns of Table II, that the ab-
solute value of the B(E2) for the 2- 0 transition
in the calculation with the lowered p orbits is 40%
stronger than in the calculation with the experi-
mental s.p.e. Again this presumably occurs be-
cause the lowering of the p orbits leads to low-
lying states with larger quadrupole deformations.

e

TABLE II. Calculated B(E2) values in 2'Ne ground-
state band for different single-particle energy spectra.
Column A shows results with single-particle energies
taken from experiment. Column B shows results when
single-particle energies are degenerate. Column C
shows results when sy,, is moved 2 MeV below ds,,.
Column D is result for pure d;,* calculation. The col-
umn headed S.C. shows relative values predicted for
B (E2) values by the strong-coupling rotational model
(Ref. 15).

B(E2),e*m!
Ji  dp A B c D  s.C.
2 0 48 47 52 18 1
4 2 124 124 126 113 14
6 4 101 104 104 093 1.6

We see that in all the models, the relative B(E2)
values are reasonably consistent with the strong-
coupling values.

C. Effects of the 7 = 0 Two-Body Interaction
on Collective Behavior

There are reasons for suspecting that the T=0
part of the residual two-body force plays an im-
portant role in the formation of rotational proper-
ties in nuclei. In general, the T =1 two-body ma-
trix elements are characterized by large matrix
elements between J=0 paired states, which states
are necessarily spherical. On the other hand,
there are usually several strong 7T =0 two-body
matrix elements between states with J#0. Thus,
the T =0 interaction is more likely to produce low-
lying states which are deformed. Another reason
to expect the T'=0 interaction plays an important
role in forming rotational nuclei is suggested
again by considering the observed states to be pro-
jections from a Slater determinant of deformed sin-
gle-particle orbits. The most deformed intrinsic
state can be found by putting all particles in the
orbit with the maximum quadrupole deformation.
However, the Pauli principle comes into play,
and only one particle of a given species can be

TABLE III. Calculated B (E2) values in %Ti band, There are three entries in each column heading. H indicates
which two-body matrix elements were included in the calculation. s.p.e. characterizes the single-particle spectrum.
Expt. indicates s.p.e. taken from experiment were used, p <f indicates p orbits degenerate and 2-MeV below f orbits.
The column headed S.C. shows relative strengths as calculated with strong-coupling rotational model (Ref. 15).

B(E2) e*fm!

H T=1+T=0 T=1+T=0 T=1 T=1 T=1 T=
s.p.e. Expt. p<f Expt. p<f Expt. p<f
J; Jy A “rj 4y 4y L 1 Hca 4“Ca s.c.

2 0 116 179 74 138 12 16 1)
4 2 14 14 1.1 1.5 0.7 0 14
6 4 1.2 14 0.5 1.5 0.3 0.5 1.6
8 6 0.9 1.2 0.6 14 0.6 0.8 1.6
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placed in this deformed orbit. One cannot put two
neutrons in the same orbit, but one can put a neu-
tron and a proton in the same orbit. This means
it is possible for a neutron-proton system to be
more deformed than a proton-proton or neutron-
neutron system. Thus, if there is a reasonably
strong neutron-proton interaction, it is possible
for the low-lying states to be deformed. The T =0
interaction acts only between a neutron and a pro-
ton, so it is not unreasonable to expect it to play
an important role in determining whether or not a
system displays collective rotational properties.

The calculations discussed in the previous sec-
tion were made with the complete T =0 plus T'=1
two-body residual interaction. In order to see
what effect the T'=0 interaction has on the calcula-
tions for *‘Ti, we have repeated the calculations
with the T=0 matrix elements all set to 0. (This
does not turn off the n-p interaction, since the
T =1 force acts in the n-p system. If the T'=1 in-
teraction were turned off, there would be #o n-n
or p-p interactions.) With the T'=0 interaction
turned off, the structure of the low-lying states of
4Ti were calculated with (a) the physical single-
particle energies, and (b) with the p orbits degen-
erate and 2 MeV below the f orbits. The calculat-
ed spectra of the ground-state bands in these vari-
ous models are shown in Fig. 4. In this figure,
the energy of the 2* state in each spectra is nor-
malized to 1 MeV. Compare first the *‘Ti calcula-
tion made with the full T=0+7 =1 interaction and
experimental s.p.e. with the calculation with only
the T =1 interaction and experimental s.p.e. The
two calculated spectra are qualitatively similar,
the main difference being that the 6* and 8* states
in the T =1 spectrum are relatively lower than in
the spectrum with the complete interaction. How-
ever, although the spectra in these two models
are similar, the wave functions are significantly
different. In the complete T=0+T =1 interaction
case, the f,,* J=0, T =0 component in the ground
state constitutes about 48% of the wave function,
and there are 16 components in the wave function,
in the j-j basis we use, with amplitudes greater
than 0.1. In the case of the calculation with only
the T=1 interaction, the f,,* J=0, T=0 state con-
stitutes 83% of the wave function, and there are
six components in the wave function with ampli-
tudes greater than 0.1. Thus, the T =0 interac-
tion introduces a great deal of configuration mix-
ing in the calculation, even though in this case the
T =0 interaction does not make much apparent dif-
ference in the calculated excitation energies.

If we next consider the calculation for *‘Ti in
which only the T'=1 interaction is present, but
the p orbits are lowered below the f orbits, we
see that the spectrum appears to be much more

rotational than is the case when the experimental
s.p.e. are used with the T =1 interaction. In this
case the wave function has 10 components with
amplitudes greater than 0.1, and the two largest
components are states in the (p,,,*) and (p, .2, p,,5%)
configurations. Each of these contribute about
25% to the total wave function. The B(E2) values
for these various models as calculated with the
effective operator (¢,=0.5,¢,=1.5) described above
are shown in Table III. We see that for both sets
of single-particle energies, the strengths of the
B(E2)’s are significantly reduced when the T'=0
interaction is turned off. This is certainly a re-
flection of the importance of the T=0 interaction
on the development of collective properties. How-
ever, it is worth noting that if we consider the cal-
culation with only the T =1 interaction and experi-
mental single-particle energies as an initial point,
the change in the single-particle spectrum gives a
larger increase in the B(E2) value than does the
addition of the T'=0 interaction.

It is of interest to compare the structure of the
low-lying states of **Ti obtained with only the T=1
part of the two-body interaction with that of the
low-lying states of *Ca. This comparison partly
brings out the effect of the Pauli principle on the
deformation of the low-lying states of four nucle-
ons outside “°Ca. The two-body interaction will
try to generate a deformed intrinsic state in both
4Ca and *“Ti. In *‘Ti, all four nucleons can occu-
py the lowest K = 5 orbit, which has the largest
quadrupole moment. In *‘Ca, however, the first
two neutrons can occupy the K = 3 orbit, but be-
cause of the Pauli principle, the other two neu-
trons must occupy the K = § orbit, which has a
smaller quadrupole deformation. Thus, although
we use only the T'=1 interaction in the calculation
for both nuclei, we expect a larger deformation
for **Ti. The spectra for this calculation are
shown in the last four columns in Fig. 3. The
“Ca spectrum is not rotational for either set of
single-particle energies. For the case where the
experimental single-particle energies are used,
the spectra for **Ca and *Ti are quite similar.

In the case when the p orbits are moved below the
J orbits to form a situation favorable to the forma-
tion of states with large quadrupole deformation,
the “*Ti spectrum is distinctly more rotational
than the **Ca spectrum. The B(E2) values as cal-
culated with the wave functions generated from the
T =1 interaction are listed in Table II. The 4‘Ti
B(E2) values are much larger than the analogous
values for *‘Ca. One obvious reason is that *‘Ti
has two protons with total charges three times the
neutron charge, and this factor alone introduces
large differences in the calculated B(E2) values.
In order to make more transparent the differences
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in the calculated B(E2) values in **Ti and *‘Ca
which are due to the Pauli principle, we have re-
peated the B(E2) calculations with the assumption
that the neutron and proton have exactly equal
charges. For the model space in which the T'=0
interaction is turned off, and in which the single-
particle spectrum is based on experimental evi-
dence, the B(E2) value in *‘Ti for the 2* -~ 0* tran-
sition is 1.6 times the B(E2) value for the same
transition in **Ca. In the model where the p orbits
are 2 MeV below the f orbits, this ratio is 2.2.
These results all point to a larger deformation of
4T pis-d-vis **Ca in this model where only the

T =1 parts of the residual interaction is operative,
consistent with the arguments presented at the be-
ginning of this paragraph.

VI. SUMMARY

In this paper we have presented the results of a
conventional shell -model calculation of *Ti. The
calculated spectrum is in reasonable agreement
with available experimental data on the low-lying
states of this nucleus. This theory-experiment
comparison suggests the existence of a deformed
rotational band starting at 1.90 MeV in “Ti. The
results of the shell-model calculation have been
compared with calculations of the structure of *‘Ti
in terms of the stretch scheme and in terms of a
PHF model. This comparison suggests that the
PHF approach is not as effective here as in **Ne.
Presumably this is because **Ti does not appear
to be a “rotational” nucleus. There is no essen-
tial agreement between the shell-model calcula-
tion and the calculation in which the basis states

are stretch-scheme states. The omission of im-
portant n-p correlations imposed by the stretch-
scheme model used in that calculation is apparent-
ly critical.

Finally, we have discussed here some theoreti-
cal “experiments” which attempt to gain insight in-
to the question of what factors are important in de-
termining whether or not a given nucleus will dis-
play rotational properties. Most of the discussion
is based on the assumption that if a nucleus dis-
plays rotational properties, the rotational states
can be described as projections from an intrinsic
deformed state. Certainly one important factor in
these considerations is the fact that the quadru-
pole term is the dominant component in a multi-
pole expansion of the residual interaction. This
is true in all mass regions, but not all nuclei are
rotational. Based on the projection from an in-
trinsic state idea, we have argued that the Pauli
principle and the ordering of single-particle ener-
gies are important factors in dictating which nu-
clei are rotational. We have accumulated evidence
that these arguments are valid by making a series
of calculations with differing single-particle ener-
gies and with differing configurations of neutrons
and protons. We have also studied the effect of
the T =0 part of the residual two-body interaction
by repeating these calculations with this 7=0 in-
teraction turned off. Taken together, these series
of calculations imply that all these effects are sig-
nificant in the formation of “rotational” properties.
The strongest effects are due to the Pauli princi-
ple and the variation of the single-particle ener-
gies.
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