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A general class of exactly soluble three-level models is presented for an K-fermion sys-
tem. Assuming a monopole-monopole interaction among the fermions allows one to express
the model IIamiltonian in terms of the generators of the SU& group, A specialized version of
this class of models is adapted for the study of mixing two collective states of opposite parity,
analogous to the mixing of giant-dipole-resonance and surface quadrupole vibrations in nuclei.
Exact results of the model are studied as a function of interaction parameters and compared
with approximations including up to thx'ee-particle-three-hole excitations, It is shown that in

the model many-particle —many-hole states play an important role in the mixing of collective
states and cannot be properly neglected. The implications of this result for the study of ac-
tual nuclei 18 discussed.

1. INTRODUCTION

When many-body-approximation methods are ap-
plied to the study of excited states of nuclei, one
is often inhibited by the unmanageable number of
states one should properly take into account in a,

rigorous calculation. Consequently one is often
forced to make further approximations, often with-

- out any justification, in order to reduce the com-
plexity of computational problems. It then be-
comes difficult to see which particular approxima-
tion made along the way is responsible for the suc-
cess or failure of the theoretical result.

Various exactly soluble models have been shown

to be useful in improving our understanding of the
validity of approximation methods used in nuclear-
structure studies. ' ' Study of these models has
also lead to invention of new approximation meth-
ods.

The object of this paper is, first of all, to pre-
sent a class of three-level soluble models which

possess many of the features of a.ctual nuclei, and

secondly, to apply a specialized version of these
models to examine the effects of mixing of two dif-
ferent collective states, such as the observed mix-
ing of a giant dipole resonance with quadrupole
surface vibrations in C"."" The class of mod-
els we shall describe consists of N fermions dis-
tributed in three levels with a simple monopole
lntex'action among the fermlons. This particular
simple form of the interaction enables us to classi-
fy the solutions according to irreducible represen-
tations of the group SU, . The model has the follow-

ing general features: It possesses collective
states as well as single-particle states. The col-
lective states are of two distinct types, with the
possibility of mixing between them. Because of
the symmetries of the Hamiltonian, the collective
particle-hole states belong to a different represen-

tation of the SU, group than the single-particle
states. The model ean treat closed-shell systems
as well as systems with several particles (or
boles) outside of closed shell.

The main advantage of this class of models is
that because of the symmetries of the model Ham-
iltonian, exact solutions are easily obtainable, and

one can evaluate the validity of approximate meth-
ods simply by comparing approximate and exact
results. The main limitations of this class of mod-
els are: (l) There is only one kind of fermion (ei-
ther neutrons or protons for example). (2) The in-
teraction is purely monopole; thus there are no

angular momentum effects. (3) There is no mix-
ing between collective and single-particle sta.tes.
(4) The model possesses only discrete states. The
class of models could easily be extended to include
some of the effects left out„e.g. , by introducing
some simple form of SU, symmetry breaking.

The rest of the paper is organized as follows:
Section 2 contains a detailed description of the
general class of three-level models. Section 3
contains a description of the specialized form of
the model used in the remainder of the paper,
suitable for investigating the mixing of two types
of collective states, where one collective state is
of opposite parity and much higher in energy than
the other. Section 4 discusses transition opera. -
tors and sum rules. Conditions for the stability
of the Hartree-Pock ground state are discussed
in Sec. 5. Section 6 discusses the changes in the
structure and the transition-strength distribution
as the parameters of the model are varied. This
section also contains a comparison of exact re-
sults with approximations including up to 3p-3h
excitations. Summary of the results and conclud-
ing remarks are contained in Sec. 7, and compu-
tational details pertaining to Sec. 6 are given in
the Appendix.
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yna, rnid. . . .

Sa, Sp. . ....

i a , i P... ....

FIG. 1. Three energy levels of the model with

corresponding particle labels.

2. DESCRIPTION OF THE GENERAL THREE-LEVEL
MODEL

Let us consider a many-fermion system of N

particles distributed in three levels, two of which
have the same parity (see Fig. 1). These three
levels could, for example, correspond to three
major oscillator shells, or three different j-j cou-
pling configurations. We shall let Greek letters
n, P, y, and 5 be the quantum numbers necessary
to distinguish between particles within the same
shell, and Latin letters a, 5, c, and d will label
different shells. Furthermore we shall use the
label i for the lowest level, the label s for an ex-
cited level of the same parity as the lowest level,
and the label m for the excited level of opposite
parity to that of the lowest level.

The general Hamiltonian that one can write for
this N-particle system is

TEH =~Tan&an~an+ 4 m "anb8cy«~an~bS~&e~cy ~

an abed
n8yB (2.1)

where the indices a, 5, c, and d can run over all
allowed values ofi, s, m, and V,„bs,y„z is the
antisymmetrized matrix element of the two-body
interaction:

V,„„8,y, ~
= (anbP

~

V ( cyd&) —(anbP (
V

~
dbcy) .

We now construct a simple soluble model as
follows. We require that our interaction be such
that for each substate annihilated in level a there
be a corresponding substate created in level b,
l.e. ~

anbscydh = anbscyd 6( buy 58 6 bn55sy) ' (2 2)

We further require that V,n»cy«be real and inde-
pendent of n and P and depend only on level labels.
Thus,

V, ,&, yq
= v(abed)(b„sbyq —6„qbsy),

and similarly

T.„=t(a) .

(2 2)

(2 4)

The Hamiltonian H breaks up naturally into three
parts: H =H, +Hy+H2 Ho is the part of the Ham-
iltonian where the level labels before the interac-
tion are the same as after the interaction; in H,
the level of one particle is changed by the interac-
tion; and in H, the levels of two particles are
changed by the interaction.

With our assumption for the Hamiltonian we have

H, =t(i)gay„a; +t(s)Qa, „a, +t(m)Qa „a +v(iiii)Qa~y„a; (Qa~ysa;s —1)
n n n

+v(ssss)pat„a, (pat&a, &
—1)+v(mmmm)gaL„a „(Qatsa s —1)

+v(isis)[Qa, „a; (Qa, &a, s —1)+pa; a,„Qa,&a, &]

+v(imim)[Jay„a, „(Qaysa ~
—1)+pa, „a „Qa„sa«]

+v(smsm)[gay a,„(gatsa s —1)+gay a „Qa"&a,s], (2.5a,)

H, = v(iiis)(Qa, „a,„Qa,&a;8+pa;„a;„Qa,8a«) + v(ssis)(Qa, a,„ga,sa, & +pa, a, Qa, sa, s)

+v(imsm)(Qa, „a, Qa sa s+Qa, a& Qa sa s+Qa a, ga;sa s+Qa „a& Qa, sa s), (2.5b)

H, = ,'v(iiss)[(Q-a;„a, „)'+(Qa, a;„)']+-,'v(iimm)[(Qa;„a )'+(Qa a; )']

+ —2v(ssmm)[(ga, a „)'+(Qa „a,„)']+v(ismm)(Qa«a „Qa,&a & ++a„„a;„ga &a, &) . (2.5c)

Let us now define the following nine operators:



2216 N. ME SHKOV

+ Z sn»n~ T =pa»na»n, U+-—Zamnamn ~
U =Ra»'na „, (2.6)

V+ =Qamnasn ~
V =Qaanamn &

From the commutation properties of these operators listed in Table I, we see that the nine operators de-
fined in Eq. (2.6) form the nine generators of the group SU, ." Here N is the total number of particles in

the system and Y is a measure of the parity'. If ~ Y is even for a given state, then the state has the same

parity as ground state; if &Y is odd, then the parity of the state is opposite to that of the ground state.
Furthermore, we can define additional operators which are linear combinations of N, Y, and T,:

N; =pa;na» No. of particles in i level,

N, =pa, a,„ No. of particles in s level,

N =pat „a „No. of particles in m level,
(2.7)

U, =-,'(-3V'+2T, ) =-,'(N -N, ), Vo= ——,'(3F+2Tn) = —,'(N —N, ) .

It can be easily seen that each of the sets of operators (T„T,T,), (U„U, U,), and (V„V, V,) satisfies
angular momentum commutation rules.

We can now rewrite the model Hamiltonian [Eqs. (2.5)] in terms of the operators in Eqs. (2.6) and (2.7).

H, = t(i)N, + t(s)N, + t(m)N + ,' v(i )N (N,——1) +—', v(s)N(N, —1) + ,'v(m)N (—N —1)

+ v(isis)[N;(N, —1) +T T+]+v(imim)[N, (N —1) +U U, ]+v(smsm)[N, (N —1) + V V+],

H, =v(iiis)(T N, +N T+)+v(ssis)(T+N, +N T )+v(imsm)(T N +N T, + V, U +U, V ),
H, = —,'v(iiss)(T, '+T ') +v{iimm)(, '+ ') + —,'v(ssmm)(V, '+ V ) +v(ismm)(U, V, + V U ) .

(2.8a)

(2.8b)

(2.8c)

Since our Hamiltonian H is a function of the gen-
erators of the group SU„ it will commute with the
Casimir operators of this group. Thus the eigen-
states of the Hamiltonian can be simultaneously
eigenstates of the Casimir operators. We know

from group-theoretical considerations that to each
set of eigenvalues of Casimir operators there cor-
responds a set of quantum numbers (A, »») which

describes the symmetry of a given irreducible rep-
resentation. For each set (X, »») we can construct
a multiplet on a two-dimensional plot as follows.
We plot Y along the vertical axis, and T, along the
horizontal axis. Each pair of values Y, T, is rep-
resented by a lattice point in the diagram. Such

multiplets are shown in Fig. 2. Since for a given

total number of particles N, Tp and Y, occupation
numbers of each level are completely specified,
each lattice point on a diagram can be specified
by the occupation numbers N;, N„and N for the
levels i, s, and I, respectively, provided the
total number of particles N is given.

Thus all points lying on the line parallel to the

T, axis have the same value of N, all points ly-
ing on the axis inclined at a 60' angle to the T,
axis have the same value of N„and all points on

an axis of 120 to the T, axis have the same N,
value. (See Fig. 2.) The operators T„T, U„
U, V„and V move one particle from one level
to the other one as shown in Fig. 2. The first part
of the Hamiltonian H, is diagonal in occupation

TABLE $. Commutation properties of operators in Eqs. {2.6) and {2.7).

[T(), T~] =yT~

[T(), V ] =+—V

[Tp U+]=~-'U.

[T„V]=[T- U-]

[T+, U]=V

[T„V,]=-U,

[T+, T ] =2T()

[T-, V-] = U

[T-~U+] = —V+

[V~, V ] =2Vp

[V-, U+] =T+

[U-, V+] =T

[U+, U ] =2Up

[Y, Tq] =0

f ~, Vp] =+V~

[~, U, ] =+U,

[T+, U+] = [T, V+] = [U+, V+] = [U, V-] =0
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FIG. 2. Some of the possible multiplets for the six-particle system. The (3, 0) multiplet is blown up to indicate the

axes of constant ¹„N„andN and the action of operators T, T, U, U, V, and& . For simplicity the diagrams
(4, 1) and (2, 2) do not display repeated states.

numbers ¹,N„and N, thus only H, and H, will
mix states of the same multiplet represented by
lattice points.

One more symmetry is provided by parity con-
servation. States with even values of N have op-
posite parity to those with odd N . Since our Ham-
iltonian conserves parity, it will not mix odd-N
states w'ith even-N states. In the multiplet dia-
grams w'e shall represent even-N states by cir-
cles and odd-N states by dots.

The symmetry (A., p) is a measure of the "collec-
tiveness" of a given state. Thus the most sym-
metric representation (X, p) = (N, 0) corresponds
to a band of most collective states in the following
sense.

First of all we note that for an N-particle sys-
tem in the absence of interaction terms H, and H,
the (A. , p) =(N, O) representation contains a state
Y= 3N, T,=-—,'N, which corresponds to all parti-
cles being in the ith level. This state is complete-
ly symmetric in the substate labels, n, P, . . . .
All other states in this multiplet are generated by
the operators of Eq. (2.6), which themselves are
symmetric in substate labels; thus all of the

states of (N, 0) representation are completely sym-
metric in substate labels. In other words, all
states of the (N, 0) multiplet are linear combina-
tions of single-particle states with equal weights.
Since the interaction terms H, and H, [Eqs. (2.8)]
consist of symmetric operators alone, turning on
H ] and H, will not change the symmetry of the giv-
en representation. The states of lower symmetry
are correspondingly less collective.

If the number of different substates n in all lev-
els is at least as large as the number of particles
in the system, all representations are allowed,
including the symmetric one, (A. , p, ) = (N, 0). How-
ever, if the number of particles N is larger than
the number of substates n, some values of (X, p.)
cannot occur. For example, let us consider a sys-
tem which forms a closed shell for four particles
in the ith level. If we add more particles to this
system the additional particles will have to go into
the sth and anth level. Thus, for five particles the
representation (X, p) = (5, 0) is forbidden in this
case; the lowest allowed symmetry is (X, p) = (3, 1).

More generally, for a system in which n parti-
cles form a closed shell, Young tableaux of al-
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FIG. 3. Lowest symmetry multiplets for an +-particle system with six particles forming a closed shell. The shell-
model ground state is indicated by a large circle. For simplicity the diagrams (5, 1), (4, 2), (3,3), (2, 4), and (1,5) do
not display repeated states.

lowed representations can have at most n columns.
Figure 3 shows highest symmetry multiplets for a
system in which six particles form a closed shell.
Different multiplets correspond to different val-
ues of the total number of particles. These mul-
tiplets contain the shell-model ground state. We
envisage a nucleus where the first unfilled shell
above the closed shell has parity opposite to that
of the closed shell. This is the case for nuclei
such as 0" or Ca" which correspond to major
harmonic-oscillator shell closure. Additional nu-

cleons will fill the next major shell of opposite
parity. In Fig. 3 the "shell-model" ground state
is thus the state with N, =6, N, =o, N =N- N;,
or T, = -3, F =6 ——,N. This is the state where the
closed shell is filled and remaining particles are
in the mth level.

3. SPECIALIZATION OF THE MODEL

In the following we shall restrict our discussion
to the case where we have as many particles in the
system as there are substates. Furthermore, we
assume a Hartree-Fock (HF) representation, the

HF ground state being the state in which all sub-
states o. are occupied in the ith level.

The choice of the HF representation leads to
several simplifications of the Hamiltonian. First
of all, from the condition that the HF Hamiltonian
has no matrix elements between occupied and un-
occupied states we have

v(ii ss) = 0 . (3.1)

or

~, = t(i)+(ti- 1)v(z),

e, = t(s) + (N 1)v(isis), —

c =t(m)+(X-1)v(tmim).

(3.2)

The expectation value of B in the HF ground state
1S

Eo ((HFIH I /HE) X~l 2(&- 1)v(~) 1 . (3.3)

In addition, the HF single-particle energies are
given by

e, = t(a) +Q v(iaia),

Making use of the Casimir operator C, where

C = T T, + V V, + U &, + T, +&, + V, + g(T,'+ U, '+ V,'), (3.4)
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we can rewrite the B, part of the Hamiltonian as

Ho —Eo —(C —
g N —N) v(imim)

= N,&, + N & + ,'N,—(N,—1)[v(s) + v(i) —4v(isis) ] + ,'N—(N —1)[v(m) + v(i) —4v(imim) ]

+ 2N, N [—,v(i) —v(isi s) + v(smsm) —v(imim) ] + [T T, —N;(N, + 1)][v(isis) —v(imim) ]

where

+ [V V, —N, (N + 1)][v(smsm) —v(imim)], (3.5)

X, = e, —e, + (N 1)v(i-sis), X„=e —e, + (N - 1)v(imim) . (3.6)

The last term on the left and the last two terms
on the right of Eq. (3.5) vanish for the symmetric
representation (X, p, ) =(N, O). The la.st term on the

right is the only one that does not conserve T.
Let us now consider the physical situation repre-

sented by this model. We shall neglect B, and II,
for the time being. The ground state is then the
state with N, =N =0, N=N, and its energy is the

HF ground-state energy E,. We have seen that it
belongs to the symmetric (N, 0) representation.
Assume it has even parity.

Let us now consider one-particle-one-hole
states. There are N such states of even parity
where one particle is excited into the sth level,
and N more odd-parity states for one particle ex-
cited into the mth level. In the symmetric repre-
sentation there is one even-parity particle-hole
state and one of odd parity. Their excitation en-
ergies are given, respectively, by X, and X . All

the remaining one-particle-one-hole states belong
to the N-1 multiplets (X, p, ) =(N-2, 1). Thus there
are (N 1) degenerat-e even-parity states (N, = 1,
N = 0) with excitation energy AE, = e, —e, —v(isis)
and (N 1) degenerate -odd-parity states with ex-
citation energy b.E = e —e, —v(imim).

We see that the physical situation described by
this model is like that of the schematic model of
Brown" where we have one "collective" particle-
hole state of each parity shifted in energy from
the HF value by the amount (N- 1)v(isis) or
(N 1)v(imim), whil—e the rest of the particle-
hole states remain close to their unperturbed val-
ues given by Eqs. (3.2). In addition, these collec-
tive particle-hole states exhaust all the transition
strength from the ground state. This can be seen
as follows. Since in this model all the transition
operators have to be symmetric in the substate
labels n, P, y, . . . , we can have transition matrix
elements only between states of the same multiplet.
Thus transition matrix elements vanish between
the ground state, which is in the symmetric rep-
resentation, and all the excited p-h states in the
(N- 2, 1) multiplet.

In this paper we shall be primarily concerned
with the collective levels; thus we shall deal only

Ns

8
7
6
5
4
3
2
I

0

Ns
IO
9
8
7
6
5
4

2
I

0

Ns
9
8
7
6
5
4
3
2
I

0

Nm =I t.tc.

FIG. 4. The energy level structure for the model
Hamiltonian (3.7).

with the symmetric representation. We would like
to simulate a nucleus such as C", for example, in
which there is a low-lying collective quadrupole
state and a relatively high-lying giant-dipole state.
We then identify our even-parity p-h collective
state as "the quadrupole vibration" and the odd-
parity p-h state as the "giant-dipole state. " We
expect a situation where X» A.„ thus v(imim) is
positive and v(isis) is negative.

Neglecting H, and II„we obtain an energy spec-
trum as shown in Fig. 4. We have an even-parity
vibrational band on top of the ground state, anoth-
er one on top of the "giant-dipole state, " a third
one on top of the two-phonon "giant-dipole" state,
etc. The terms in H, proportional to N, (N, —1),
N (N —1), and N, N are responsible for "anhar-
monicity" in the spectrum. For simplicity we
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Qround-state band, N =0

0 ~ ~ ~ p

P 3 ~ ~ ~ 0
P 3 ~ ~ ~ 0 4
0.3 ~ ~ ~ 0.8

0.000 1.000 2.000 3.000 4.000
0.000 0.845 1.661 2.906 4.588

-0.034 0.879 1.646 2.828 4.681
-0.128 0.78 9 1.718 2.804 4.816

Excited-state band, "N =1

0 0.2 0
0 0.6 0
0 10 0
0.3 0.2 0
0.3 0.6 0
03 02 04
0.3 0.6 0.4
0.3 0.2 0.8
0.3 0.6 0.8

-0.030
—0.249
—0.621
-0.033
—0.302
-0.035
-0.244
-0.073
—0.227

0.990
0.917
0,793
P.787
0.599
0.796
0.553
0.792
0.520

2.010
2.083
2.207
1.869
1.956
1.818
1.875
1.795
1.806

3.030
3.249
3.621
3.377
3.748
3.420
3.816
3.485
3.901

The ground-state band is independent of v2.
"The energy A, has been subtracted from E.

shall neglect anharmonic terms. Thus the spec-
trum plotted in Fig. 4 is that of

TABLE II. Exact eigenvalues E of the Hamiltonian of
Eqs. (3.9) for the two lowest bands for four particles
and various values of the interaction parameters v

&

=N v(ssis)/A, „v2—-2N v(imsm)/A, , and v3 —-¹(iiss)/
The energies E are in the units of A, .

vg vg v3

our model Hamiltonian finally becomes H =Hp+H]
+H» with

HO =N, X, +Ng (3.9e,)

H, =-,'v(iiss)(T, '+T ') . (3.9c)

The second term in the Hamiltonian H, gives
rise to "dipole-quadrupole" coupling, since it will
mix the pure "giant-dipole" state N = 1, N, = 0
with the two-particle-two-hole state N =1, N, =1,
corresponding to quadrupole oscillation on top of
the "giant-dipole" state. In the ground-state band
N =0, H, will have no matrix elements between
the shell-model ground state N =0, N, =O and any
of the other N =0 states. If H, =0, the shell-mod-
el ground state remains comp1. etely uncoupled
from the other states. Thus H, is the term that
gives rise to ground-state correlations. For Hy
=0 the model reduces to a monopole model con-
sidered previously. " If the v(imsm) term is zero
inH„ then the structure of the ground-state band
will be the same as that of the excited-state band
except that the excited-state band will be shifted
by an energy X relative to the ground state.

H, =v(ssis)(T+N, +N T )+2v(imsm)(T N +N T,),
(3.9b)

and

Ho —ED=N A, +N A. (3.7)

We shall further simplify the model as follows.
Since A. » X„we neglect all interaction terms in
H, which do not conserve N . Furthermore, since
we shall be working in the symmetric representa-
tion

4. TRANSITION OPERATORS

There are two types of one-body transition oper-
ators in this model: the "dipole" operator, i.e. ,
the operator which changes the parity of the state,
given by

V+U +U+ V =T N +N T», (3.8) D=n(U, +V, +U +V ), (4 I)

TABLE III. Exact eigenvalues E of the Hamiltonian of Eqs. (3.9) for the two lowest bands for seven particles and

various values of the interaction parameters v& =N v(ssis)/A~, v&—-2N v (imsm)/A. „and v3=Nv(iiss)/A, The energies
E are in the units of A,

Vg v a
2

Ground-state band, N =0

0
0.3
0.3
0.3

0
0

0.4
0.8

0.000
0.000

-0.040
-0.157

1.000
0.775
0.845
0.647

2.000
1.270
1.464
1.489

3.000
2.136
2.054
2.222

4.000
3.336
3.132
3.042

5.000
4.864
4.691
4.569

6.000
6,719
6.701
6.727

7.000
8.900
9.152
9.462

Excited-state band N = 1

0
0
0
0.3
0.3
0.3
0.3
0.3
0.3

0.2
0.6
1.0
0.2
0.6
0.2
0.6
0.2
0.6

0
0
0
0
0
p 4
0.4
0.8
0.8

—0.034
-0.294
-0.761
—0.042
—0.469
—0.046
—0.287
-0.120
—0.282

0.977
0.804
0.493
0.583
0.099
0.707
0.188
0.648
0,273

1.989
1.902
1.746
1.303
1.053
1,321
0.946
1.402
0.913

3.000
3.000
3.000
2.371
2.336
2.240
2.146
2.194
1.987

4.011
4.098
4.254
3.765
3.947
3.620
3.783
3.510
3.638

5.023
5.196
5.507
5,486
5.885
5.446
5.857
5.435
5.851

6.034
6.294
6.761
7.533
8.148
7.712
8.366
7.931
8.619

The ground-state band is independent of v2. The energy A, has been subtracted from E.
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and the "quadrupole" operator, which is a transi-
tion operator between states of the same parity,

Q (y„ i g i y )' = Q (N + 2N(N, ) —2(N, ) + 2(T, ')),
(4.5)

9=Q(&, +T-) ~

The sum rules for these operators

Z(w. I
o

I m, )' = (v, I

o'
I v, )

are, respectively, - given by

(4.2)

(4 2)

where the expectation values are taken with re-
spect to the ground state which is assumed to be
a member of the N =0 band of the symmetric rep-
resentation. For the uncorrelated ground state

y, (N„=O, N, =O), the sum rules reduce to

(4 6)

Z(m. ID I V,)' = &'(&+2(T', )), (4 4) Q (y. I 9 I q'.) =&Q'. (4 7)

TABLE IV. Exact solutions of the Hamiltonian (3.9) for 10 particles and various values of the interaction parameters
y&, v&, and p3, defined in Table II. The energies E are in units of A, . The eigenvectors are in the columns below the
corresponding eigenvalues. Eigenvectors are given by the eigenstates of N, =E.

Ground-state band, Nm= 0
@&=0, v&=0.2, 0.6, 1.0, v&=0

0.000 1.000 2.000 3.000 4.000 5.000 6.000 7.000 8.000 9.000 10.000

-0.036 G.972 1.980

Excited-state band, N~= 1, vrith the energy A subtracted
v& =0, @2=0.2, u3=0

2.988 3.996 5.004 6.012 7.012 8.028 9.G36

viz
Q

1

3

7

9

0.982
-0.185
0.023

-0.023
0.000
0.000
0.000
0.000
0.000
0.000

0 y313

0.862
-0.474
0.174

-0.049
0.011

-0.002
0.000
0.000
0.000
0.000

0.696
-0.605
0.350

-0.155
0.054

-0.016
0.004

—0.001
0.000
0.000

0.185
0.951

-0.244
0.036

-0.004
0.000
0.000
0.000
0.000
0.000

0.756

0.474
0.630

-0.557
0.248

—0.076
0.017

-0.003
0.000
0.000
0.000

0.605
0.229

-0.570
0.445

-0.227
0.086

—0.025
0.006

-0.001
0.000

0.023
0.244
0.928

-0.277
0.044
0.005
0.000
0.000
0.000
0.000

1.826

0.174
0.558
0.477

-0.582
0.289

-0.093
O.Q21
0.004
0.000
0.000

D.350
0.570

-0.018
-0.491
0.479

—0.264
0.101

-0.028
0.006

-0.001

0.002
0.035
0.277
0.913

—0.294
0.047

-0.005
0.000
0.000
0.000

eg=0,
2.896

-0.049
-0.247
-0.582
-0.384
0.587

-0.308
0.098

—0.021
0.003
0.000

-0.155
—0.445
-0.491
0.143
0.435

-0.490
0.276

-0.101
0.025

-0.004

0.000
0.003
0.043
0.294
0.905

-0.300
0.047

—0.004
0.000
0.000

v2 =0.6,
3.965

0.010
0.076
0.289
0.587
0.339

-0.588
0.308

—0.092
0.018

-0.002

v2=1.0,
3.908

0.055
0.227
0.480
0.434

—0.194
-0.414
—0.489
-0.265
0.086

-0.016

0.000
0.000
0.004
0.005
0.300
0.905

—0.294
0.043

-0.003
0.000

@3=0
5.035

-0.002
-0.018
-0.092
—0.308
-0.588
-0.339
—0.587
—0.290
0.076

-0.010

@3=0
5.092

0.016
0.086
0.265
0.490
0.414

—0.194
—0.434
0.480

-0.227
0.055

0.000
0.000
0.000
0.005
0.047
0.294
0.913
0.277

—0.035
0.002

0.000
0.003
0.021
0.099
0.308
0.587
0.383

-0.582
0.247

-0.486

0.004
0.025
0.101
0,276
0.490
0.435

-0.143
-0.491
0.445

—0.155

0.000
0.000
0.000
0.000
0.005
0.044
0.277
0.928

-0.244
0.023

7.174

0.000
0.000
0.004
0.021
0.093
0.289
0.582
0.477

-0.558
0.174

—0.001
—0.006
-0.028
-Q.101
-0.264
-0.479
-0.491
0.018
0.510

-0.350

0.000
0.000
0.000
Q.OOG

0.000
0.004
0.036
0.244
0.95.1

-0.185

8.244

0.000
0.000
0.000
Q.003
0.018
0.076
0.248
0.557
0.630

-0.474

0.000
-0.001
-0.006
—0.025
-0.086
-0.227
-0.445
-0.569
-0.229
0.605

0.000
0.000
0.000
0.000
0.000
0.000
0.002
0.023
0.185
0.982

0.000
0.000
0.000
0.000
0.002
0.011
0.049
0.174
0.474
0.862

0.000
0.000
0.001
0.004
0.016
0.055
0.155
0.350
0.605
0.696
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5. STABILITY OF THE HF GROUND STATE

We shall now consider the ground-state band,
i.e. , the N =0 band of the (A. , p, ) = (N, O) represen-
tation. In the absence of the interaction terms H,
and II, the ground state is the X,=0 state. As we
turn on the interaction II, the states with N, ) 1
will mix with each other while the N, =O state re-
mains uncoupled. For strong enough values of the
interaction parameter v(isis)/X„another state can
become lower in energy than the N, =O state. At
this point the original HF state becomes unstable,
and a new HF representation must be found. If
H, &O, then the N, =O state will mix with other

states. It can be shown that in order for the N, =O

state to be a stable HF solution, the interaction
strength for II, must satisfy the condition

(N i—)v(ssi s) & I, ,

and the interaction strength for H, must satisfy
the condition

(N 1)v(i-i ss) & X, .

The stability of HF solution in the absence of the
H, term has been discussed previously. ' The in-
fluence of the interaction strength II, on the stabil-
ity of the HF ground state will be discussed in a
future publication.

TABLE V. Exact solutions of the Hamiltonian (3.9) for 10 particles and various values of the interaction parameters
v&, v&, and v3, defined in Table G. The energies E are in units of A, The eigenvectors are in the columns below the
corresponding eigenvalues.

N+ 0. 0.628 0.910

Ground-state band, N =0
v

&

——0.3, v2 ——0.2, 0.6, v3 ——0
1.562 2.475 3.666 5.131 6.868 8.879 11.162 13.718

0
1
2

3

5
6

7

8
9

10

1.000
0
0
0
0
0
0
0
0
0
0

0
0.462

-0.426
0.430

—0.414
0.360

-0.275
0.180

—0.097
0.041

-0.012

0
0.776

—0.174
-0.132

0.291
-0.337

0.297
—0.212
0.122

-0.054
0.016

0
0.393
0.550

-0.430
0.071
0.228

-0.359
0,332

—0.222
0.109

-0.035

0
—0.163
—0.596
-0.233

0.449
-0.160
-0.204

0.376
—0.334

0.194
—0.069

0
0.051
0.336
0.581
0.049

—0.428
0.181
0.230

—0.403
0.310

-0.132

0
0.012
0.129
0.428
0.526

—0.024
-0.422

0.142
0.309

—0.419
0.232

0
0.024
0.036
0.187
0.459
0.497

-0.009
—0.432

0.261
0.427

-0.368

0
0

0.007
0.055
0.211
0 .455
0.510
0.096

-0.417
—0.211
0.507

0
0

0.001
0.011
0.059
0.196
0.418
0.547
0.313

—0.245
—0.570

0
0
0

0.001
0.009
0.044
0.140
0.321
0.533
0.622
0.452

N~gE —0.047 0.348 0.853

Excited-state band, N = 1, with energy A, subtracted
v&=0 3, v& ——0 2, v3 ——0
1.661 2.740 4.093 5,719 7,616 9.787 12.230

0.960
—0.241
0.111

-0.066
0.042

—0.026
0.015
0.007
0.003
0.001

N $E —0.781

0.270
—0.371

0.445
—0.469
0.430

—0.340
0.227

—0.125
0.054

-0.016

0.223
0.413

—0.493
0.477

—0.407
0.304

-0.195
0.104

-0.043
0.012

—0.294

0.753
-0.389
0.065
0.169

-0.288
0.296

-0.231
0.141

—0.064
0.020

—0.156
—0.703

0.210
0.176

-0.364
0.383

—0.296
0.178

-0.081
0.024

0.395

0.536
0.372

-0.465
0.186
0.139

—0.328
0.343

—0.246
0.126

—0.042

0.055
0.475
0.480

-0 .400
-0.012

0.321
—0.396

0.302
-0.160
0.054

v, =0.3,
1.380

—0.253
-0.611
—0.078

0.428
—0.240
—0.129

0.353
—0.349

0.214
-0.080

0.015
0.213
0.582
0.255

-0.435
0.051
0.322

-0.408
0.277

—0.109

v& =0.6,
2.640

0.088
0 .407
0.543

—0.067
—0.396
0.244
0.169

—0.392
0.327

—0.146

0.003
0.069
0.338
0.572
0.137

-0.434
0.034
0.372

—0.406
0.204

v&
——0

4.174

—0.023
—0,174

0 .472
—0.476

0.112
0.396

-0.199
—0.266
0.422

—0.249

0
0.017
0.127
0.397
0.547
0.119

-0.428
-0.067
0.455

—0.342

5.980

0.005
0.053
0.228
0.487
0.454

-0.082
—0.422

0.079
0.406
0.382

0
0.003
0.033
0.159
0.408
0.544
0.198

-0.384
-0.278
0.496

8.059

0.001
0.012
0.072
0.244
0.477
0 .481
0.035

-0.429
—0.169
0.512

0
0

0.006
0.040
0.156
0.377
0.555
0,382

—0.187
—0.586

10.411

0
0.002
0.015
0.073
0.222
0.440
0.537
0.270

-0.277
—0.559

0
0

0.001
0.006
0.032
0.114
0.287
0.513
0.636
0.486

13.035

0
0

0.002
0.012
0.052
0.157
0.341
0.543
0.612
0.432
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6. RESULTS AND DISCUSSION

Here we shall restrict the values of the interac-
tion parameters of the H, and H, terms of the Ham-

iltonian to the values given by Eqs. (5.1) and (6.2).
The eigenvalues and eigenvectors of the Hamilto-
nian [Eqs. (3.9}]have been obtained numerically

up to 10 particles for N =0 (ground-state band)

and N =1 (excited-state band). The results are
presented in Tables II to VII,

Let us first set H, =O and look at the effect of the
interaction term H, on both the ground- and the ex-
cited-state bands. There are two terms contribut-

ing to H„one is characterized by interaction
strength v(ssis), and the other one by v(imsm).
The v(imsm} term vanishes in the ground-state
band (N =0}. Thus if v(ssis) =0, the ground-state
band is purely vibrational, i.e., we have N, equal-

ly spaced excited states on top of the ground state
with a separation ~, as in Fig. 4. Let us now con-
sider the excited "dipole" band N = I with v(ssi. s)
=0. If u(imsm) is also zero, then the excited-
state band will be equally spaced with energy sep-
aration equal to X,. The dipole strength from the
ground state, i.e. , the matrix element (y„~D ~ y, )'
[see Eg. (4.6)] will be exhausted by the first ex-

TABLE VI. Exact solutions of the Hamiltonian (3.9) for 10 particles and various values of the interaction parameters

v&, v2, 'and v3, defined in Table II. The energies E are in units of A, The eigenvectors are in the columns below the

corresponding eigenvalue s.

NsNE —0.043 0.822 1.395

Ground-state band, N~=O

v& =0.3, v& =0.2, 0.6, v3 =0.4
1.618 2.264 3,345 4.797 6.606 8.768 11.282 14.146

0
1
2

3
4
5
6
7

8

9
10

0.985
0.045

-0.159
0.039
0.011

—0.011
0.004

—0.001
0.114
0.0
0.0

-0.077
0.938

-0.238
-0.169
0.158

—0.064
0.014
0

—0.001
0
0

0.133
0,229
0.694

-0.651
0.269

—0.028
-0.039
0.032

-0.015
0,005

-0.002

0.041
0,215
0.247
0.082

-0.512
0.597

-0.436
0.240

-0.104
0.035

-0.008

0.050
0.215
0.424
0.244

-0.415
—0.067

0.454
—0.473

0.297
-0.126

0.034

0.029
0.140
0.359
0.444
0.011

-0.440
0.088
0.380

—0.466
0.283

-0.096

—0.013
—0.071
—0.227
-0.430
-0.390

0.096
0.424

—0.107
-0.396

0.451
-0.213

0.004
0.029
0.110
0.280
0.454
0.368

—0.102
—0.432
0.021
0.475

-0.380

0.001
0.009
0.043
0.131
0.297
0.460
0.402

—0.011
-0.435
-0.202
0.538

-0.003
—0.002
-0.011
—0.043
—0.125
-0.275
-0.448
0.486

-0.213
0.297
0.580

0
0

0.002
0.009
0.032
0.089
0.203
0.373
0.540
0.587
0.417

Excited-state band, N = 1, with energy A, subtracted

NiE —0.052 0.670 1.066
v( =0.3,

1.577
v 2

——0.2, v3 =0.4
2.513 3.818 5.480 7.494 9.8 59 12.574

0.983
—0.136
—0.107

0.066
—0.016

0
0.002
0
0
0

0.557
0.847

-0.514
0.097
0.050

-0.051
0.025

-0.009
0.002
0

-0.122
-0.231
-0.361

0.645
-0.522
0.300

-0.138
0.052

-0.016
0.003

0.105
0.342
0.420

—0.240
—0.314

0.539
—0.431

0.233
-0.089
0.022

0.065
0.259
0.475
0.217

—0.416
—0.087

0.467
-0.442
0.236

-0.073

0.031
0.146
0.371
0.470
0.672

-0.437
—0.026

0.459
—0.423
0.180

0.011
0.065
0.211
0.422
0.448
0.028

—0.435
—0.087
0.503

—0.347

0.003
0.022
0.089
0.240
0.435
0.462
0.097

-0.408
—0.281
0.525

0.001
0.006
0.027
0.092
0.229
0.418
0.512
0.292

—0.237
-0.600

0
0.001
0.053
0.021
0.068
0.170
0.339
0.526
0.607
0.454

—0.307 -0.072 0.370
v&=0.3, v2=0.6, v3=0.4

1.184 2.345 3.865 5.730 7.945 10.510 13.423

0.809
—0.534
0.233

—0.077
0.018

—0.003
0
0
0
0

—0.318
—0.169
0.496

-0.552
0.447

—0.296
0.163

-0.074
0.026

-0.006

0.385
0.424

—0.413
0 044
0.386

—0.449
0.332

—0.180
0.072

-0.019

0.266
0.513
0.096

—0.454
0.139
0.294

-0.445
0.340
0.167
0.050

0.145
0.411
0.445

—0.925
—0.414
0.198
0.277

—0.451
0.314

-0.118

-0.065
—0.245
—0.462
—0.369
0.163
0.397

-0.1.79
—0.332
0.452

-0.235

0.023
0.111
0.297
0.472
0.346

—0.149
—0.418
0.077
0.445

-0.392

0.007
0 .039
0.134
0.310
0.472
0.388

-0.048
-0.439
-0.162
0.537

-0.001
—0.010
-0.043
—0.129
-0.285
-0.458
-0.481
-0.-188
0.317
0.567

0
0.002
0.009
0.032
0.091
0.210
0.382

- 0.546
0.582
0.404
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cited state of the N =1 band. No other "dipole"
transitions from the ground state can occur in this
case. As we turn on the interaction term v(imsm)
the states of the N =1 band start mixing with each
other, while the ground-state band remains unper-
turbed.

As a result of this mixing the dipole strength be-
comes distributed among the states of N =1 band,
the sum rule remaining the same as in the nonin-
teracting case. As long as v(ssis) =0 the vibration-
al character of the N = I band is preserved. (See
Tables II-IV.) It is shown in the Appendix that in
this case the energy splitting of the N =1 band is

given by

AE = [A.,'+ 16v'(imsm) j'~',

with the lowest N =I state given by

and the dipole strength S„ to the state y„

(6.1)

(6.2)

(6.3)
where n=0, 1, . . . , N-1 specifies the member of
the N =1 band corresponding to the eigenvalue

TABLE VII. Exact solutions of the Hamiltonian (3.9) for 10 particles and various values of the interaction parameters
v&, v2, and v3, defined in Table II. The energies E are in units of A~. The eigenvectors are in the columns below the
corresponding eigenvalues.

A gZ -O.I74 0.560 1.288

Ground-state band, N =0
v&=0.3, v&=0.2, 0.6, v3=0.8

1.973 2.473 3.156 4.527 6.392 8.076 11.458 14.643

0
1
2

3
4
5
6

8

9
10

0.944
0.070

-0.306
0.049
0.081

—0.045
-0.001
0.009

-0.004
0.000
0

-0.087
0.869

—0.091
—0,416
0.207
0.056

-0.091
0.033
0

-0.003
0.001

0.230
-0.023
0.719

-0.356
0.320
0.382

—0.112
-0.041
0.044

-0.015
0.002

-0.002
0.427

—0.009
0.504

-0.616
0.054
0.322

-0.263
0.093

—0.010
-0.003

-0.088
-0.034
—0.406
0.136

—0.249
0.611

-0.561
0.236

-0.021
-0.024
0.010

0.053
0.187
0.312
0.333

-0.522
—0.273
—0.179
0.595

—0.494
0.207

—0.043

0.033
0.125
0.282
0.395
0.267

—0.142
-0.377
0.028
0.50Q

-0.478
0.187

0.015
0,064
0.177
0.333
0.416
0.247

-0.169
-0.404
0.010
0.523

-0.393

0.005
0.026
0.083
0.198
0.349
0.435
0.297

—0.098
-0.434
—0.186
0.567

-0.001
-0.008
-0.029
—0.082
—0.186
-0.331
-0.452
—0.417
-0.122

0.339
0.583

0
0.001
0.006
0.022
0.059
0.134
0,256
0.411
0.540
0.552
0.383

—0.148 0.540 1.210

Excited-state band, N =1, with energy A, subtracted

v
&

——0.3, v& =0.2, v3 ——0.8
1.770 2.403 3.595 5.277 7.407 9.973 12.972

0.953
—0.086
—0.261
0.113
0.029

-0.040
0.013
0

-0.001
0

0.007
0.866

-0.330
-0.257
0.260

-0.060
—0.030
0.025

—0.007
0.001

0.273
0.070
0.661

-0.620
0,024
0.256

-0.175
0.048

-0.001
-0.003

0.049
0.353
0.041
0.322

-0.702
0.503

-0.137
-0.028

0.033
-0.009

—0.096
-0.240
—0.386
-0.103
0.180
0.386

-0.634
0.411

-0.140
0.023

0.060
0.199
0.371
0.370
0.008

-0.378
—0.134
0.561

-0.430
0.146

0.286
0.113
0.269
0.417
0.350

-0.044
0.415

-0.115
0.553

-0.352

0.010
0.048
0.143
0.298
0.435
0.378
0.010

-0.416
-0.276

0.554

-0.003
—0.015
—0.054
—0.142
-0.286
-0.437
—0.461
—0.209

0.280
0.607

0
0.003
0.013
0.041
0.105
0.219
0.380
0.532
0.577
0.423

N~%E -0.320 0.140 0.560
v&

——0.3, v& ——0.6, v& =0.8
1.073 2.096 3.582 5.505 7.860 10.645 13.860

0.876
—0.409
-0.100

0.212
—0.101
0.005
0.018

-0.017
0.003
0

-0.184
-0.623

0.685
-0.190
—0.162
0.190
0.091
0.022

-0
0.001

0.301
0.109
0.223
0.645
0.593

-0.277
0.047
0.021

-0.016
0.004

-0.244
-0.400
-0.072
0.260
0.208

-0.579
0.508

-0.254
0.076

—0.012

0.187
0.394
0.348

—0.095
-0.377

0.070
0.436

-0.508
0.278

-0.079

0.104
0.290
0.432
0.271

—0.189
-0.376
0.133
0.414

-0.481
0.216

0.466
0.163
0.340
0.438
0.249

—0.196
-0.399
0.068
0.48 5

—0.404

0.017
0.071
0.189
0.353
0.449
0.300

-0.115
-0.437
—0.151
0.561

-0.005
—0.022
—0.074
—0.179
—0.332
—0.460
-0.423
-0.114

0.349
0.571

0.001
0.004
0.018
0.054
0.129
0.255
0.414
0.544
0.552
0.377
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E„=X + ~(N —1)(A., —b E) + nbE . (6.4) bE l, ,h
——[X,'+16(N —1)v'(imsm)]'~', (6.7)

(y, D y, )
(

)b.E/X, —1

(y, D y, )' bE/X, +I (6.5)

It is seen that for a. given bE/X, this ratio is di-
rectly proportional to (N 1). F—or 2v(imsm)/X,
(( $

2v(imsm) '
S

(6.6)

One possible approximation method one might be
tempted to consider" is to include two-particle-
two-hole (2p-2h) or three-particle-three-hole
(3p-Sh) configurations as indicated in Fig. 5. This
is done in our model by simply diagonalizing the
Hamiltonian matrix in a two-dimensional (2p-2h)
or a three-dimensional (3p-Sh) subspace of the N
dimensional space of the N =1 band.

Let us first consider the approximation where
we only include up to 2p-2h states. The energy
splitting between no-phonon and one-phonon states
is given in this approximation by

The first five excited band energies and corre-
sponding dipole strengths are given in Table VIII
for 10 particles and different values of the inter-
action parameter v, = 2N'~'v(imsm)/X, It. is seen
from Eq. (6.1) that the energy splitting b E/X, de-
pends only on the interaction strength 2v(imsm)/X,
and does not depend on the number of particles ¹

The dipole strength, on the other hand, depends
on N. The ratio of the dipole strengths of the one-
phonon (n = 1) state to that of the zero-phonon (n=0)
one is given by

and the dipole strength ratio is

bE lspa~ —&.
b.E

l ~p~g + A.,
For (N 1)[-2v(imsm)/X, ]'« I,

R l,z,„=(N- I)[2v(imsm)/X, ]'.

(6.8)

(6.9)

Note, that the 2p-2h approximation depends only
on the interaction parameter v(imsm). Comparing
these approximate results with the exact expres-
sions for b.E and R in Eqs. (6.1) and (6.3), we see
that for a given interaction strength the approx-
imate energy splitting will be larger than the ex-
act one, while the corresponding approximate di-
pole-strength ratio will be too low. In a calcula-
tion on an actual nucleus one is likely to adjust the
parameters of the calculation to obtain proper en-
ergy splitting. If this is done in this model, then
the resulting dipole-strength ratio R l,~» will be
too low by a factor of (N-1).

Extending the approximation up to 3p-3h states
improves the agreement with exact results for the
zero-phonon and one-phonon states (see Table
VIII). However, the two-phonon state is not given
accurately.

We thus conclude that an approximation which
only includes a few p-h excitations could lead to a
qualitative explanation of giant-resonance splitting,
but it might be too optimistic to expect quantitative
predictions from such approximations.

We should note here that with II, given by Eq.
(3.9), the effect of the v(imsm) term in 8, is al-

TABLE VIII. Five lowest N =1 band energies, QE, relative to the ground state and corresponding transition
strengths, 8, from the ground state. The energy A, has been subtracted from 4E.

v R
2

2p-2h approximation
S.

N =10, v~=0 v =0
3p-3h approximation

4E 8
Exact

0.2

0.6

1.0

-0.035
1.035

-0.258
1.258

-0.572
1.572

0.967
0.033

0.830
0.170

0.739
0.261

-0.036
0.974
2.061

-0.306
0.866
2.440

—0.761
0.798
2.964

0.964
0.035
0

0.740
0.246
0.014

0.514
0.449
0.037

-0.036
0.972
1.980
2.988
3.996

-0.313
0.756
1.826
2.896
3.965

-0.824
0.359
1.542
2.725
3.908

0.964
0.034
0
0
0

0.743
0.225
0.030
0
0

0.484
0.365
0.122
0.024
0

Parameters v&, v&, and v3 are defined in Table II.
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Ip Ih 2p2h 3p3h

X

0 0
X X

0 0 0

FIG. 5. Particle-hole configurations included in approx-
imations of Sec. 6. Circles represent holes, crosses re-
present particles.

ways to increase the energy level spacing in the
excited-state band relative to the ground state.
However, in the original Hamiltonian [Eqs. (2.6)
and (3.5)] there are other terms present in H„ in
particular a term proportional to N,N:

2N, N =[—,'v(i) —v(isis) + v(smsm) —v(imim)].
(6.10)

The above term vanishes in the ground-state band

(N, =0) but contributes a term proportional to N,
to the excited-state band, changing the unper-
turbed energy splitting A., to

X, = X, + v(i) —2v(isis) —2v(imim) + 2v(smsm) .
(6.11)

If X,& X, it is possible to obtain energy splittings
in the N =1 band smaller than those in N =0 band.

Consider the v(ssis) term inH, [Eqs. (3.9)]. As
was pointed out previously, this term alone leaves
the lowest state of each band unperturbed but mix-
es all the other states, i.e. , N, =0 remains a good
quantum number, but N, &0 is not. In the absence
of the v(imsm} term the N, =0, N =1 state will
exhaust all the "dipole strength" from the ground
state. In order to obtain spreading of the dipole
strength over excited states we must include

v(imsm). Tables II, III, V, and IX show the re-
sults for v, =N"'v(ssis)/A, =0.3 and different val-
ues of v(imsm). We see that both the ground- and
excited-state bands lose their vibrational charac-
ter, i.e. , the levels within each band are no long-
er equally spaced. For small values of the
v(imsm) term most of the dipole strength is still
concentrated in the lowest member of the excited-
state band; however, for 2N "'v(im sm)/1, = 0.6,
we see that the dipole strength is distributed over
four states with 57% going to the second-highest
state of the excited-state band (see Table IX). The
2p-2h and 3p-3h approximations are no longer
valid.

The effect of II, part of the Hamiltonian is dis-
played in Tables II, III, VI, VII, X, and XI. Since
the H, term mixes the ground state (the lowest
state of the ground-state band) with other mem-
bers of the ground-state band, the dipole sum rule
is no longer given by Eq. (4.6}, since the ground-
state expectation value of T, does not vanish in
this case.

From Tables X and XI we see that a.s the
strength of the H, term increases, the relative
amount of dipole strength going to the lowest mem-
ber of excited-state band is also increased. The
II, term thus seems to counteract the effect of the
v(ssis) term as far as the distribution of dipole
strength is concerned. Again the 2p-2h and 3p-3h
approximations give poor results for v, =0.6.

7. SUMMARY AND CONCLUSIONS

The general class of models presented in this
paper is especially useful in investigating systems
possessing different collective modes. A version
of this class of models was adapted here for the
study of the mixing of two collective states, anal-
ogous to the mixing of giant-dipole-resonance with

TABLE IX. Five lowest N =1 band energies, DE, relative to the ground state and corresponding transition
strengths, S, from the ground state. The energy A. has been subtracted from &E.

Vg

2p-2h approximation
S

N =10, v& =0.3, v3= 0
3p-3h approximation

AE S
Exact

0.2

0.6

-0.035
1.035

—0,258
1.258

0.967
0.033

0.830
0.170

—0.042
0.733
2.309

—0.385
0.606
2.779

0.947
0.051
0.001

0.612
0.375
0.013

-0.048
0.348
0.854
1.661
2.740

-0.781
—0.294
0.395
1.380
2.640

0.922
0.050
0.024
0
0

0.073
0.567
0.287
0.064
0.001
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TABLE X. Five lowest N =1 band energies, AE, relative to the ground state and corresponding transition
strengths, S, from the ground state. The energy A. has been subtracted from &P.

Vg

2p-2h approximation
AE S

¹10, v& =0.3, v4=0.4
3p-3h approximation

AE S
Exact

0.2

0.6

-0.035
1.035

-0.258
1.258

0.967
0.033

0.830
0.170

p p44
0.699
2.344

-0.243
0.646
2.597

0.976
0.008
0.016

0.778
0.190
0.031

-0.009
0.714
1.109
1.621
2.556

-0.263
—0.028
0.413
1.227
2.393

1.003
0.010
0.002
0.001
0

0,628
0.155
0.180
0.048
0.006

surface quadrupole vibrations in nuclei. The phys-
ical picture described by this model is that of a
set of vibrational bands, each band being separat-
ed from the next one by an energy A. , much larg-
er than the energy splitting X, within each band

(Fig. 4). The model Hamiltonian [Eqs. (3.9)] mix-
es states within each band but does not mix states
belonging to different bands. In this work we are
mainly concerned with the two lowest bands, the
lowest member of the first-excited-state band be-
ing a collective state analogous to the giant dipole
resonance. The interaction term primarily re-
sponsible for the mixing of the two types of collec-
tive excitations is shown to be the v(imsm) term
of the Hamiltonian (3.9), the term that promotes
one particle form the lowest level i to the middle
level s, leaving the other particle in the mth level.
This term vanishes in the ground-state band. Fur-
thermore, the value of v(imsm) must be at least
such that 2N'"v(imsm)/A. , =0(0.5), in order that
there be any appreciable spread of transition
strength over several excited states. It was also
shown that in the excited-state band the contribu-

tion of the many-particle-many-hole states is
quite important for the above value of v(imsm);
the 2p-2h and Bp-3h approximations do not give
satisfactory results. We are led to conclude that
in treating this type of mixing of collective states
the many-phonon vibrations must be properly tak-
en into account. One possible approach might be
a search for a different representation in the ex-
cited-state band from that of the ground-state one,
as we did in the Appendix for the model. The re-
sult of this approach is a vibrational band on top
of the dipole state with a different frequency than
that of the ground-state vibrational band.

There are other possible applications of this
cia,ss of models. One could look at double-closed-
shell systems simulating nuclei, such as 0" or
Ca", by reversing the order of the s and m levels
in Fig. 1. In this case other terms in the Hamil-
tonian (2.8) will become more important than the
ones included in Eqs. (3.9). One could also con-
sider a system, in which n particles form a
closed shell, and look at the effects on the struc-
ture as other particles are added outside the

TABLE XI. Five lowest N =1 band energies, QE, relative to the ground state and corresponding transition
strengths, S, from the ground state. The energy A, has been subtracted from QE.

Vp

2p-2h approximation
S

N =10, v& =0.3, v3=0.8
3p-3h approximation

AE S
Exact

0.2

0.6

-0.035
1.035

—0.258
1.258

0.967
0.033

0.830
0.170

-0.111
0.695
2.416

-0.258
0.340
2.918

0.955
0.002
0,043

0.808
0.129
0.062

0.026
0.714
1.384
1.944
2.576

-0.147
0.314
0.734
1.247
2.270

1.008
0
0
0
0

0.839
0.110
0.039
0.019
0.002



2228 N. ME SHKOV

closed shell. This would involve studying repre-
sentations other than the symmetric one, (A, y.)
=(N, O), as shown in Fig. 3.

We are grateful to C. A. Levinson and M. K.
Banerjee for numerous fruitful discussions.

APPENDIX

AE = [X,' + 16v (im sm) ]
'

we get

(A.5)

1
[X,'+ 16v'(im sm)]"'

Choosing the minus sign in Eqs. (A.4), and letting

Consider Eqs. (3.9) for v(ssfs) = v(iiss) =0 and
N =1. Since if N =1, then N, =T, + ,'(N —1),-Eqs.
(3.9) become

H =X + zX,(N 1)-+bETO.

The eigenvalues of T,' are

--,'(N-1)+n, n=0, 1, . . . , (N- 1).

(A.6)

(A.V)
H=X +X,T, +-,'(N-1)X, +2v(imsm)(T +T, )

= A ~ + X,T, + —,'A.,(N - 1) + 4v(im sm) T„. (A.1)

We shall seek a representation in which H is
diagonal in the following way. Let us perform a
rotation through an angle 6I about the y axis in T
space:

7() = sin 6 T„+cos 0 To,

T„=cosOT,' —sinoTO.
(A.2)

We now express Eq. (A. l) in terms of the opera-
tors T,' and T„' [Eq. (A.2)]:

H =X + ,'(N —1)+[A—., sin6+4v(imsm) cos8]T„'

+[X,cos6 —4v(imsm) sin8]T,'. (A.3)

Since the angle 6 is at our disposal we let the co-
efficient of T„' in Eq. (A.3) vanish:

4 v(imsm)sin0�- =cos,
A.

Therefore, the eigenvalues of H [Eq. (A.5)] be-
come

E„=X + ~(N —l)(A., —AE)+nhE. (A.8)

Since in this case, the ground state y, is the
lowest state of the N =0 band, the dipole strength
S„ into the eigenstate y„of T,' with eigenvalue
--,'(N-1)+n is

S.=«. ID I P,)'= I d-, &N-v, —,&~-v-.(6) I',
where dt&„» l&„v „(6), the matrix elements of a
finite rotation, are defined, e.g. , in the work of
Edmonds. " Using Ref. 15

Id &~-v &g-v-. (8)l

&N —1)! 1 cos& ' " 1 —cos8)"
n! (N- 1-n)! 2 2

and Eq. (A.4) with the minus sign, we finally get

4v(im sm)
[X,'+ 16v'(imsm)]"' (A.4) (A.9)

*Work supported by Office of Naval Research Grant No.
NOOO14-67-A-0377-0009.
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