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Many investigators have studied the scattering of low-energy nucleons by light nuclei using
a single-particle effective potential which is derived from a many-nucleon Hamiltonian under
the assumption that the contribution to the scattering by virtual excitations of the target nu-
cleus can be neglected. In addition, they have approximated the ground-state wave functions
of the target nuclei by crude variational wave functions, thus introducing an unknown error
into the results-of the scattering calculation. In this paper we investigate that error for the
specific case of neutron-triton scattering. To do this we derive three approximate effective
potentials which differ from each other and from the exact single-particle effective potential
by the same order in the error of the approximate triton wave function. The difference be-
tween the phase shifts calculated with the approximate potentials gives an indication of the
uncertainty in the calculations, and as the approximate triton wave function is improved the
difference decreases. Our work shows that previous calculations involve large errors which
may be reduced by improving the approximate target wave function.

I. INTRODUCTION

The complexity of the nucleon-nucleon inter-
action and the difficulties of the many-body prob-
lem require the construction of simplified models
to describe nuclear reactions. One model used
for the description of the scattering of nucleons
from light nuclei is the resonating-group-struc-
ture method. ' ' In this method the low-energy
elastic scattering states of the nucleon-nucleus
system are approximated by functions P, of the
form

g =AyI", (i.i. )
where y is the ground-state eigenfunction of the
Hamiltonian for the target nucleus, I' is the wave
function of the nucleon, and A is the operator
which properly antisymmetrizes the wave function.
Equation (I.1) is known as the no-polarization ap-
proximation, because all virtual excited states of
the nucleus have been neglected.

If the nuclear wave function q were known, the
wave function P could be used in the Schrodinger
equation of the nucleon-nucleus system to derive
an effective single-particle nonlocal potential
which gives the correct phase shifts for the no-
polarization approximation. Then, these phase
shifts could be compared with the experimental
phase shifts, and conclusions could be drawn
about the validity of the no-polarization approxi-
mation, the structure of the target nucleus, or
the appropriateness of the particular parameters
of the two-nucleon interaction.

In practice, though, y is not known; instead, an
approximate wave function for the target nucleus
is found by using the Ritz variational principle.
The nucleon-nucleus effective potential is then

derived using the variational wave function, and
the results of scattering calculations with this
potential are used for the comparison with experi-
ment. In previous calculations conclusions have
been drawn without considering the size of the
error introduced by using a variational wave func-
tion for the target in the scattering calculations.
The purpose of the present work is to investigate
the size of the error this approximation introduces
into the scattering calculation.

We consider the specific case of neutron-triton
scattering using the RGSM. This means that we

accept the no-polarization approximation and the
two-nucleon potential as basic assumptions of
this work. Our goal here is not detailed agree-
ment with experiment, but an understanding of a
source of uncertainty in the calculation of the
phase shifts for scattering processes with com-
posite particles.

In the next section we give three forms for an
effective nucleon-nucleus potential which are func-
tionals of the target ground-state wave function,
and which would be equivalent if the exact target
wave function were used. The differences in the
phase shifts calculated with the different forms
give an indication of the uncertainty caused by the
use of the variational wave function.

In Sec. III a number of approximate triton wave
functions are constructed and lower bounds are
found on their overlap with the ground state of the
model triton Hamiltonian. Next, phase shifts for
neutron-triton elastic scattering are calculated
using these triton wave functions. We find that
as the lower bound to the overlap of the approxi-
mate wave function wI. th the true eigenfunction is
increased, the phase shifts change appreciably.
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When a simple triton wave function of the form
used 1Il pl evlous RGSM calculations ls used the
uncertainty indicated by the difference between
the phase shifts calculated with the different effec-
tive potentials is comparable with the present ex-
perimental uncertainty. This shows that the ap-
proximate forms used for the ground-state wave
function in previous RGSM calculations are not
sufficiently accurate to allow a definitive compari-
soll of the model with the experiment.

Finally, in the Conclusions, we discuss the
possibilities for further investigation of this prob-
lem, and point out the relevance of our work to
other models of nuclear reactions.

Before proceeding to examine Eq. (II.5) further,
we introduce a notation which allows us to see
the effects of antisymmetrization more clearly.
I.et the indices 1, 2, and 4 stand for neutrons and
3 for the proton. Then in the center-of-mass
coordinates the properly antisymmetrized wave
function of the neutron-triton system may be
written

4(1234) = v ~[yr(123)E„(123-4)—y (432)F (432 1)

—yr(143)E„(143-2)],

where, for example, the term

II. STRUCTURE OF EFFECTIVE POTENTIALS
q r(423)F„(423-1)

For neutron-triton scattering in the no-polariza-
tion approximation' the wave function g„r of the
system is given by a product of the model triton
ground-state wave function, y~, and E„, the wave
function of the incoming neutron, i.e.,

(n.l)

whel e A ls the antisymmetrization operator.
In order to calculate the neutron-triton scatter-

ing in the no-polarization approximation, the
ground-state wave function y~ must be known. By
definition cp~ is the eigenfunction of the triton mod-
el Hamiltonian H~, satisfying

(n.2)

where E~ is the model triton binding energy.
The Hamiltonian H of the neutron-triton system

can be written as

(n.3)

where H„~ is the kinetic energy of the neutron
plus its interaction with the triton. The Schro-
dinger equation in the no-polarization approxima-
tion for the neutron-triton system is

means that the triton wave function depends upon
the spin-space coordinates of neutrons 4 and 2,
as well as those of the proton, while the neutron
scattering amplitude is a function of the spin of
neutrons I and its position relative to the center
of mass of particles 4, 2, and 3.

In the center-of-mass system the Hamiltonian
II of the four particles may be written as

II III gQ + Hf jQ (rr.8)

where II...is the Hamiltonian of the triton, and
II„.~„, is the kinetic energy operator for the scat-
tered neutron plus the interaction of the neutron
with the nucleons of the triton. We may express
H], q as

(n.9)

with T,, the kinetic energy operator of particles
i and j in their center of mass, and T,, ~ the kinet-
ic energy operator of particle k relative to the
center of mass of particles i and j. The potential
between particles i and j is given by V,,. The mo-
tion of nucleon / relative to the triton is given by

(Hr+ H„r)AyrF„=(Fr+ &„)AqrrE„, (rr. 4)

J/d7're r[(Hr + H„r) —(F.„+Fr)]AyrF„= 0 .
(rr. 5)

where E„ is the energy of the neutron. Equation
(II.4) for the neutron scattering amplitude E„may
be reduced to a single-particle equation with a
nonlocal potential by multiplying by y~ from the
1eft and integrating over the triton coordinates
T~.' This gives

where T„.~, is the kinetic energy operator of par-
ticle / relative to the center of mass of particles
i, j, and k. From Eq. (11.8) for H, it is clear
that we may write

1H= 2[Has+Has-4+ H42s+ H42s-x]

This form of the Hamiltonian, which is obviously
symmetric under the exchange of particles I and
4, insures that the effective potential wi11 be
H ermitean.

Using the above notation we rewrite Eq. (II.5) as
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J
dT,,3yr(123)[H„, + H„, 4

—(Er+E„)]yr(123) F„(123-4)

1239 r 123 123-4 423 423-1 r n 9 r n ~

(II.12)
We have used the antisymmetry of y(ij3) under the exchange of neutrons i and j to simplify the second
line of Eq. (II.12).

It is possible, of course, to form other equally valid equations for F„(123-4)which give the same result
as Eq, (II.12). If we use the property

H, ,,y(ij 3) = Erg(ij 3)

in Eq. (II.12) the result is

(rr. 13)

JfdT„,yr(123)[H„, ,—E„]yr(123)F„(123-4)—Jt dT„,yr(123)[H„, 4+ H„, , —2E„]yr(423)F„(423-1)= 0.
(11.14)

Equation (II.14} is an exact equation for the neutron scattering amplitude which we may write in more de-
tail by using the definitions

123-4 123-4 14 24 34 (rr. 15)

423-1 423-1 14 12 13 '

But, we may write

1 9 9
123 4 + T23 1 + 23 4 & ~ P23 1 P23 416m

and

9 1 9
423-1 + 23-1 + 23-4 ~ ~ P23-1 P23-4 ~tom

(11.16)

(Ir.17)

(II.18)

where m is the mass of the nucleon and p;, , is the momentum of particle k relative to the center of mass
of particles i and j. Using Eqs. (II.15)-(II.18), Eq. (II.14) becomes

J
dv„,yr(123)[H„, ,—E„]yr(123)F„(123-4)— d73~3yz(123) 4 T~3 2+ gT~3 d+ p~~-2 p-~3-d

+ V12+ V13+ 2114+ V24+ V34 2E„(P~ 423 E„423-1 = 0 .
(11.19)

Part of our investigations will be based upon Eq. (II.19).
Yet another exact equation, which has been used in previous work, may be formed from Eq. (II.19).

The property that cp(ijk) is the eigenstate of the triton Hamiltonian, that is,

H...q, (i'm) =Z,q, (ijk),

may be used again, as

„T(p)(r12 )3= ( T,~
—V„—V„—V-„+Er)yr(123)

(rr. 20)

(11.21)

T„,y (423) =( T„—V„—V„—V„—+E )cp (423}. (II.22)

If Eqs. (D.21) and (II.22) are substituted in Eq. (II.19) one obtains

d „,4' (123)[ll„, , —d„](2 ( 2 )E (1234) —J2(d3„,4„(123)(——,'2'„—4)'„22„+22„I23 ~ I23~4
~

n T n
~ ~ I23 T ~ 2

5
~3

~ ~l l2
~ ~I I3 I4

~P23 1 P23 4 y V23 g 24 dr V,4+ 2 E~ —2E y~ 423 F„423-1 = 0

(II.23)
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rather than another. From these equations and
their derivations, it is clear that as the triton
variational wave function is improved, that is, as
4 ~ tends to zero, the three approximations tend to
exact equations for F(123-4). The difference be-
tween the phase shifts calculated with the approxi-
mations thus gives an indication of their error
with respect to the exact phase shift.

Before we can investigate neutron-triton scat-
tering numerically, we must first select a two-
nucleon potential, construct triton variational
wave functions, and calculate the three approxi-
mate effective potentials in detail. We do this in
the next section.

III. TWO-NUCLEON POTENTIAL AND

APPROXIMATE TRITON WAVE FUNCTION

It is well known that it is possible to fit the two-
nucleon data for energies below about 10 MeV
using a potential with a simple radial form. ' Pre-
vious workers" ' have found that a Gaussian form
is particularly convenient for the calculation of
nucleon-nucleus scattering, so we have chosen a
two-nucleon potential V,, with space-exchange
operator M, , of the form

V, &
= (w+mM„)V, e ""'&

where the constants se, m, V„p, have the values

symmetric S state is coupled to a spinor made up
of the three nucleon spinors coupled to ST = —,'.
This gives J= —,', the total angular momentum of
the triton. We shall denote the triton trial func-
tion by 4r(123), and the space part of that wave
function by 4(123). Then

C (123)= C (123)y(123), (III.4)

where y(123) is the three-particle spinor. In
terms of the neutron spinors S„S„and the pro-
ton spinor S„y(123)is given by

X(123)= [(Si,S,)o S3]s„' (111.5)

4 (123)= X~ exp[ 2o. (r„'+r„'+r„')], (III.6)

which was selected because of its convenience for
the scattering calculation and not because it gives
a good upper bound to the triton binding energy.
The upper bound to the triton binding energy can
be improved while retaining the convenience of
Gaussians by using the trial function

Equation (III.5) means that the neutron spinors
are coupled to spin zero, and then the proton spin-
or is coupled to the spinor of the neutrons. This
gives the triton spinor of spin ST = —, with z com-
ponent MT.

A spatial trial function used in earlier calcula-
tions of neutron-triton scattering" is

se =ra =0.5,

V, = -51.1 MeV,

p, =0,39 F 2. (III.2)

C'(123) = Nz[exp[-2A. (r»'+ r» + r»2)]

+ x exp[=,' v(r»'+ r»'+ r»') ] ),

Ev= d~l234T 123 H1234T 123 (III.3)

To apply the Ritz method to the triton ground

state, the trial functions C r(123) must be con-
structed from suitable spatial and spin functions.
This spin-space structure is determined by the
Pauli principle and the characteristics of the two-
nucleon potential used for the calculation.

When a spin-independent central potential is
used, the ground state is purely a spatially sym-
metric S state. So, to form a correctly anti-
symmetrized trial wave function, the spatially

This potential, which is spin independent, has
been used in a determination of very good bounds"
on the binding energy of our model triton Hamil-
tonian, which will prove useful in this investiga-
tion.

The parameters for the approximate solutions

4, (123) of the triton Schrodinger equation may be
found from the Ritz variational principle by mini-

mizing the upper bound to the triton binding ener-

gy Ev given by

and further improvement may be obtained by using

C'(123) = &s (exp[-zP(r„'+ r„'+r„')]
+ 3' exp[=2'Y(rg + r„+r2, )]
+ z exp[=,'5(r„' r„+'+ r„')]],

(III.8)
where N~, N~, N~ are normalization factors, and

u, A., v, P, y, 6, x, y, and z are the. variational
parameter s.

In Table I, we give the values of the variational
parameters and the upper bounds" Ev to the total
triton ground-state energies ET. As may be seen
from the table, increasing the number of pa.ram-
eters lowers Ev, that is, moves it closer to ET,
the true eigenvalue.

Next, we wish to know the overlap of the approxi-
mate wave function 4T with the eigenstate yT. Be-
cause yT is unknown, we cannot find the overlap
directly. However, a lower bound to the overlap
(yr ~4r) has been derived" in terms of E~, E, (the
energy of the first excited state of Hr), and Er or
E~ (a lower bound to Er). It can be shown that
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TABLE I. Parameters of the triton variational wave functions.

One Gaussian
Two Gaussians

/'

Three Gaussians

E~ = —6.89 MeV

EU = —9.07 MeV

E~ = -9.16 MeV

~=0.202 F 2

A, =0.105 F
0 =0.145 F

x = 5.03
y =2.92

v=0.349 F 2

y=0.406 F z = 0.062 0 = 0.047

(HT) =—JtdT 4*(P,)HT4(P, ). . (111.10)

(111.9)

For the triton model considered here we assume
that there are no three-body bound excited states;
then E, is the two-body binding energy with the
third particle free. Since the eigenvalue E~ is not
known, the expression with Ei must be used to
estimate the overlap.

One method widely used" to find lower bounds
requires a, trial function 4(P,). Defin. ing

Z'"=(4T iyT) -0.822

Z'" = (4 T iqr T)2 - 0.951

Z'" = &4'T ly T)2 - 0 955

for the one-Gaussian 4~,
for the two-Gaussian 4~,
for the three-Gaussian C ~.

(III.13)

The lower bound to the overlap of our trial wave
function 4~ with the eigenfunction y~ may be im-
proved by using a relation given by Weinhold. »

Let 0 ~ be a trial wave function which has the over-
lap (CTicpT) with yT, then

The results, using the lower bound of Eq. (III.12),
are

(HT') = j(dT 4*(P-,)HT2%(P, ). , .

it has been shown that"

( )
(HT') —(H,)'

T L T E (H) (Ill. ll)

E~= -9.75 +0.04 MeV, (III.12)

which is known as Temple's formula. " This ex-
pression for Ei is a function of the trial-wave-
function parameters, which are varied until the
maximum value of Ei is found. Then using Ei
the overlap (9/T ic T) may be found. Unfortunately,
as has been demonstrated in many calculations
in both atomic" and nuclear" physics, lower
bounds tend to lie much further from the eigen-
value than do upper bounds found with the same
trial wave function. Therefore, to obtain a good
lower bound one must use very complex trial wave
functions. This problem has been studied for our
potential by Herndon and Tang, "with trial func-
tions of an elaborate functional form that did not
permit an analytic evaluation of expression for
EU and Ei. Instead, it was necessary to find E~
and EI numerically, using Monte-Carlo methods
to evaluate multidimensional integrals. The re-
sult of their calculation is,

Zl/2 )Sl/2(C, iy ) (111.15)

The trial wave functions 4~ given in Ref. 10 can-
not be used to calculate the overlap (C T i4'T) con-
veniently; therefore, we use the trial wave func-
tion C~ of the form,

Sl- I tm-&&n-&e-(ns+ Bu)
T ~ 1 mn

l, m, n

(III.16)

where s=~»+r», t=~» —~», u=~», and the sum
is terminated by the condition l+m+ n ~N. Only
odd values of m are retained in the summation,
since we require the wave function to be spatially
symmetric under the interchange of particles 1
and 2. Using a program written by L. Schless-
inger the coefficients a, n and the upper bound to
the binding energy can be calculated very quickly
on an IBM 360/65 computer. For IV equal to 10
the calculations required less than 23 sec, with
the result for the upper bound to the ground-state
energy,

(III.14)

where (C T i4'T) is the overlap of the trial wave
functions 4 T and 0 T. If the overlap (@TicpT) is
near unity, Eq. (III.14) gives a lower bound to Z'"
which is near the actual value. However, the over-
lap (O'T

iver)

cannot be calculated, but a lower
bound S'" to the overlap can be found from Eq.
(III.9}. Then, from Eq. (III.14) it follows that

Ei = -9.99+0.05 MeV. Ev=&+T l&TI+T) =-9 79 Me& (III.17)

We will use this value of El in Eq. (III.ll) to
get lower bounds on the overlap of the variational
and exact wave functions.

Using the lower bound to the energy given in
(III.12}one finds

(@Tiver) ) 0.989. (III.18)
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The actual overlap of 4~ with y~ is probably much
better than this; however, a. better lower bound to
the energy is required before we can improve the
result given above.

The overlap of our approximate wave functions
with 4~ are:

(C r ~+r), =0.959, for one Gaussian,

higher, since the maximum value one can obtain
using (III.15) and (III.18) is 0.989.

Given the approximate triton eigenfunction
C (123) the wave function 4(1234) of the neutron
triton system may be written

e(1234) = —,'(1- I'„—P„)4(123)I,(3», ,)y»„,
(III.21)

(C ~4'r), = 0.992,

(4 r ~4'r)3 = 0.995,

for two Gaussians,

for three Gaussians.

where P, , exchanges the spin-space coordinates
of neutrons i and j, and the spinor y,234 which is
defined by

(III.19)
X 1234 —[[(Sl) 2)0& 3]3r ) S4] 2 (III.22)

Using these values in (III.16) we find

Z'" ~ 0.948, for one Gaussian,

Z'" ~ 0.981, for two Gaussians,

Z'" ~ 0.984, for three Gaussians.

(III.20)

It is likely that the actual value of Z'" is even

TABLE II. Calculated phase shifts for one-Gaussian
(1G), two-Gaussian (2G), and three-Gaussian (3G) triton
trial wave functions. All energies are neutron laborato-
ry energies.

1 MeV 2.5 MeV 5 MeV 8 MeV 14 MeV

is formed by coupling the triton spinor [(S„S2)»
S3]3

r to the spinor S, of the scattered neutron to
give total spin S (S=0 or S= 1).

When the two-nucleon potential of Eq. (III.1) and
the wave function 4(1234) of Eq. (III.16) are used
in approximations I-III, there results, after some
straight-forward calculation, an integrodifferen-
tial equation for the neutron wave function I;(r»3 4)
of the form

(V123-4 k )Fa( 123-4) U(r123-4) 4( 123 4)

+ JtK(r234-1 123-4) ( 234 1) 234 1

(III.23)

1G -26.6
2G -29.2
3G —28.9

—41.7
—45.5
—45.4

—58.2
—62.6
-63.8

—72.4
-77.0
—78.1

Approximation II

1G —23.5
2G —28.8
3G —27.9

-37.0
—42.1
-43.9

—52.1
—59.0
—61.5

—65.4
—73.6
—76.3

Approximation III

1G —16.8
2G —23.1
3G —26,6

—27.6
37 43

—42.1

—40.8
—53.9
—59.2

—53.7
-69.1
—73.9

S-wave phase shifts in degrees.
Approximation I

—92.9
—96.8
-98.2

—85.5
—94.7
—96.6

—74.6
—92.1

94 4

where 02 = -', (m/k)E„. The local potential U(r», ,)
is the same for the three approximations, but the
kernel K(r234 „r», ,), which arises because of
the antisymmetrization of the wave function (III.21)
and the space-exchange operator in the two-nucle-
on potential, is different for each approximation.
Since this equation is quite lengthy, it is not given
in detail here, but is given in the Appendix. Equa-
tion (III.23) may be resolved into partial waves,
then solved by a straightforward technique, which
is standard for RGSM calculations. " Ne have
done this for the various approximate triton model
wave functions of Table I for the S and P waves.
Our results are discussed in the next section.

1G
2G
3G

1G
2G
3G

1G
2G
3G

0 4
0.9
1.1

1.3
3 3
4.0

3.2 5.4
7.2 10.4
8.7 11.8

Approximation III

—0.6
—0.1
0.6

—2.0
0.2
2.4

347

2.3
5.9

—4.4
6.0
8.8

P -wave phase shifts in degrees
Approximation I

1.4 4 .9 10.4 14.3
1.9 6.0 11.3 13.9
1.6 5.5 11.2 14.2

Approximation II

15.2
12.9
12.9

8.1
12.0
11.7

—1.5
10.8
10.1

IV. NUMERICAL RESULTS AND DISCUSSION

The neutron-triton scattering phase shifts were
calculated numerically in order to study their
change as the triton variational wave function is
improved. Our calculations were performed at
five energies up to a neutron lab energy of 14
MeV, 13 for the potential given in Eq. (III.l). The
results are given in Table II and Figs. 1 and 2.

In Sec. II it was pointed out that calculations
with approximations I-III will give the same re-
sults if the exact triton wave function is used. It
follows that as we improve the triton approximate
wave function, the differences between the phase
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shifts calculated with the three approximations
should decrease. This expectation is confirmed,
as illustrated by Figs. 1 and 2 where we show the
S- and P-wave shifts.

We showed in Sec. III that there was a consider-
able improvement in the binding energy and lower
bound to the overlap when the triton trial wave
function was changed from one to two Gaussians.
This improvement is reflected in the phase-shift
curves of Figs. 1 and 2, where the difference be-
tween the phase shifts calculated with the different
approximations is less for the two-Gaussian than
for the one-Gaussian triton wave functions.

The binding energy and lower bound to the over-
lap of the three-Gaussian trial function showed a
slight improvement over that of the two-Gaussian
wave function. The differences between the phase
shifts calculated with the three approximations
correspondingly decreased slightly for the three-
Gaussian wave functions.

It was stated in Sec. II that the differences be-
tween the phase shifts calculated with approxima-
tions I, II, or III gives an indication of the uncer-
tainty in the results. By comparing these differ-
ences for the S and P waves, it is clear that the
P waves have a greater degree of uncertainty than
the S waves. In the P waves the centrifugal bar-
rier prevents the neutron from approaching the
triton too closely. This means that the tail of the
triton wave function is more important in the P
waves than in the S waves. It is well known that

variational wave functions can give good values of
energy and have totally incorrect asymptotic be-
havior. " It is clear, in fact, that the asymptotic
behavior of our variational wave functions is in-
correct. As any one of the nucleons moves far
away from the other two, the triton wave function
should be proportional to e '", where v is a con-
stant, and ~ is the position of the distant nucleon
with respect to the center of mass of the other
two. But our trial wave functions are proportion-
al to e " which means that they ultimately drop
off too quickly. Thus, there is no reason to be-
lieve that as we increase the lower bound to the
overlap by improving the binding energy the over-
lap of all regions of the approximate triton wave
function with the true wave function are equally
improved. Since the effect of such regions is dif-
ferent in the different approximations, this would
account for the greater uncertainty of the P waves.

The characteristics of variational calculations
are also probably responsible for another feature
of Figs. 1 and 2. Approximation III appears to be
somewhat less stable than approximations I and II.
That is, approximation III changes more than
approximation I or II when the trial wave function
is improved from one to two Gaussians, and from
two to three. Recall that in deriving approxima-
tion II we first used the property of the eigenstate
Wr~

(IV.1)

00
I t

-I0'

-20

-30'

-40'

-60'

70o

-80'

-90'

-IOO'
I 2.5

I I

5 8
E„(MeV)

l4 I 2.5
.I

8
E„(MeV)

I

14 I 25 5 8
E„(MeV)

I

l4

FIG. 1. TheL =0 phase shifts for potential (III.1). V0=-51.5 MeV, p =0.39 F, zu=m =0.5. (a) One-Gaussian triton
tri'al wave function for approximations I—III vrith EU ——-6,89 MeV. (b) Two-Gaussian triton trial wave function for approx-
imations I-III with E&——-9.07 MeV. The dashed lines are approximations I and III with E& ——-9.79 MeV. (c) Three-
Gaussian triton trial wave function 'for approximations I-III with E&——9.79 MeV. The dashed lines are approximations
I and III with E&=-9.79 MeV.
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and then substituted the approximate wave function
4~ for y~. Because the wave functions 4~ are de-
termined from the variational principle

E~ & d7 ~4~II~4~, (IV.2)

15'

IO

50

0'

the errors in 4 ~ are minimized for the specific
operator H~.

On the other hand, approximation III is derived
by using the property

T, ,y (123}=(T„—-V, —V„—V„+E )y (123)

(IV.3)

before 4 ~ is substituted for y~. But the errors in

4~ are minimized for the total triton Hamiltonian
H~, not for the kinetic and potential energy opera-
tors separately. This means that the kinetic or
potential energy operators acting on a variational-
ly determined wave function are not guaranteed to
give as. small an error as the Hamiltonian Bcting
on that wave function. This would explain the
greater sensitivity of approximation III to the trial
wave function.

The dashed lines in Figs. 1 and 2 represent the
phase shifts calculated using approximations I
2nd III with a triton binding energy of -9.79 MeV,
a value which is close to the exact value for our
potential. " These phase shifts appear to have
smaller uncertainty than those calculated using
approximations I and III with the variational bind-

ing energy. The size of the improvement indicates
that the use of the vari3tional binding energy in-
troduces an error of the same magnitude as the
error which results from the approximation of
the triton wave function. Approximation II does
not depend upon the triton binding energy and thus,
is not sensitive to any uncertainty in its determina-
tion. For this reason approximation II seems to
be a more useful equation to describe neutron-
triton scattering than either approximation I or III.

50 V, CONCLUSION

IO'

50

0'
15

IO

50

00
I 2.5 5 8

E„(MeV)
14

FIG. 2. The L =1 phase shifts for potential (III.I). Vo

=-51.5 MeV, @=0.39 F 2, w=m=0. 5. (a) One-Gaussian
triton trial wave function for approximations I-III with

EU ——-6.89 MeV. (b) Two-Gaussian triton trial wave
function for approximations I-III with Ez ——-9.07 MeU.
The dashed lines are approximations I and III with E&
=-9.79 MeV. (c) Three-Gaussian triton trial wave func-
tion for approximations I—III with Ez ——-9.16 MeV. The
dashed lines are approximations I and III with E& ——-9.79
MeV.

We have shown-that the error introduced by using
simple variational wave functions to approximate
the bound state of the composite particles in nu-

clear- scattering calculations can be important.
Since this error depends in a nonlinear manner
on the overlap of the aPproximate and exact bound-

state wave functions, it is difficult to evaluate
directly. Therefore, starting with a many-body
H3miltonian for the nucleon-nucleus system, we

derived three different nonlocal single-particle
effective potentials which are equivalent when the
exact wave function and binding energy of the com-
posite particle are used. The error which results
from the use of the approximate wave functions
and binding energies was shown to be the same
order for each of the effective potentials, and

consequently the magnitude of this error could be
inferred from the differences in the phase shifts
calculated with the various effective potentials.
The effective potential first given in this investiga-
tion (approximation II}does not depend upon the
binding energy of the composite particle, and so
is not affected by errors in its determination, as
are the two effective potentials used in previous
calculations. For this reason it seems the best of
the three for use when the error in the binding
.energy is not known. More investigation is neces-
sary before the magnitude of the error associated
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with each approximation can be determined direct-
ly, rather than be inferred.

Numerical calculations were done for the partic-
ular case of neutron-triton scattering by the RGSM.
For a spin-independent potential rigorous lower
bounds were set on the overlap of the approximate
triton wave functions with the exact triton function.
It was found that the differences between the phase
shifts calculated with the three different approxi-
mations decrease when trial wave functions with

better lower bounds to the overlap are used. This
confirmed our earlier contention.

Two features of the curves were pointed out and

discussed. The differences between the phase
shifts calculated with the three approximate ef-
fective potentials decreased somewhat more slowly
for the P waves than for the S waves. This was
attributed to the influence of the tail of the bound-

state wave function, which is known to be improved
slowly by a variational calculation. It was also
noted that approximation III is evidently more sen-
sitive to the variational wave function than is ap-
proximation I or II. In approximation III the as-
sumption was made that the kinetic or potential
energy operators acting on a variational wave
function have an error which is everywhere equal
to the error which results from the Hamiltonian
acting on the wave function. It was pointed out
that this is not necessarily true, and this was
offered as an explanation for the greater sensitivi-
ty of approximation III to the properties of the
variational wave function.

A phase-shift analysis" of experimental data
shows that neutron-triton scattering is spin-de-
pendent, which may be understood on the basis of
a central, but spin-dependent two-nucleon poten-
tial. Such a two-nucleon potential introduces a
component of mixed spin-space symmetry, known

as the S ' state, " into the triton ground-state wave
function. This means that a study of neutron-tri-
ton scattering similar to ours, but with a spin-
dependent potential, requires the construction of
triton wave functions containing both components
determined to an accuracy comparable with that
given here. Phase-shift calculations using a spin-
dependent two-nucleon-potential and the triton
trial wave functions given here indicate that the
effect of neglecting the S' state can be significant. "
If spin-dependent potentials and the S' state of the
triton were used, the uncertainty in the phase
shifts should be similar to that for the spin-inde-
pendent case. Since the uncertainties in the phase
shifts calculated with a one-Gaussian trial wave
function, as indicated in Figs. 1 and 2, are com-
parable with the error in the determination of the
experimental phase shifts of Ref. 17, we conclude
that the one-Gaussian trial wave functions are not

sufficiently accurate to allow a comparison be-
tween the experimental and theoretical results.

Many calculations of the scattering of nucleons
by very light nuclei, other than neutron-triton
scattering, have been done using the RGSM.' In
all of those calculations one-Gaussian wave func-
tions are used to approximate the target wave
function. The effect on the results of those calcu-
lations of using a poor approximate target wave
function should be similar to that of the neutron-
triton case. Many recently published calculations
of the scattering between very light nuclei have
been done using the cluster model of nuclear re-
actions, "where the wave functions of both nuclei
are approximated by one-Gaussian wave functions.
For these calculations it is probable that the re-
sulting uncertainty in the scattering phase shifts
will be even larger than for nucleon-nucleus scat-
tering.

APPENDIX

Here we discuss Eq. (111.23) in more detail, in-
cluding its expansion into an equation for the par-
tial waves of neutron-triton scattering. For con-
venience of notation we define

r -=ms-4

:r234- x ~

Then, for the quantities U(r», ,) and

K(r», „r», ,) of Eq. (III.23) we have

U(ry2g 4) U(1 ) SvV(I )

(A.1)

TABLE III. The spin factors of Eq. (A.2).

Approximation I Approximation II Approximation III

~3(3' —m)

3 (—gU —m)

&2(—go+ 3m)

&2(—zo —m)

&)(3M -m)
—(—zo —m)3
2

$(—w+ 3m)

&2(3' —m)

38 (~+m)

&2(—ge +3m)

p (w+m)

K(r»g gy r2pg y) —K(ry r )

= SoQ(r, r ') + S&S (r, r ') + Sr T(r, r ')

+S~A(r, r')+M(r, r')+P(r, r') .

(A.2)

The factors SU, S~, S~, and SR depend upon the
total spin of the neutron-triton system; S and

S~ are different for the three approximations as
well. They are listed in Table III. The quantities
U(r), Q(r, r '), T(r, r '), S(r, r '), B(r, r '), N(r, r '),
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and P(r, r') do not depend upon the total spin; all
b« ~(r, r') and P(r, r') are the same for each
approximation.

For approximations l-III,
9 3

V(r} =
(3 —,J(3(123)V(3„)4(133)dr„dr',

(A.3)

4)(r, r ') = (
—
)
—„,J 4 (123)V(r„}4(334)dr„,

3(r, r ') =
(3) 3,J(3(123}V(r„)4(234)dr„,

T(Vr') =,(
—
) 3, j(3(123)V(r„)3(334)dV„,

R(r, 2')=(3) 2, J
4((23)V(r„)4(234)dr"„

(A.5)

(A.6)

(A.4) (A."I)

For the approximation I

M(r, r') = — —+, (E„+Br),'4(123)4(234)dr»,
'3m

9
I 4 123 234

27 V 4(123)'V4(234)91)V4(123)V4(234)323(24(234)
I

8 „' 32 C (123)4(234) 8) 4(123) 4(234) 2 4(234)

for approximation II

(A.8)

(A.9)

9 33
M(r, 3') =

(
— ——,Z. „(4(123)4(234)dr„ (A.10)

( 1)
9 "

( ) ( )
27 '))'», 4(123) %22 ~4(234) 45 vv'2 4(123) g' 4 (234)

8 „32 4(123)4(234) 64 4(123) C (234)

while for approximation HI

9'm
M(r, 3') = —', (d„—2'd, )(—- 3, ~4(323)4(323)dV„,2 ll V 7 8 IE

2

~+1)
3

td+ 4(123)4(234)»-24(123) '. VQB-r34( 34)
5 +224(123)

23 4 4(123)4(234) 4(123)

(A.11)

(A. 12)

As mentioned in Sec. III, Eq. (111.23) was re-
solved into partial waves. The kernel K(r r ) was
expanded in terms of 8, the angle between r and

ry as

integrodifferential equation for E,(~),

O', I(((+ 1)++k' —,E,(~)

K(r, r')=,P, (cose)k((x, r') .
2l+ I

(A.13)
= U(~)P, (~)+~t k, (~, r')P, (~')d~',

(A. 15)

E,(r) = QP(„}P—( co8s)
I
yl (A. 14)

are substituted in Eq (III.23), .there results the

If this expansion and the expansion of F,(r) in 9, .

the angle between r and an arbitrary fixed coordi-
nate system, k'=~(ml&')E„.

The quantities U(r) and especially k((x, r') are
quite lengthy and complex, and therefore are not
given here. They may be found in detail in Ref. 19.

ACKNONI. EDGMENTS

We thank Professor Fritz Coester for suggesting this proiem, for his many penetrating discussions,
and for a critical reading of the manruscriyt. %e also thank Professor Leonard Schlessinger for his ass'is-
tance in performing the variational calculations, And for providing the programs for this portion of the
work; and Professor William Stwalley for information on variational bounds.



E FF ECT OF APP ROXIMATE WAVE FUNCTIONS. . . 2167

* Research supported in part by the National Science
Foundation.

~J. A. Wheeler, Phys. Rev. 52, 1083, 1107 (1937).
2W. Lasker, Ann. Phys. (N.Y.) 17, 436 (1962).
~Henceforth the resonating-group-structure method

will be referred to as the RGSM.
4This approximation is expected to be valid when the

energy of the incident nucleon is well below the threshold
for inelastic scattering. The physical triton has no
bound excited states, but breaks up into the neutron-deu-
teron at about 6 MeV above the triton ground state.

5H. Feshbach, Ann. Phys. (N.Y.) 19, 287 (1962). Fesh-
bach has given a procedure to obtain from a many-body
Schrddinger equation a single-particle equation that gives
the correct phase shifts. His Eq. (3.21) defines a single-
particle wave function u in terms of the scalar product
of the nuclear ground-state wave function 4& and the
many-body function 4 of the nucleon-nucleus system. It
follows from this definition and the properties of his pro-
jection operator P, used in Eq. (2.9), that, in the no-po-
larization approximation, u is the same as the neutron
wave function F„ofour Eq. (II.5). Since Feshbach shows
that u has the correct asymptotic behavior, it follows
that E„does also.

P. Swan, Proc. Phys. Soc. (London) A66, 238 (1953).
'B. H. Bransden, H. H. Robertson, and P. Swan, Proc.

Phys. Soc. (London) A69, 877 (1956).
Y. E. Kim and A. Tubis, Phys. Rev. C 1, 1627 (1970).

~L. R. B. Elton, Intxoductoxy Nucleat Theory (Sir Isaac
Pitman and Sons Ltd. , London, England, 1965), 2nd ed.

~ R. C. Herndon and Y. C. Tang, in Methods in Com-
pltationa/ Physics, edited by B.Alder, S. Fernbach, and
M. Rotenberg (Academic Press Inc. , New York, 1966),
Vol. 6.

~~The authors would like to thank Dr. L. Schlessinger
for providing the minimization routine, which was pro-
grammed by Dr. J. Heller and Dr. S. Pieper.

~~S. T. Epstein, University of Wisconsin Theoretical
Chemistry Institute Report No. WIS- TCI-361, 1969 (un-
publishedd)

.
3F. J.Weinhold, J. Math. Phys. 11, 2127 (1970).

~4H. H. Robertson, Proc. Cambridge Phil. Soc. 52, 538
(1956).

~5The incident neutron of 14-MeV lab energy (or 10.5-
MeV c.m. energy) is somewhat above the threshold for
inelastic scattering. The possibility of inelastic scatter-
ing has been ignored because we are concerned here with
the effect of using an approximate triton wave function on
the present model of elastic scattering, not with con-
structing a more complete model of the physical process.

~GA. Messiah, Quantum Mechanics (John Wiley k Sons,
Inc. , New York, 1962), Vol. II.

~VT. A. Tombrello, Phys. Rev. 143, 772 (1966).
L. M. Delves and A. C. Phillips, Rev. Mod. Phys. 41,

497 (1969).
~~M. J. Lavan, Ph. D. thesis, University of Iowa, 1971

(unpublished) .
K. Wildermuth and W. McClure, Cluster Representa-

tions of Nuclei (Springer-Verlag, Berlin, Germany, 1966).

P HYSICA L RE VIE W C VOLUME 3, NUMBER 6 JUNE 1971

7 ll
Excitation Functions of Be and C Produced in Nitrogen by Low-Energy Protons

M. Epherre and C. Seide
Centre de Spectrometric Nucleaire et de Spectrometric de Masse du Centre National de la Recherche Scientifique,

Oxsay, France
(Received 8 March 1971)

The cross sections for the production of ~~C and ~Be by protons. from a ~4N target has been
measured at energies from 5—24 MeV for ~ C and 13—42 MeV for 'Be. A sharp rise above
the thresholds for the ~4N(p, e) and ~4N(p, 20. ) reactions was observed, with maxima, respec-
tively, around 200 and 45 mb.

INTRODUCTION

The measurement of the eros's sections for the
formation of 'Be and "C in nitrogen is part of a
larger program undertaken at Orsay in order to
establish the excitation functions of Li, Be, and
B in the bombardment of "C, ' N, and "0by pro-
tons and a particles. In addition to their interest
to the nuclear physicist, these excitation functions
are essential to the astrophysicist for the study of
many problems such as the nucleosynthesis of the
L elements' (Li, Be, B), determination of their
stellar abundances, ' and the propagation of cos-
mic rays. ' Also, 'Be is used as a monitor for the

measurement of the absolute cross sections of the
stable isotopes of the light elements when a mass
spectrometric method is used. In many geophysi-
cal investigations, ' 'Be is an interesting radioiso-
tope, as it is formed continually by the interaction
of the cosmic particles with the atmosphere,
which is essentially composed of nitrogen.

The cross sections for production of "C and 'Be
have been known for a long time in ~C and "0
over a great range of energies, while in nitrogen
very few measurements have been made, especial-
ly in the low-energy range: "C has been mea-
sured only between 5 and 6 MeV, ' at 13 MeV, ' and
50 MeV, ' with a rather large uncertainty. In view


