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A variational method that involves solution of inhomogeneous linear equations is used to
calculate the wave function and binding energy of the triton. Cohen and Willis's classification
of the triton wave function is employed. Internal wave functions are expanded in terms of
polynomials of the interparticle distances up to 170 terms. A binding energy of -6.7 MeV is
obtained for the unmodified Hamada-Johnston potential. Due to the simplicity of our varia-
tional wave function, all the matrix elements are evaluated analytically in terms of the expo-
nential integrals. With the aid of recurrence relations, the computing time has been reduced
to a minimum.

I. INTRODUCTION

It is now quite clear that our knowledge of two-
nucleon systems cannot give answers to all the
problems of nuclear forces. Our next step is to
look for some of the answers in the trinucleon sys-
tem. We have sufficient experimental data for the
ground states of the trinucleon systems. The re-
cent data on charge and magnetic form factors by
McCarthy et aE.' are particularly revealing. We
have not yet made sufficient use of such ground-
state properties of the trinucleon system. In this
article, we introduce a technique which is capable
of calculating the ground-state properties of tri-
nucleon systems with accuracy and efficiency.

Though our calculation is done with the Hamada-
Johnston potential, ' it can be extended to other po-
tentials as well. Due to the simplicity of our vari-
ational wave function, simple recurrence relations
can be found. In this calculation all the matrix el-.
ements are evaluated analytically in terms of the
exponential integrals. The exponential integrals
are evaluated with double-precision accuracy by a
rational Chebyshev-polynomial approximation. '

A brief description of the spin-isospin and an-
gular momentum part of the wave function is given
in Sec. II. The variational method and the struc-
ture of the internal wave function are given in Sec.
III. The convergence of the 170-term wave func-
tion is demonstrated in Sec. V. In Sec. VI, we
give the results of the 170-term calculations with
various components of the Hamada- Johnston poten-
tial, as well as with different values of the nonlin-
ear variational parameter. Modification to the
triplet odd quadratic spin-orbit potential has not
been included. All the energies are given in MeV
and distances are given in units of the pion Comp-
ton wavelength.

II. TRITON GROUND-STATE WAVE FUNCTION

The ground state of the triton has total angular

momentum J=,'-, isospin T= —,', T3= —-', . Due to
the presence of tensor and spin-orbit forces, it is
a mixture of states with different orbital angular
momentum, l= 0, 1, 2. A detailed classification
of the wave functions with various permutation
properties is given by Cohen and Willis. ' In our
calculation, all the P states and the antisymmet-
ric S states have been dropped. The wave func-
tions included in our ground states are listed in
Table I. We follow the notation used in Ref. 5,
where the F's are listed explicitly in terms of
spin and isospin wave functions. In the D states,
they also contain traceless second-rank tensors
formed from the two vectors r and p, where

r = R[R, —';(R, + R )],

R] R2 R3 are position vectors of the three nucl c-
ons relative to some fixed origin. The vectors
r, p and the interparticle distances x/2 J$3 f23
are shown in Fig. 1. The three nucleons are
located at the corners of the triangle. It is clear
that r and p determine uniquely the orientation, as
well as the triangle itself. Therefore the orienta-
tion of the triangle need not be specified explicitly
in terms of the Euler angles used in the classifi-
cation of Derrick and Blatt. ' The f's are the in-
ternal wave functions. They depend only on the in-
terparticle distances x», ~», x». Their structure
will be discussed in Sec. III.

Our ground-state wave function is therefore

0= 0+ 0.+ 4. + 4.+ 4.+ 0,
which satisfies the equation

Hg = Eop.

E, is the ground-state energy and

H= —(a'/2M)(v„'+ v', )+Q V(ij).
i&j

(2)

M is the nucleon mass and V is the two-body Hama-
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TABLE I. Basic eigenfunctions used in the ground state of H (J= 2, Jz ——2, T =~, T&=-2).

Eigenfunctions
Orbital

angular momentum
Symmetry of the internal

wave function f

~8 8 f8
00=&&f9

~10 +10,2 f '10, f +10,1 f10,2

~if, 2 f1i,f ~$1,1 ffi,2

S
S1

D
D
D
D

Symmetric
Mixed
Symmetric
Antisymmetric
Mixed
Mixed

da-Johnston potential. ' It has central, tensor,
spin-orbit, and quadratic spin-orbit components,
each of which also depends on the spin and parity
of the pair of nucleons involved. They are, re-

'Vz, s 'Vl. ~, 'VI, I., 'VI. L, , 'Vl. l, . Their values are
taken from Table I of Ref. 2.

III. VARIATIONAL METHOD AND INTERNAL
WAVE FUNCTIONS

The internal functions f are expanded in terms of
simple polynomials of the interparticle distances
with the appropriate symmetry. We have

+ "12 "13 "23 f Y g.i, (n1, n2, n3)
n1, n2, n3 —1

[(r12 ro)"'(r23-ro)"'(r13-ro)"'-
~ (r„r,)" (r„r-,)" (r„-r-,)" ]}.

(4)
i = 1, 3, 8, 9, 10, 11, the n's are positive integers
greater than or equal to 1, and x, is the hard-core
radius. T represents a group of symmetry opera-
tors defined by

T~ = (12) + (13)+ (23),

T' = (v 3/2) [ (32) —(31)],
T" = (12) ——,'[(32)+ (31)].

(12) represents the permutation of pa. rticles 1 and

2, etc. Ts gives the symmetric or antisymmetric
f when used in (4) with the positive and negative
signs, respectively. T' and T" give the pair of
mixed f's when used in (4) with the positive sign.

Let I represent the set of indexes i, n„n„n3,
and let N~ represent the normalization constant for
the term denoted by I. We rewrite (4) as

~e
= g ar Fs(f)

I
The index P is absent except for mixed symmetric
states where it takes the values 1 and 2.

(5)

F (I) —II e-& "$2+~13+ "23
8 I

&& T [(r„r,)"'(r„-r,)"'(r„-r,)"-
+ (r„r,)"(r„r,)-" (r„-—r, )" ].

A. is a given parameter close to E„andy, is any
given wave function not orthogonal to g. It turns
out that for the kind of accuracy we need for the
nuclear system, the choice of A. and g, is not very
crucial. We choose g to be one term in the sym-
metric S state.

When expansion (5) is substituted into (6), one
can obtain a set of inhomogeneous linear equations
in the unknown A, . A set of solutions for A, can
readily be obtained, and a variational energy is
given by

The Al are the linear variational parameters. n
is a nonlinear variational parameter. Our varia-
tional method' requires the solution of the equation

(H I)y= g, . -

Eo = y*H

/*/de�

.

I

I

23

FIG. 1. Coordinates used in the triton wave function.

The solution can be improved by repeating the
above procedure with g, in (6) replaced by the so-
lution tl) from the above step. The variational en-

ergy can be further improved by the method of mo-
ments. ' However, the improvements from the
last two steps are of relatively minor importance,
whereas the total number of terms in the expan-
sion is the only dominating factor in determining
the variational solution of (2).
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IV. EVALUATION OF COEFFICIENT MATRIX

We need to calculate the coefficient matrix

s pin or ientation
isosnin and interparticle

distances

EB(I)Y, gHFy(J) Y,. ydn

X2 i323 n 2s ~ (

II,'.8,.~ ——

s pin orientation
isospin

Y, ~IIV,. ydQ . (8)

II,'&,.&
are functions of interparticle distances only.

The summations over the indices P and y are spec-
ified according to Table I. The summation over
spin and isospin and integration over orientation is
done first to give

IJ
interparticle
di stances

(9)
The three interparticle distances are not all inde-
pendent; they are required to satisfy the triangle
relation throughout the integration. For most of
the integrals, this is done by first integrating the

The kinetic energy part of II,.&,.&
is identical to that

given in Ref. 5. Due to the different structure of
the Hamada-Johnston potential, the potential ener-
gy part of H,'8,.&

is not the same as that of Ref. 5,
although it has the same general structure. For
example, if one ignores the spin and parity depen-
dence of the Hamada-Johnston potential, the spin-
orbit part of II,'8,.&

reduces to that given in Ref. 5.
Substituting (8) into (7), we have

TABLE II. The exponents ni, n2, n3 of the 170-term wave function.

Symmetric S and D
ni n2 n3

Mixed S' and D
ni n2 n3

Antisymmetric D

ni n2 nS
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TABLE III. Binding energies and S-, S —,D -state probabilties for the 170-term wave function with various
components of the Hamada-Johnston potential.

C+T
(MeV)

Ps Ps Pa
(%} (%) (%)

C+T +LS
(MeV)

s Ps PD
(%) (%) (%)

Eo
C +T +LS +L 12 Ps Psi

(MeV) (%) (%)

PD

(%)

1.75
2.00
2.30
2.50
2.55
2.60
2.65
2.70
2.80
2.90
3.00
3.20

—2.47
2 ~ 77

—2.82
—2.68
—2.62
—2.55
—2.48
—2,39
—2.19
—1.96
—1.69
—1.04

93.33
92.70
92.12
91.80
91.72
91.65
91.57
91.50
91,35
91.21
91.07
90.80

0.10 6.57
0.13 7.17
0.14 7.74
0.14 8.06
0.14 8.14
0,13 8.22
0.13 8.30
0.12 8.38
0.12 8.53
0.11 8.68
0.10 8.83
0.09 9.11

2 y73
—3.10

3023

3~13
-3.08
—3.03
—2.97
-2.89
—2.71
-2.50
—2.26
—1.64

93.04 0.12 6.84
92.38 0.16 7.46
91.78 0.18 8.04
91.45 0.18 8.37
91.37 0.18:::8.45
91.30 0.17 8.53. .

91.22 0.17: 8.61:

91.15 0.17 8.68
91.01 0.16 8.83
90.87 0.15 8.98
90.74 0.14 9.12
90.48 0.12 9 40

—0.946
-2.46
-4.47
—4.96
-5.15
—5,35
-5.55
—5,75
-6.17
-6.79
—5.87
—5.88

93.74 0.17
91.27 0.37
88.94 0.43
89.13 0.45
88.95 0.45
88.74 0.45
88.49 0.46
88 .22 0.46
87.54 0.46
85.71 0.36
86.81 0.86
86.72 0,89

6.09
8.36

10.63
10.42
10.60
10.81
11.05
11.32
12.00
13.93
12.33
12.39

three variables independently outside the hard-
core region, then subtracting those parts which
do not satisfy the triangle condition. All the inte-
grals then become elementary. With a combined
use of recurrence relations and interchanging of
the order of integrations, all the matrix elements
may be evaluated analytically. One needs only to
evaluate the exponential integra. ls

The normalization constants N, and the overlap-
ping integrals can be obtained by setting H= 1 in

(7), (8), and (9). The lar'gest coefficient matrix
used in this calculation is 170&& 170.

V. CONVERGENCE OF THE 170-TERM WAVE FUNCTION

The details of the structure of the 170-term

wave function are given in Table D, n„n„n,are
the powers of the polynomial defined in (4). Fig-
ure 2 gives plots of the binding energies, using
only the central and the tensor part of the Hamada-
Johnston potential, against the total number of
terms included in the variational wave function.
The successive points correspond to an increment
of four terms in the symmetric states, three terms
in the mixed symmetric states, and one term in
the antisymmetric state in the order given in Ta-
ble II. The upper curve corresponds to the Hama-
da-Johnston hard-core radius r, = 0.343. The low-
er curve corresponds to a, 5% reduction in the
hard-core radius with r, = 0.326. It is clear that
both curves have sufficiently converged at 170
terms. The nonlinear parameter n is equal to 2

for both curves.

-2

I I

36 54 72 90 108 126 144

NUMBER OF TERMS

FIG. 2. Convergence of the binding energies as the to-
tal number of terms in the variational wave functions in-
creases towards 170.

I I I I I I I I I I I I I I I I I I I I I I I I I

2.0 2, 5 3.0
a

FIG. 3. Binding energies of the 170-term wave function
with central+tensor, central+tensor+ spin orbital, and
central + tensor + spin-orbital +quadratic spin-orbital po-
tential of the Hamada- Johnston potential, respectively,
plotted against the nonlinear variational parameter.



BINDING ENERGY AT THE TRITON. . . 2155

VI. BINDING ENERGY OF THE HAMADA-JOHNSTON
POTENTIAL

Using the 170-term wave function as given in
Table II, Fig. 3 gives plots of the binding ener-
gies against the nonlinear variational parameter

The curves correspond to central+ tensor,
central+ tensor+ spin-orbital, and the full Hama-
da-Johnston potential, respectively. The binding
energies together with the corresponding S-, S'-,
and D-state probabilities are given in Table DI.

The binding energy of the full Hamada- Johnston
potential has clearly reached a minimum at —6.7
MeV before numerical instability sets in at n &3.
Although our calculation used double-precision
programming, this numerical instability is caused
by the loss of accuracy in applying the forward re-
currence relation for the exponential integrals
when some of the arguments of the exponential in-
tegrals are greater than 10. This situation will
be corrected in our future calculation by using the
recurrence relations more carefully. (There are
existing techniques to take care of exponential in-
tegrals with large arguments. )

Table III gives the results of 12 runs. At pres-
ent, each run takes 17 min. There is still room
for improvement, since with additional use of disk
storage the computing time can be reduced to less
than 10 min. If more than one nonlinear parame-
ter is used, the search for best nonlinear param-
eters can be done at a smaller number of terms in
the linear parameter expansion.

VII. CONCLUSION

With one nonlinear variational parameter and
170 linear variational parameters we found a bind-
ing energy of —6.7 MeV for the triton, which is in

agreement with that obtained by Delves et al. ,
'

who have used a far more elaborate numerical
technique. Our S'- and D-state probabilities differ
considerably from their values of 1.8% and 9%, re-
spectively. The primary source of these differ-
ences is that we have used the Hamada-Johnston
potential' without the modification to 'Vzz . (In
Delves et al. 's latest calculation this modification
has been included. ) It is expected that the wave
function is far more sensitive to any change in the
potential than is the binding energy. Secondly, we
may have oversimplified our wave function in
using only one nonlinear variational parameter for
all states.

In this primary report, we give only the binding
energies and the percentage of the various orbital
angular momentum states. Many simple opera-
tors can easily be evaluated as by-products of the
binding-energy calculation. The simplicity of our
variational wave function can be very useful in cal-
culating more-complicated ground-state proper-
ties such as the electric and magnetic form fac-
tors.
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