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The p +He® and # + H® systems are considered with the resonating-group method in the one-
channel approximation. A purely central nucleon-nucleon potential which has different ranges
in the singlet and triplet states is employed. The internal wave function of the three-nucleon
cluster is a sum of two Gaussian functions, with its parameters adjusted to reproduce quite
well the properties of the cluster., From the results obtained it is found that the agreement
with experiment is quite satisfactory, although in the very low-energy region, detailed fit is
not obtained, which is most probably due to the omission of the specific distortion effect in
our calculation, An effective interaction between the clusters is also constructed. From this
effective interaction it is concluded that the requirement of antisymmetry for the total wave
function is very important. In particular, it creates an odd-even feature, wherein the effec-
tive potentials in the odd-Z and even-I states are quite different.

I. INTRODUCTION

In two previous investigations’ 2 single-channel
resonating-group calculations have been per-
formed using a nucleon-nucleon potential which
has the feature of having different ranges in the
singlet and triplet states and which yields a very
good fit to the low-energy two-nucleon scattering
data. These calculations were made on the a+ o'
and o+ N? scattering systems, where the low com-
pressibility of the a particle and the high reaction
thresholds provided us with an excellent opportuni-
ty to employ the one-channel approximation over a
wide energy range. Excellent agreement with ex-
periment was obtained in these calculations. In
this study we will use the same central potential

to examine the p+He? and »+H? systems,® as an-
other step in our continual effort to study the few-
nucleon problems with the resonating-group meth-
od. Here, however, it is expected that the results
will be somewhat worse than those obtained in the
a+a and a+ N cases; this is so, since the He® or
the H? cluster is not as incompressible as the «
cluster, and hence the use of a one-channel ap-
proximation, with the subsequent omission of the
specific distortion effect, will result in some lack
of detailed agreement with the experimental data
especially in the very low-energy region.

In previous resonating-group calculations, the
wave function used to describe the He® or the H?
cluster has invariably been assumed to consist of
a single-Gaussian function.*~® With such a wave



2140 REICHSTEIN, THOMPSON, AND TANG 3

function, even though it is possible to get a correct
value for the rms radius of the nucleon distribu-
tion, the calculated binding energy is too low and
the body-form-factor data are not described too
well. In this calculation we shall therefore use an
improved wave function for the three-nucleon clus-
ter, which consists of a sum of two Gaussian
functions with three adjustable parameters. These
latter parameters are then chosen to yield satis-
factory values not only for the rms radius but also
for the binding energy and the body form factors.

As in the a+ N case,? we shall also construct an
effective local interaction between the proton and
the He? cluster by using the wave function obtained
from the resonating-group calculation. Here again,
the main purpose is to assess the importance of
the antisymmetrization procedure and to study the
features of this effective interaction in the hope
that we can then use the information gained to
construct effective potentials in heavier systems
where a straightforward resonating-group formula-
tion is impractical.

In the next section, a brief formulation of the
problem will be given, together with a discussion
of the internal wave function for the three-nucleon
cluster, and the various approximations made in
the calculation. In Sec. III we present the results
for the phase shifts and differential cross sections
as well .as a description of the effective local in-
teraction between the clusters. Finally, in Sec.
IV, concluding remarks are made.

II. FORMULATION

In the one-channel approximation, the wave func-
tion for the p+He? or the n+H?® system is given by

V=@ [pc &0, V) F,Ry —Rey)], 1)

where @ is an antisymmetrization operator and
£,(o, 7) is an appropriate charge-spin function with
the subscript s denoting the total spin of the sys-
tem, which can be either 0 or 1. The function ¢,
describes the spatial behavior of the three-nucleon
cluster (either He® or H?); it is assumed to be of
the form

3
¢cy = exp[—%al 2 F —Rey )]
i=1

3
+cexp[-zo, 3 (F __ﬁCL)Z]r (2)
i=1
with _ﬁCL being the position vector of the center of
mass of the three-nucleon cluster. The parame-
ters a,, a,, and ¢ are chosen to yield a good fit to
the experimental binding-energy and form-factor
data; they are chosen as

@,=0.25 F2,
@,=0.7T1 F2,
c=3.17. (3)

In previous resonating-group calculations in-
volving a He® or a H® cluster,>® a single-Gaussian
function

3 —
der =exp| -z Z) (F; =Rey)?) (4)
i=1

has been used for the spatial part of the three-nu-
cleon wave function, with « chosen as 0.36 F 2,
In this study, we shall compute the differential
cross sections with both the function ¢; and the
function ¢¢;. The purpose is, of course, to see
whether an improvement in the cluster wave func-
tion can lead to a significant change in the scatter-
ing results. If this should turn out to be the case,
then all these previous calculations involving
three-nucleon clusters would have to be reex-
amined with the two-Gaussian wave function ¢y
given in Egs. (2) and (3). _

The scattering function F,(Ry~ Ry ), with Ry
denoting the position vector of the incident nucleon,
describes the relative motion of the two clusters
and is determined from the variational equation

(68 |H —E'|¥)=0, (5)

where E’ is the total energy composed of the in-
ternal energy of the three-nucleon cluster and the
relative energy E in the c.m. system, and H is
the Hamiltonian given by

H=-Svei ¥
-—mavi+i>]§lV“. (6)
The nucleon-nucleon potential V;; is chosen as
Vi =21+ PV, +3(1=P7) V]
2

e
4r

X[ 3u+ 3(2 —u) Py ]+ Q+7,)(1+7,,),

ij

(M
where PJ; and P%; are the spin- and space-exchange
operators, respectively, and 7;, and 7;, are the z
components of the isospin operators for the ith
and jth particles, respectively. The quantities V,
and V, are the S-state triplet and singlet poten-
tials given by

V==V, e %, (8)

The constants V,;, &;, Vo, and ks are adjusted to
yield the correct values for the two-nucleon effec-
tive-range parameters; they are found to be’

V,,=66.92 MeV, «,=0.415 F2,

V, =29.05 MeV, x,=0.292 F2. 9)



3 STUDY OF p+He® AND n+H® SYSTEMS... 2141

The parameter %, which cannot be determined
from the low-energy two-nucleon s-wave scatter-
ing data, will be treated as an adjustable parame-
ter which will be fixed by the requirement that an
over-all good fit to the low-energy experimental
p+He® scattering data be obtained.

It should be mentioned that the introduction of an
adjustable parameter u is a necessary and desir-
able procedure. To make our calculation feasible,
we have made some simplifying assumptions which
will be discussed in the following paragraphs.
These assumptions will necessarily introduce
some defects into our calculation and it is our
hope that with the freedom available in the choice
of u, these defects can be partially corrected. It
is important, of course, that the value of u deter-
mined by the above-mentioned best-fit criterion
should be close to 1. This is so, since a value of
u=1 corresponds to a pure Serber potential and it
is known that the experimental two-nucleon scat-
tering data favor a near-Serber exchange mix-
ture for the nucleon-nucleon potential. If the re-
sultant value of % should turn out to be quite differ-
ent from 1, then we should take it as a clear indi-
cation that this crude procedure of varying « is
not accurate enough and a more elaborate calcula-
tion, with less severe assumptions, must be per-
formed.

To facilitate computations, we have employed a
rather simple central nucleon-nucleon potential
which contains no repulsive core but does yield
correct values for the effective-range parameters.
This is quite likely sufficient for the description
of the mutual interaction between the clusters,’
since we are dealing mainly with relatively low-
energy scattering phenomena where the relative
energies between the nucleons in different clusters
are rather small. On the other hand, the lack of
saturating character in this potential certainly
means that the internal properties of the cluster
cannot be properly explained. In resonating-
group calculations,® this is crudely compensated
for by an appropriate choice of parameters in the
cluster wave functions using experimental informa-
tion. It is realized, of course, that this procedure
of fixing the cluster parameters and using a simple
nucleon-nucleon potential will introduce uncertain-
ties into the results; however, the excellent agree-
ment with experiment obtained in the a+ o' and «o
+N? cases where a similar procedure was used
does indicate that at least in the low- and medium-
energy regions this procedure does not introduce
serious errors.

It is also noted that our nucleon-nucleon poten-
tial does not have a noncentral component. This
is again not too serious, since there are no sharp
resonance levels in the p+ He® and »n+H?® systems.

In the N+ a case® where a two-nucleon spin-orbit
component was included in the nucleon-nucleon
potential, it was found that in the energy region
where no sharp resonance level exists, the main
difference between the differential cross sections
calculated with and without a spin-orbit component
occurs only around deep diffraction minima where,
in any case, our calculated result is not expected
to be in detailed agreement with experiment owing
to the omission of reaction channels.

As in previous calculations,® a one-channel ap-
proximation is again adopted here. This means
that the specific distortion effect, i.e., the distor-
tion effect over and above that already implicitly
given by the antisymmetrization procedure, is not
properly accounted for. In the very low-energy
region where this effect has its largest influence,
it is expected that the adoption of this approxima-
tion will cause some discrepancy between the cal-
culated and the experimental results. Thus, in
this particular energy region, a better calculation
will eventually be needed. In this respect, it is
noted that a procedure recently suggested by Wil-
dermuth and his collaborators® seems interesting
and will be a subject of our investigation in the
future.

Using Eq. (5), an integrodifferential equation of
the form

Sf[i” il+1)
l2p Ldrr™ 2

fts(r)

] +E = Vy,(r) = Vo(r)

= [k far
0
(10)

can be derived,'® with f,,(») defined by the equation
. 1 \
F ()= Z ;f,s(r)P,(cos 6). (11)
1

In Eq. (10), . represents the reduced mass, while
E represents the relative energy of the two clus-
ters in the c.m. system. The explicit forms for
the direct nuclear potential V, (7), the direct
Coulomb potential V. (7), and the kernel function
kys(v,7') are given in the Appendix. By solving

Eq. (10) with the proper boundary conditions, scat-
tering phase shifts can be determined. In addition,
using the resultant functions f,,(»), we can con-
struct an effective local, E-, I-, and s-dependent
potential

V@) =V (r) + 1 f Ry (v, v') frs (' )ar"

fls(r) 0 (12)
between the clusters, which, because of the partic-
ular way of construction, will obviously yield the
same phase shifts as those calculated with the
resonating-group method.
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Finally, we discuss the choice of parameters
used in the internal wave functions ¢ and ¢
defined in Egs. (2) and (4), respectively. As has
been mentioned, the lack of saturation character
in the nucleon-nucleon potential is crudely com-
pensated for by an appropriate choice of parame-
ters in the cluster wave functions. In the case of
a single-Gaussian function, the procedure is to
fix the width parameter « so that the experimen-
tally determined value for the rms radius of the
nucleon distribution is correctly given. Thus,
for the He® and H® clusters, a choice of o=0.36
F~2 in the function ¢¢; gives the correct rms ra-
dius of 1.67 F. It is found, however, that the use
of such a single-Gaussian function, while giving
a correct rms radius, yields not only a value of
4,57 MeV for the H? binding energy which does
not agree too well with the experimental value of
8.48 MeV, but also values for the three-nucleon
body form factors which are too low for ¢g221 F~2,
This is shown in Fig. 1, where the dashed line
represents the values of the body form factor for
the three-nucleon system calculated using ¢¢;,
with @=0.36 F~2, and the crosses represent the
empirical values!! deduced from experimental
data.

The parameters of the two-Gaussian wave func-
tion ¢ are determined by a three-parameter
search to obtain a best fit to the body-form-factor
data, subject to the constraint that the rms radius
of the nucleon distribution be fixed at the correct
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FIG. 1. Body form factors for He? or H® as a function
of g% calculated with the two-Gaussian wave function (sol-
id line) and the one-Gaussian wave function (dashed line).
The experimental points are taken from Ref. 11.

value of 1.67 F. With the set of parameters given
in Eq. (3), we obtain a binding energy of 6.91 MeV
for H® and a very good fit to the body-form-factor
data as illustrated by the solid line in Fig. 1. It
should be mentioned that there are several other
sets of parameters which give about the same
quality of fit as does the set chosen here, but it is
found that the p+He® and n +H® scattering results
obtained using these sets are all quite similar.

III. RESULTS
A. Phase Shifts and Differential Cross Sections

As there exists a large amount of p+He? data
from a variety of sources and as the p+He® data
are generally expected to be somewhat more accu-
rate than the »+H?® data, we have adopted the pro-
cedure of fixing the parameter « from the p+He?
data. In this way it is found that, while the opti-
mum value of # cannot be pinpointed using the
low-energy data, the value of #=1 does yield an
over-all good fit; therefore, in the following dis-
cussion, we shall use the results obtained with
u=1 for both the p+He® and the »n+H? systems.

First, we compare the results obtained using
one-Gaussian and two-Gaussian internal wave
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FIG. 2. Comparison of p + He® differential cross sec-
tions calculated using # =1 with the two-Gaussian wave
function (solid lines) and the one-Gaussian wave function
(dashed line) with experimental data at 1.51 and 2.26 MeV.
The experimental data are those of Ref. 12.
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functions. In Figs. 2 and 3 are shown the p+ He®
differential cross sections calculated at 2.26 and
6.38 MeV with the wave function ¢, (solid lines)
and the wave function ¢¢; (dashed lines). From
these figures, we see that at these energies, the
difference between the cross sections amounts to
about 20% in the forward direction and about 10%
in the backward direction. At higher energies,
e.g., at 23.25 MeV, the difference becomes even
smaller. This shows that if a very accurate cal-
culation is desired, it is certainly important to
employ a good internal wave function. On the
other hand, since these small percentage differ-
ences are probably within the uncertainties
caused by the various approximations adopted in
our calculation, it is our viewpoint that the use of
a two-Gaussian wave function for the He® or the
H? cluster, which does complicate somewhat the
numerical computations, is not entirely called for
at this moment.

Next, the results obtained using the two-Gaus-
sian wave function ¢, represented by solid lines
in Figs., 2-6, will be compared with experimental
measurements in both the p +He® and the » +H3
cases. In Fig. 2, comparisons are made for the
differential cross sections at c.m. energies of 1.51
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FIG. 3. Comparison of p + He® differential cross sec-
tions calculated using » =1 with the two-Gaussian wave
function (solid lines) and one-Gaussian wave function
(dashed line) with experimental data at 3.41, 6,38, and
8.61 MeV, The experimental data are those of Ref. 13.

and 2.26 MeV with the experimental p+He? data
of Tombrello et al. From this figure it is seen
that a fair but not detailed agreement is obtained.
As has been mentioned in Sec. II, it is our belief
that the lack of detailed agreement is due to the
omission of the specific distortion effect in our
calculation. In Fig. 3, we compare our results at
3.41, 6.38, and 8.61 MeV with the experimental
p+He? data of Clegg et al.'® Here we see that the
calculated results are quite good, thus supporting
our contention that the specific distortion effect is
important mainly in the very low-energy region.
In Fig. 4, the p+He® result at 23.25 MeV is shown
together with the experimental data of Kim et al.**
From this figure we find that even at an energy
well above the reaction threshold, the agreement
with experiment is still satisfactory. The discrep-
ancy between theory and experiment around the
Coulomb-interference minimum at about 15° and
the deep diffraction minimum at about 120°is a
consequence of the fact that we have omitted reac-
tion channels and used a purely central nucleon-
nucleon potential in our calculation.

In Figs. 5 and 6 we compare the results for »+H3
scattering with the data of Seagrave, Cranberg,
and Simmons® at 0.75, 1.5, and 4.5 MeV, and the
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FIG. 4. Comparison of p + He? differential cross sec-
tions calculated using # =1 and the two-Gaussian wave
function with experimental data at 23,25 MeV. The ex-
perimental data are those of Ref, 14.
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data of Kootsey'® at 10.6 MeV. Here also, it is
noted that in this low-energy region, there is a
trend toward improved fits at higher energies,
just as in the p+He® case. .

As has been mentioned,® the resonating-group
phase shifts are useful as starting values in a de-
tailed phase-shift analysis. In fact, such a pro-
cedure has been adopted in the phase-shift analy-
ses of Bacher, Spiger, and Tombrello'” for He?
+He? scattering, and Schwandt et al.’® for He® + He*
scattering. In both of these cases, the final values
for the phase shifts turned out to be rather similar
to the starting resonating-group values. Thus, it
seems to us that the p+ He® phase shifts calculated
here might also be useful for such a purpose.
Therefore, we have listed in Table I the values of
the p+He® phase shifts 6,; for I=0-6 obtained
with the wave function ¢ in the energy region of
0.5-40 MeV.

It is interesting to note that in his phase-shift
analysis of the p+ He® scattering data, Tombrello*®
has found that the /=0 phase shifts in the singlet
state are larger than those in the triplet state,
while our results given in Table I indicate the op-
posite. We should mention, however, that the /=0
phase shifts in the singlet and triplet states do not
really differ greatly in magnitude. Hence, it is
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FIG. 5. Comparison of n +H?® differential cross sec-
tions calculated using #« =1 and the two-Gaussian wave
function with experimental data at 0,75, 1.50, and 4.50
MeV. The experimental data are those of Ref, 15.

quite likely that a further phase-shift analysis of
the experimental data might in fact favor the phase-
shift behavior found in this calculation.

Recently, Harbison et al.2° have made a p+He®
phase-shift analysis at 22.88 MeV and found five
phase-shift sets which fit the experimental data
about equally well. Out of these five sets, our
resonating-group calculation favors their set 1(D)
which has the same behavior for the /=0 phase
shifts as is found in this study. In Table II, we
compare the phase shifts of set 1(D) with the cor-
responding unsplit phase shifts obtained in this
calculation. From this table we see that the agree-
ment is fairly good, thus providing further evi-
dence that the resonating-group results are useful
even at relatively high energies.

B. Effective Interaction

We now discuss the effective local p+ He® inter-
action defined by Eq. (12). In Fig. 7 are plotted
the effective potentials in the triplet state®! at 4.5
MeV for 1=0-3, calculated using both the wave
function ¢ (solid lines) and the wave function
¢y, (dashed lines). From this figure, it is clear
that the main features of the effective potentials
calculated with these two functions are essentially
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FIG. 6. Comparison of n +H3 differential cross sec-
tions calculated using # =1 and the two-Gaussian wave
function with experimental data at 10.58 MeV. The ex-
perimental data are those of Ref, 16.
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TABLE I. p +He® phase shifts 0, in degrees, calculated with the wave function ¢ 4 andu =1,
E 1=0 l=1 l=2 1=3 l=4 l=5 1=6
(MeV) 00 001 619 Oy 20 091 O3 O3 049 Oy 05  Os1 860 g1
0.5 -11.8  -11.0 13 1.3
1.0 -23.6 -22.2 5.1 5.3 -0.1 -0.1
1.5 -32.9  -30.9 10.6 11.2 -0.2  -0.2
2.0 —-40.4 -38.0 16.6 18.0 -04 -0.3
2.5 -46.9 —44.0 223 24.9 -0.6 —-0.5
3.0 -52.5 —-49.3 27.2 31.2 -0.9 -0.8 0.1 0.1
4.0 -62.0 -58.1 34.3 40.6 -1.5 -1.3 0.2 0.2
5.0 —69.7 -65.3 38.2 46.3 -2.1 -1.8 0.3 0.3
6.0 -76.3 -71.5 40.2 49,5 -2.7 =22 0.5 04
8.0 -87.0 -81.3 41.3 52.2 -34 =28 1.0 0.8 -0.1 -0.1
10.0 —-95.4 -89.1 40.7 52.6 -3.5 -=2.9 14 1.2 -0.1 -0.1
12.0 -102.2 -95.5 39.7 52,0 -33 -2.6 1.9 16 -0.2 -0.2
14.0 -108.0 -100.9 38.5 50.9 -2.6 =2.0 23 2.1 -0.2 -0.2 0.1 0.1
16.0 -112,9 -105.5 37.3  49.7 -1.8 -1.3 2,7 25 -0.2 -0.2 0.1 0.1
18.0 -117.2 -109.6 36.1 484 -0.8 -04 3.1 2.9 -0.2. -0.1 0.1 0.1
20.0 -121.0 -113.2 35.0 47.0 0.2 0.5 34 3.3 -0.1 -0.1 0.2 0.1
22.0 -124.3 -1164 33.9 45.7 1.3 1.5 3.8 3.8 0.0 0.1 0.2 0.2
25.0 -128.7 -120.6 32.4 438 2.7 2.9 43 45 0.2 0.2 0.3 0.2
30.0 -134.7 -126.5 30.2 40.9 4.9 5.3 5.2 5.6 0.6 0.6 04 04
35.0 -1394 -131.2 28.3 38.3 6.7 74 5.9 6.7 1.0 1.0 0.6 0.5 0.1 0.1
40.0 —-143.1 -135.0 26,7 36,1 8.1 9.2 6.7 7.6 1.5 14 0.8 0.7 0.2 0.1

TABLE II. A comparison between the phase shifts 6

obtained in this calculation and the phase shifts 6% of
set 1(D) of Harbison et dl . for the p +He® system at

22,88 MeV.
Set 1(D) of This
Harbison et al. calculation
8%, -139.0 -1254
od -114.0 -117.5
o 36.0 33.6
6%, 33.0
o1y 31.5 45.3
6% 55.0
6% 11.5 1.7
844 0.0
6%, 4.5 1.9
034 6.0
63, 5.0 3.9
0% 1.0
83, 2.0 4.0
8% 7.5

the same. This indicates that, in future investiga-
tions, if a study of the properties of the effective
interaction is the main purpose, then the use of a
relatively simple cluster wave function, such as
¢cy, Will be quite sufficient.

From Fig. 7, it is also seen that the effective
potentials in the odd-1 states are quite different
from those in the even-/ states. Thus, the odd-
even effect, known to exist in the o+ N? and He3

r(fm)

FIG. 7. Effective triplet-state p + He® potentials calcu-
lated at 4.5 MeV with the two-Gaussian wave function
(solid lines) and the one-Gaussian wave function (dashed
lines) for 1 =0-3.
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+ af systems, is again very much apparent here.
Also, it should be mentioned that the effective
potentials in all [ states are very different from
the direct nuclear potential V, (»), which is strong
evidence that the antisymmetrization procedure
plays an important role in calculations on light nu-
clear systems.

IV. CONCLUSION

In this study we have considered the p+He® and
the n+H? scattering problems using the resonating -
group method in the one-channel approximation.
The nucleon-nucleon potential used is a purely
central potential which has different ranges in the
singlet and triplet states and which gives a very
good fit to the low-energy two-nucleon scattering
data. The internal wave functions for the He® and
H? clusters are composed of a sum of two Gaussi-
an functions, with the parameters adjusted to re-
produce quite well the essential properties of these
clusters.

Previous resonating-group calculations® have al-
ways used a one-Gaussian wave function for the
He® or the H® cluster. To have some idea about
how reliable these calculations were, we have
compared the p+He? differential cross sections
calculated with two-Gaussian and one-Gaussian
cluster wave functions. The result shows that the
differences between the cross sections are 10-20%
at energies below about 10 MeV and become even
smaller at higher energies. The fact that these
differences are rather small indicates that these
previous resonating-group calculations involving
three-nucleon clusters are good enough and further
considerations using an improved cluster wave
function do not seem to be worthwhile at the pres-
ent moment.

Since the He® and H® clusters are not tightly
bound, it is expected that the omission of the spe-
cific distortion effect may lead to some disagree-
ment with experiment in the very low-energy re-
gion.?? Indeed, a comparison of the calculated
differential cross sections with experimental data
shows that the agreement is only fair at very low
energies, but does improve significantly as the
energy is increased.

Even at relatively high energies where the one-
channel approximation is expected to be less valid,
it is found that the agreement between theory and
experiment is quite satisfactory. In fact, we have
been able to use our results to pick one out of the
five phase-shift sets obtained recently by Harbison
et al.® from a phase-shift analysis of their p +He®
experimental data at 22.88 MeV.

The property of the effective local p+He® inter-
action is also studied. From this study we find
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that, as in many other cases,® the antisymmetriza-
tion procedure is quite important and the odd-even

effect, wherein the effective potentials in the odd-1
and even-/ states are appreciably different, is very
much apparent.

APPENDIX. EXPRESSIONS FOR THE DIRECT
POTENTIALS AND THE KERNEL FUNCTION
CALCULATED WITH THE WAVE FUNCTION ¢y,

The expressions for the direct nuclear potential
Vys, the direct Coulomb potential V, and the ker-
nel function &, are as follows:

(1) Vys(®)
1 4 7’.2 3/2
74 = f —
Ns(r N Z Vo:Ys:]Z; C] (3(1]-2)
( > oxp [ 3%k 2
3a; +2K *p 3a;+2k; ’
(A1)
with

4 72 \3/2
N= ch 30 , (A2)
1

Yoi=3w; —m; =2,

Yi=3w; —m;+2b; -2h;.

1

(A3)

In Egs. (A1)—(A3), the quantities involving the sub-
script ¢ (¢=1,2) are defined as

Vor=Vors  Voa=Vos,

Ky =Kg Ko = K s
— — 1

w,=b,=w,=-b,=3u,

my=hy=my=—h,=3(2 -u),

while the quantities involving the subscript j (j=1,
2,3,4) are defined as

=0, 0=0,, asza4=§(al+a2),
=1 Cy=C C3=C4=
(ii) V()
4
1z 3a; ”2:|
vz 2 Leisus) o[ () )

(A4)
with Z and Z’ being the atomic numbers of the
three-nucleon cluster and the nucleon, respec-
tively, and

<I>(V)=fij; ye"zdt.

(iii) ks (7, 7')

h—z 2
kls—__ T - E Vm'Us,-f'E'é’ (A5)
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where M is the nucleon mass and E’ is given by

E’ =E +ECL »
with

1 ﬁz 1T2 3/2 2 ,”2 3/2 2 aJ. az 4772 3/2
ECL_N’Z‘M_[3QI<3QLZ> +3¢ az<3a22) +6€<a1+a2) 3(a, + a,)?

2 4 2 \3/2 3/2 2 _4 2\ 3/2 1/2
bis o, Z(Z-1)e T 20\
-), Vy;(Bw; +3m;) c-( ) ( L ) + c.< ) (—-—-—’) g .
iz::l 0 i]z;; \3a,2 a;+2K; 2 E \3q,? m

i=1

In Eq. (A5), the quantities T, Us;, and & are defined in the following way:

1 s 3\3 nz 8/ 3a 8/ [ 3 ’2 15 2
T:EZ:I(Z) cj<~——3aj2) (#) exp[2H;(7 -7r'®)] exp[ - & a,(* +7'?)]
X[(D; =F ;72 =F,7"®) S (& a;) -G7v' T (& a;)],
where
4
SI(V)=—V1151+1/2(V7’7") ’
47 , l ,
Tz(V)=‘V—[51+3/2(W"V ) 'Wgzu/z(w’” )],

with J(vr7’) being a hyperbolic spherical Bessel function, and

Fu=%07, Fp=3a°, F,=%0’+20,0,+9,%), Fi=3:00%+20,0,+ a,?),
Fo=Fy, Fyp=Fyy, Fp3=Fiy, Fpy=Fyy,
H1=0; H2=07 H3:%(a1_az), H4=%(a2—(11),
_ 2702+ 78 a, a, + 27 a1,
D,=%a,, D,=%a,, Dy=D,=— 8(a1+1a:) 2

a?, G,=G,=t5090.2+100, 0, +90,%) .

5]

63 -
G, =3 %, G,=

)

2 )8/2<§9_1.>3/2 s
exp[$H ;(r* —v'?)]
3aj2 2". [8 J

1 4
Uy =_Z(%)acj<
Ni=1

150, + 18k, . 3/2
BsiSil & (@; = 2k;)] exP[-L-KL (7’2+’V'2)j| +Ag; (“"‘a“l_) S, (35 @;)exp [_12_;1(73+y,2):|

X
32 a;+2K;

oy < 20, )3/2 (gaj2+2ajk,-)[exp<_15aj2+16ajx,- o 3507 +dak;
si 20;+k; '\g 2a;+ K 16  2a;+k; 16 2a;+k;

3 5a%+4o,k; , 35a”+16a,k; ,,
+exp<ﬁ 20+ kK T 20, +k; r) s’

where
Boi=—w;+3m; —2b,;, By=-w;+3m;-2b;+2h,;,
Noi==W; =m;=2b;=2h;, Ay;=-w;-m;,
Vo; = =2w; =2m;+2b;+2h;, v,;;=-2w;-2m;.
1

1< 7% \3/2 (3¢, \3/2 , 5a ,
8=-ﬁj=1(%)3cj<w) (2—”’> exp[%Hj(’rz-1f2)]S,(%a,)exp[——§-2—1(72+72):].
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