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Residual Potential and Nucleon Correlation in the Shell Model.
I. E2 Transition in Li
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The effect of a class of residual potentials in the Hamiltonian and nucleon-nucleon correla-
tion on calculations in the independent-particle shell-model wave function of Li has been in-
vestigated. A method has been developed to give minimum energies of various states of a nu-
clear system with a somewhat realistic Hamiltonian and wave function. The results on ener-
gy calculations are in good agreement with the observed data. The E2 transition rate and
other relevant observables pertaining to this transition using this wave function and several
others have been calculated. Comparison of the results of these calculations with experi-
mental data and other theoretical predictions shows a definite preference for the correlated
wave function of Li developed here. The method is convenient for application to other nucle-
ar systems.

1. INTRODUCTION

The usual independent-particle shell model
(IPSM) has been used in explaining nuclear proper-
ties more than any other model. This may be part-
ly due to its simplicity, but the main quality of
this model is its wide range of success. Never-
theless, the failure of IPSM in the case of 'Li has
been well known for some time. Many calcula-
tions pertaining to the ground state of 'Li have
been found to give unsatisfactory results. The
model is even worse for the excited states. Other
models have been tried, but the situation was not
improved as a whole. ' ' Several attempts at mod-
ifying the IPSM wave function of 'Li and other fi-
nite-nucleus-model approaches have also been
made with very little success. " " In this paper
a simple nonperturbative method is developed
which promises to predict some interesting re-
sults in a quick way. It is not, certainly, being
claimed that this procedure would be able to com-
pete with other highly developed finite-nuclei theo-
ries like Brueckner's. As an application of this
approach we shall calculate the quadrupole transi-
tion of 'Li which involves its first excited state and
the ground state. Since the decay of atomic nuclei
is determined by the spatial overlap of the initial
and final wave functions, fine details of the nucle-
ar wave functions become apparent. In particular,
the study of such transitions demonstrates more
effectively the usefulness of nuclear models. In
this transition, it is the p proton of the nucleus
which contributes nonzero terms to the matrix
element of the quadrupole operator. The IPSM
wave function of the P proton in 'Li, as derived
from the harmonic oscillator, does not describe
the electromagnetic behavior of 'Li successfully.
Some modifications, are, therefore, proposed here.

It may also be timely to remark that electromag-
netic properties of a nucleon inside a nucleus may
be seriously affected by the presence of other nu-
cleons in its vicinity. " It is quite appropriate
that the P nucleons should be treated rather more
explicitly, since only these nucleons are involved
in this transition. It seems quite plausible to mod-
ify the independent behavior of p nucleons by some
nucleon-nucleon correlation function. Such corre-
lations appearing in a wave function are the Pauli
correlations and the dynamical correlations. The
former are due to the particle statistics and can
be incorporated by properly antisymmetrizing the
nuclear wave function. The latter correlations
arise from the behavior of the nucleon-nucleon in-
teraction. The use of such correlation in the IPSM
wave function has been found somewhat helpful in

explaining some of the anomalous features'"" of
Lj and of some other nuclei which could not

be explained otherwise. The variational approach
developed by Brink and Grypeos" for finite-nuclei
calculations is similar to what was described a
few years ago by Da Providencia and Shakin" fol-
lowing the effective-Hamiltonian formalism by the
use of a unitary operator suggested by Villars. '

In case of 'Li the basic assumption of the IPSM
—that the two-body nucleon-nucleon forces can be
completely represented by an average central po-
tential —is unlikely to be valid. We expect to have
a substantial residual two-body interaction in it'~"
which may be simulated to cause some dynamical
correlation among the particles moving indepen-
dently. It should, therefore, be necessary in gen-
eral to add some form of the two-body nucleon-
nucleon interaction as a residual potential in the
IPSM Hamiltonian. It is desirable to evaluate by
the variational principle the extra parameters in-
troduced in the wave functions through the corre-
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lation terms. The variational principle can be ap-
plied to all those states which are orthogonal to
each other. The other parameters involved in the
residual potential may be adjusted to give the min-
imum energy for each desired level and to give the
correct spacings between them. This method may
be regarded as somewhere between the simplest
uncorrelated single-particle model and the three-
body model of Vfackman and Austern. ' The treat-
ment of the core is rather different from that of
%ackman and Austern but the treatment of the two
valence nucleons is similar. However, this meth-
od gives energy spRclngs ln good Rgleement with
the observed values; whereas the above-mentioned
three-body model displaces all the energy levels
upwards in energy on an absolute scale by about
3-5 MeV, and, contrary to experiments, the iso-
spin-triplet level J =0 lies below the J = 3 level.

2. CORRELATED VfAV E FUNCTION OF Li

The Hamiltonian of the nuclear wave function is
given by

A

0 =Ho+ Q V~),
i&i

where H, is the harmonic-oscillator Hamiltonian
and V;,- is the residual nucleon-nucleon interaction
within the nucleus. Although the summation in (1)
is taken over all pairs of nucleons, in this scheme
we shall study the effect of V;& explicitly only on
the two valence nucleons of 'Li. It will be seen in
Sec. 5 that the residual potential V,&

affects the nu-
clear wave function implicitly through the correla-
tion coefficient. This coefficient depends on the
parameters involved in the potential. One may
take a realistic nucleon-nucleon interaction and
derive the effective central and the residual poten-
tials and proceed with the scheme outlined here.
The purpose of this paper is to develop a simple
method for studying the nuclear system with a
doubly closed shell plus two particles (holes) and
not to study the salient features of the so-called
realistic two-body nucleon-nucleon potential. The
realistic nucleon-nucleon interaction appearing in
the literature in several forms is quite complicat-
ed. Its finer and detailed features are not of gross
importance in this formalism. %e therefore
choose a simple form of the two-body interaction
of the phenomenological type"' ":

V„=(—,
'

V, + k V ) + (g V ——,
'

V )(r a

with

V, ,=-V„,„[-f( / .. .,)'"] -""" "', (3)

where r =r,~
= ~r, —r& ~

and V„or Vo, are adjust-
able parameters not exceeding the free values for

given a, 5, v, and x,. The usual IPSM wave func-
tion of a closed-shell nucleus is the Slater deter-
minant of single-particle functions determined by
a central-field model. Here in the Hamiltonian
(1), apa. rt from a central field we have a. two-
body interaction V;& which makes the admixture
of higher configurations important in the shell
model. "'""" It is always questionable where
to stop adding higher configurations. To get out
of this dilemma on the one hand and to incorporate
the effect due to the residual potential in the wave
function on the other, we propose here a correla-
tion function which is simulated to replace the ad-
mixture of an infinite number of higher configux'a-
tions. In the harmonic-oscillator well, the radial
wave functions of particles in various states differ
only in their polynomial parts depending on the
ciuantum numbers 6 Rnd /. Their corx'espondlQg
exponential parts are mathematically identical. In
particular, in a two-particle system the radial
wave function of the admixture for a given system
would look like

R(r „~,)[1++G„(r„r,)],
where B is the radial wave function in the lowest
configuration, and G„ is the polynomial of the or-
der k, say, arising from the admixture of higher
configurations. The polynomial G„ in (4) is re-
placed by a suitable dynamical correlation func-
tion whose argument is the relative distance be-
tween r, and r, . Let such a function be (1+Cr»/ro)
in which the correlation coefficient C is state de-
pendent and is evaluated by the variational princi-
ple. The range parameter ro is introduced to
make C dimensionless. The term Ci »/r, can be
expanded in the Legendre polynomials as

C~„ C
~a +&y +& Pa cos&x2 ~Jo Io

0=0

where r& (r&) is the smaller (greater) of r, and r„
and ~» is the angle between r, and r, . The expan-
sion of U'„ is given explicitly by

/+2
1 I

k( lu kj (2t 3) k+2 (1 2y) k-1 '

Accordingly, here U„ is a polynomial function of
r, and r, . Although it is not identical to C„ it is
similar enough in character to replace it by Cr/r,
in (4) in order to account in some way for the ef-
fect on the IPSM wave function due to the residual
interaction. The correlation wave function can be
written as

e =(1/X)y'(1+ C~„/~, ) ~0),

where Q' is the coupled wave function of the two
extracore particles, and

~ 0) stands for the four
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1s particles representing the core. We shall drop
the minus sign from the correlation function and

develop our discussion on the basis of the plus
sign. The effects of different signs of C will be
discussed in Sec. 8. Since the inclusion of the cor-
relation function f» destroys the normalization of
g', as obtained from the normalized single-parti-
cle harmonic-oscillator (SPHO) wave functions, it
is necessary to renormalize the correlated wave
function. The quantity N in (7) is defined such that
the total wave function 4 is normalized to unity.
It may also be pointed out that the modified wave
function (7) when multiplied by the appropriate
spin and isospin functions still maintains its anti-
symmetric properties and is an eigenfunction of
L', L„S', and S,." Thus the wave function (7)
being antisymmetrized includes the Pauli correla-
tion in addition to the dynamical correlation.

3. RENORMALIZATION

The expectation value of a unit operator with nor-
malized wave function (7) is readily given by

(@II')= 1

(8)

4. EFFECTIVE HAMILTONIAN

where

H = (1+Cr/r, )H(1+ Cr/r, )

=H +(C/ro)(rH +Hr) + (C'/r, ')(rHr), (14)

called the "effective Hamiltonian. " The Hamil-
tonian (1) for a two-particle system can be writ-
ten as

H =HP, +H02+ V,2)

where H„ is the Hamiltonian for the ith particle
in a central field U; and where V» is the residual
interaction. This U, should not be confused with

U,(r„r,) introduced in (4). The zeroth-order cal-
culation consists of a product of individual particle
wave functions (t)„, (r;) which are the eigenfunc-
tion of H„; i.e. ,

In order to facilitate the discussion of this work,
we shall transpose the correlation function f(r»)
from the wave function to the Hamiltonian. The
energy of a two-particle system in an arbitrary
state given by wave function (7) can be readily ob-
tained by the Hamiltonian (1) as

W =(H)/N',

where r is the same as r». The renormalization
can be written in operator form as

N = 1 + 2C(r/ro) + C'(r'/r, '),

H.;I4.&.(r;) =e:, IP. (r;),
where

y„,.(r,.) =R„,(r, )I;(e,.y, )

(16)

(17)

whose expectation value is the renormalization
constant N' given by (8). Since the expectation val-
ues of the last two terms in the operator (9) depend

on the state of the wave function used and since C

is also state dependent, we shall designate the re-
normalization constant N as

and c„', is the eigenvalue of the ith particle in the
state nlm. The radial wave function R„,(r;) is of
the harmonic-oscillator type.

Since we shall be concerned primarily with a
system of two equivalent particles, it follows
readily from the Appendix A that

Nz,
' = 1+2Cz, (r/r, )z, + Cz, '(r'/r, ')z, (10) (r,Q +Hr»} = 4e(r») + 2(r» V»), (18)

where L denotes the state of the wave function
used to evaluate the matrix elements of the opera-
tors r/r, and r'/ro' The ma.trix elements in (10),
and in the rest of this paper, are evaluated with

the wave function $(0). The matrix elements are
obtained after laborious integrations as

2

and

where e is the same as e„', . The suffixes will be
dropped from now on. Also from (A22)

(r,+r»}= 2e(r»') +8'/m +(r»' V») . (19)

These matrix elements are taken with the SPHO
wave functions defined by (16) and (17). By means
of (14), (18), and (19), the matrix element (H) can
be written as

(H)=2eN'+()'„) (r„V„)+—,—+(r„'F„)). —
0 0

(20)

&~C 5C~' (12) 5. ENERGIES

where X = nr„and e is the harmonic-oscillator
length Parameter. The suffixes i and f refer to
the relevant values of L in the initial and final
states, respectively.

We shall evaluate the energies of the ground and

the first excited states of 'Li using the correlated
wave function (7) and the total Hamiltonian (1). In

the J -8 coupling scheme, which is quite appropri-
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ate for 'Li,"'"the two states of this nucleus are
specified as follows":

ground state, 4&'.

all L and S, and the perturbation energy depend-
ing on L and S. We shall write (24) for computa-
tional purposes as

J =1' T =0 L, =O, $=1;
first excited state, 4', :

(21) Wi(C) = e, +2e+Wi, z, ,

where

(25)

J"=3+, T =0, L, =2, $=1. (22) a, '+a, 'Cl. +a', 'C~'
1 + g (I&C + g(~)C4 I 5 I s, t

(28)

The total energy in the state L can be written sym-
bolically as

W, =(a,&/(~, ), (23)

where L, corresponds to either the wave function
(21) or (22). Substituting the expressions given by
(8) and (20) in (23) and dropping the suffixes of V»
and r» for brevity, we obtain

Wz (C) = a, + 2 e + (1+2~(r)~ +, (r'),
0 0

&& (V), +2~(rV), + ', +(r—'V),
0 0

(24)

where e, is the energy belonging to the core con-
sisting of four 1s particles. The total energy in
(24) essentially consists of two parts, namely, the
degenerate energy (e, +2m), which is the same for

a', ' =(V),
a~' = 2((r/r, )V),

af' =8'/mr, ' +((r'/r, ') V),

a', ' = 2(r/r, ),
a,"= &r'/r, ') .

(27a)

(27b)

(27c)

(27d)

(27e)

BWi/BCI =0, (28)

the value of C is determined in terms of the a' s
defined by (27). From the condition (28), it read-
ily follows that

The subscripts s and t in W~, ~t denote the singlet
and triplet states, respectively. The energy in
each of the two states can be obtained by using the
appropriate uncorrelated wave functions (21) and
(22) for a given L as the basis. With the condition

—(a, —a,a,) a [(a, —a,a,)' —(a,a, —a,a, )(a, —a,a,)]' '
L+

0304 —0205
(28)

Of the two values of Ci, , that value is selected
which gives. the corresponding energy minimum.
It may be observed that C is specified entirely by
matrix elements (27) which in turn, when evaluat-
ed, are functions of the parameters involved in the
residual potential (3) and in the wave function (17).
We therefore select only those sets of parameters
which give the correct level spacings and repro-
duce other experimental data. Since we are con-
cerned with the triplet state in both ground and ex-
cited states, we shall drop the subscript Ls from
(28) and designate the coefficients C as C«and
C„, in the state L=O and L=2, respectively. The
spin dependence of the matrix elements a and co-
efficients C is determined by potential (2) which
is spin dependent.

6. QUADRUPOLE TRANSITION

Electromagnetic moments are good means of
measuring the nuclear deformation. In general,
because of the experimental difficulties, measured
quadrupole moments are not of high accuracy, but
nonetheless they do give valuable evidence as to
the magnitude of nuclear charge deformation. Un-

fortunately, the quadrupole moment of 'Li vanish-
es in pure LS coupling, although this is the cou-
pling scheme which leads to the best description
of 'Li on the basis of theoretical predictions and
experimental measurements. A small admixture
of other states such as 'P„'P„and Dy to the
predominantly 'S, state (which gives the quadru-
pole moment zero) yields a, nonvanishing value of
the quadrupole moment. However, this approach
is rather unrealistic, since no simultaneous fit of
any other data is possible. " On the other hand,
the quadrupole moment predicted by jj coupling is
definitely too large and gives the wrong sign. It is
desirable to evaluate the electric quadrupole (E2)
transition rate which measures the off-diagonal
matrix elements of the same operator whose diag-
onal element is the ground-state quadrupole mo-
ment. The quadrupole transition matrix elements
can be determined for a system even with spin
zero (or —', ), whereas their corresponding quadru-
pole moments vanish. Therefore, in particular,
the deformation of 'He, which is the isobaric ana-
log of 'Li, can be determined. Also, in general,
the available data on the quadrupole transition rate
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A. IPSM and Nucleon-Nucleon Correlation

The transition probability from an excited state
i to the ground state f in a nucleus with emission
of- a quantum of quadrupole radiation, Ez= ~bc, is
given by"

(30)

where

(Q2& = 2e/ tl +~2(2)]~i'y'2'*(~~)Prf" «
and where e is the charge on the ith proton, I; is
the total spin in the state i, and the summation is
taken over all protons involved. p";&" is the transi-
tion density, which is the matrix element taken be-
tween the initial state of the nucleus JM and the
final state J'I'. Using the correlated wave func-
tions given by (7), we have p",z" for 'Li

Ptf (rj) J +I =o( ' A~+L= ( ' ' rA)

r, . dr;, dr, +, . ~ ~ dr (32)

Because of the spherical harmonic of second order
in (31), only the p proton contributes a nonvanish-

ing term to (Q, &c; since there is only one proton
in the P state, the summation will be dropped from

(31). Expressing the matrix elements evaluated
with the correlated wave functions as (Q, &c, we

obtain

aie more extensive and their accuracy of measure-
ment is relatively greater. The electromagnetic
transitions in 'Li have been examined with wave
functions having a harmonic-oscillator radial de-
pendence. " The authors showed qualitatively that
the M1 transition from the J= 0 state to the ground
state was overwhelming in comparison with the E2
transition from the J =3 state to the ground state.
This was in qualitative agreement with experi-
ment. " However, their further calculations"
proved much less satisfactory with that potential.
It seems proper to study the situation for various
types of nucleon-nucleon interaction in the case of
'Li. Such a study was also suggested independent-
ly on the basis of the calculations on some p.— and
d-shell nuclei. " In the present work we have a
class of potentials which have a Gaussian radial
dependence with a variety of polynomials of the
relative coordinate giving a simple Gaussian or
Gaussian tail with a soft or hard core. Of course,
this potential is introduced to yield the second-or-
der effects, The central potential is of the isotrop-
ic harmonic-oscillator type.

(Q,")c= [Qo+(C;+Cq)Q, +CCqQ2],
f

where

Q =(F, *(1)r,'&;~,

Q, =(1;"*(i)r,'r/r, &„,

(34a)

(34b)

Q, =(r,"*(1)r,'r'/2, '&,, (34c)

x(210M' I 3M~& . (35)

By setting C; = Cz =0 in (35), we get (Q, ) for the
uncorrelated simple harmonic-oscillator wave
functions, in which case

(36)

If we consider the total charge e on the p proton
to be distributed evenly on both of the P nucleons
so that the matrix element (35) for the transition
from the state i to the state f may be evaluated
entirely by the uncorrelated wave functions, we

have

(37)

where qe is the effective charge on the p nucleons.
The mean lifetime and level width for this transi-
tion are given by

7 =1/z (z2),

r = ffT'(Z2) .

(38)

(39)

The matrix element for the transition from the
state i to f, the mean lifetime, width, and effec-
tive charge are given in Table I along with the so-
called reduced transition probability B(2; 1-3).
We were interested in the radiative transition in
'Li from the fir st excited state I = 3, T = 0 to the
ground state I= 1, T = 0. We are, however, report-
ing the so-called reduced matrix element for the
transition from the ground to the first excited
state in order to compare with other calculations
and the experimental data which were reported in
this form. The so-called reduced matrix element
from the state a to the state b is defined":

B(X;I,-I2) =(2I,+1) ' g l(BIO~,, ln&l', (4o)
Mg, My

where Oz 2
stands for the Q,

" operator in our case.

where 1 and 2 denote the 1p-shell proton and neu-
tron, respectively. The matrix elements in (33)
do not involve the residual potential directly. How-

ever, the coefficients C; and C& do depend on the
residual interactions. Finally,

e 1 11 C~+C& C Cf
(Q2&C Q~ Ii Ii 2 2+4~/~ g y2
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B. Single-Particle Model

It will be of interest to see how the E2 transition
is predicted by other models for this nucleus. On
the basis of the single-particle model, the elec-
tric multipole so-called reduced transition is giv-
en by"

'Li, the width is given by

r~=2.519x10 E Rp'. (48)

The relevant results pertinent to the E2 transition
in 'Li discussed under the single-particle model
are given in Fig. 9 in the following section.

2 3 2

B„(X)= (2&+1)— R", (41)
C. Configuration Mixing

where R is given by

R=RpA. ' ' fm, (42)

B,p(2) = 1.562R,'e' fm'. (43)

The electric transition probability for single-
particle transition is given by"

2(X + 1} 3 ' e' (oR '"
x[(2X+1)!t]' X+3 hc c

(44)
where the subscript W refers to Weisskopf who
introduced these units, and co is the frequency of
the electric multipole radiation of order A. . For
A. =2, (44) is reduced to

T~(E2) =3.511x10'E'R' sec ', (45)

where E is the energy in MeV and R (=ROA'~') is
the nuclear radius in fm. In the case of 'Li, we
get

T~(E2) =3.827x10'E'R, ' sec '.
The width for y decay as defined by (39) is predict-
ed by the single-particle model as

I = 2.311x10 E'A. ~', (47)

where E is in MeV and F~ is in eV. In the case of

and 1.18 ~Rp &1.42 for all nuclei except for 'Li
for which it is 1.92 fm." For the quadrupole tran-
sition in a nucleus with A = 6, (41) becomes

+1=3 = ([(1P)'2]2+ep[(1P2P)2]2+ ey[(1P lf)2]2

+ e,[(1P}'0(ls) '1d]2] I o) . (50)

The admixture coefficients g and e are evaluated
to first order in perturbation theory using the
method of second quantization.

The reduced transition probability B(E2;I- I')
can be derived readily from the inelastic form
factor ~F;„(q}~' as obtained from electron scatter-
ing according to the relation

B(E2~) =
e-p q'

We shall calculate the quadrupole transition ma-
trix element in the IPSM with the admixture of
higher configurations in the harmonic-oscillator
well due to the residual potential (2). The basis
wave function used here is the same as that used
for the calculations in Sec. 6 A. The residual po-
tential is only of the Gaussian type. The higher
configuration mixing that we allow in these calcu-
lations are those oscillator states which are above
the lowest states by 28&v. As usual, a&=I ct.'/M 'and
M is the mass of a nucleon. In this way we obtain
the wave functions of 'Li in the states 1' and 3+

with I.-S coupling as"'"

~ = =Q(1P}'.l. +8 [(1P2P}.].+a.[(1P}'.(1 ) 'ld].

+g.[(1P}'.(») '»].] l0) (49)

TABLE I. Potential parameters and the correlation coefficients Co& and C2& (as obtained from the variation princi-
ple) for the ground state and the first excited state in Li, respectively, using a (I +Cr/ro)-type correlation function.
These parameters give the excitation energy of the first excited state as 2.189+ 10% MeV. The value of ro& is 1.36 fm.

Type
of

potential Vo

-(q)
(fm')

10-"T 10"
(sec ~) (sec)

r
(peV)

B(E2~)
(fm4)

(55b)
(55c)
(55d)
(55e)
(55f)

20
30
40
40
40
50
60
70
80

0.20
0.25
0.30
0.35
0.40

0.70
0.75
0.70
0.75
0.75
0.75
0.70
0.75
0.75

0.150
0.151
0.150
0.149
0.142
0.150
0.147
0.150
0.144

0.092
0.102
0.111
0.119
0.098
0.107
0.107
0.113
0.111

1.535
1.854
1.791
1.366
1.364
1.359
1.552
1.361
1.867

1.193
1.128
1.648
0.713
0.583
1.099
1.462
1.262
0.806

0.888
0.887
0.607
1.403
1.714
0.910
0.684
0.792
1.240

78.499
74.222

108.488
46.915
38.648
72.444
93.376
88.180
58.149

5.500
4.276
7.484
4.356
4.341
4.806
5.619
4.822
4.862

0.456
0.462
0.459
0.466
0.465
0.463
0.461
0.464
0.466
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where q is the momentum transfer here and should
not be confused with the effective charge. Using
the expression for ~E;„(q)~' obtained from the
wave functions (49) and (50),"we get

B(E2; 1-3)= n '(1 —2[40.4 (g, +ep)
35

+42.1eq+1.5(g, +e„)]].
(52)

a=0, v=--,', b=-l; -V (r,/r)X;

a=0, v=0, b=-1; -V+;

a =0, v =~z, b = -1; —Vo(r/rp)X;

a=0, v=1, b=-1; -V,(r/r, ) X;

a=0, v=1, b=-1; -V (r,/r) X; (55a)

(55b)

(55c)

(55d)

(55e)

The admixture coefficients in (52) are evaluated

from those parameters which fit the elastic elec-
tron scattering data for not too large momentum

transfer. " They are given in Table II in Sec. 7.

—V,[1 —b(r, /r)]X; (55f)

v = 1, and 6 as adjustable parameter;

a = 1, v = ——,', and 6 as adjustable parameter;

7. RESULTS

Since we are dealing with the triplet states of
'Li, the form factor (3) is expressed as

—V,[1 —b(r/r, )']X.

The results are expressed as

(55g)

V= —V,[a —b(r/ro)"]X,

where
2 2

X—e "~"Q

(53)

(54)

The matrix elements (27a) through (27c) a,re eval-
uated with the following sets of parameters in the
form factors (53): 0.5—

I50 0,9—

IOO 0.5— d

0.9—

50

0.5— 4c g ~ ~

0.9—

I

005 W
b

I

0.2
I

0.5 0.4

FIG. 1. The depth parameter Vp for triplet cases as
functions of the repulsive core parameters 5 of the po-
tential of the (55f) type for A. =0.5 to 0.8. The curves are
indistinguishable for A. = 0.65 and above. For this reason
no further figures are possible in similar cases where a
correlation function of the type (1+Cr/rp) is used. These
parameters give the excitation energy of the first excited
state of Li as 2.189 MeV+10%.

0.5
'Iiito (MeV)

100 200

FIG. 2. The dimensionless parameter A, is given ver-
sus Vp (triplet) for potentials of the types (55b) —(55e) us-
ing (1-t"rjrp) so that AW=2. 189 MeV +10%.
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and

2b((V)tt=U+ 1/2 + 8 (V)It=I/+ 1/2)

2

3 2+~((v)k o+ =6L(v)k 2)=%Fp

b((V)II=V+ 1 e (V)It=I/+ 1)

(56b)

(56c)

where

1
(V)k=o =24~&(5Io+I1 + ~Is) t (57)

&"'=(V) =(2((v)'==;+ &,(V);:.) —b((V),",+ 8 (V),",),
(56a)

belonging to the class of potentials (55). Those
parameters are adjusted so that the correct value
of the excitation energy of the first excited state
of 'Li is obtained, which is 2.189 MeV.""For
computational purposes, the results given in the
tables and figures are such that the excitation en-
ergy 4W is allowed to vary in the range 2.0 &hW
& 2.4 MeV. The coefficients C are evaluated with
the parameters thus obtained. The potential pa-
rameters have been varied within the following
ranges:

0.5 &X &1.2, ax=0.05
for all potentials;

10 & V~ - 200, h Vp = 10 Me V
for potentials (55a)-(55e);

and

v v i v
(V)k 2

—24~&(Io I 1+ qI2) ~ (58)

I.O-

(21+Iv+I)!t

(
I )'( IX' )""'

(

With the use of appropriate matrix elements, the
values of Cz given by (29) are determined which

give the minimum energies in the two states of
'Li. Such values of C, contain a set of parameters

0.2—
1.0-

e

200

0.2— d

I.O-

l00—

O C4&o
0.2—

~ ~ ~ 4 E ~

I.O-

0.2
Vo (MeV) IOO 200

0

)0

0 I

0 05 0.1 b 0.2
I

0.3 0.4

FIG. 3. The depth parameter Vo is given versus b for
the potential of the type (55f) for X =0.50 to 0.75 using
(1—Cr/ro) so that EW =2.189 MeV+10%.

FIG. 4. Solid lines represent CD, and broken lines re-
present C2&. They are the correlation coefficients for
L = 0 and L = 2 triplet states, respectively. The coeffi-
cients are evaluated with (1-Cr/ro) so as to give the
minimum energies for the ground and first excited
states, respectively, and 8 W = 2.189 MeV + 1010, using
potentials (55b) —(55e). For a given value of P'0 the cor-
responding value of X can be obtained from Fig. 3.
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10 Vo 1000, AV, =10 MeV

for potentials (55f) and (55g);

0.05 & b & 0.50, hb =0.05

for potentials (55f) and (55g) .

The numerical analysis was carried out on the
IBM 360/50 computer. The results belonging to
the correlation function of the type (1+Cr/r, ) are
presented in Table I and Fig. 1, and those belong-
ing to (1 —Cr/r, ) are given in Figs. 2 to 9. In the
former case most of the acceptable values for the
excitation energies 4W and B or I" correspond to
unphysical values of the parameters. We there-
fore report in Table I only those observables
which correspond to some admissible values of
the parameters selected for each type of potential.
The parameters, in Table I and Figs. 1-5, ob-
tained from the variational principle giving the
minimum energy and the correct excitation ener-
gy within the 1%~ error for the 3+ state of 'Li,
belong to potentials (55b)-(55f). Within the al-
lowed range of the parameters, potentials (55a)
and (55g) could not satisfy the above stated strin-
gent conditions with either sign in the correlation

functions. Thus, those two potentials were elim-
inated. The observables reported in Figs. 6-8
have been evaluated using only those parameters
which meet the criteria of appearing in Figs. 2-5.
Summarizing the results reported in Table I and

Figs. 6 and 8 in terms of the reduced transition
probability B(E2t), we note that:

0.766- B(E20) &25.409

with no correlation but the same o. as in
the corresponding (1+Cr/r, ) ca.ses;

0.683 & Bq(E2k ) & 20.642

with correlation of the (1+Cr/ro) type;

2.421 &B (E2$) &25.409

with no correlation but the same n as in
the corresponding (1 —Cr/r, ) cases;

4.343 & Bc(E2t ) & 53.536

with correlation of the (1 —Cr/r, ) type

Obviously the correlation of the type (1+Cr/r, )

has cut down the transition rate when compared
with the results obtained from the uncorrelated
wave function, whereas the correlation of the type
(1-Cr/r, ) has enhanced it.

0.9
Cp)

0.9
Cp)

0.8- 0.8—

0.7 0.7—

0.6- 06

00 L

0.5 =—

0.4— 0.4—

02-

02 —— I

0.Q5 O.I

b
0.2 0.4

02 I I

0-05 0-I
b

-02
I

0.3 0.4

FIG 5, Cp g
and C2 &

are given versus b for the potential (55f) for X =0.55, 0.60, 0.65, 0.70, 0.75 in ascending order.
The corresponding values of Vp for given b's can be read from Fig. 3. The conditions of minimum energies and DW are
the same as those of Fig. 4.



RESIDUAL POTENTIAL AND NUC LEON CORRE LATION. . . 2125

On the basis of the single-particle model, the
reduced transition probability B(E20) and the level
width I"~ of the 3' state of 'Li have been calculat-
ed (see Fig. 9), in order to search for any reason-
able value of It, which would give B(E2) or I' com-
parable to any observed data or theoretical re-
sults. For the value of B,=1.92 fm quoted in Ref.
38, we get B(E2) = 21.227 fm', which is less than

any observed value but comparable with other the-
oretical ones.

As cited earlier, the admixture of higher config-
uration enhanced the E2 transition in other nuclei.
We have examined the effect due to the many parti-
cle states in the case of 'Li. With admixture co-

efficients tabulated below, we get B(E24)=5.3 fm',
which is about the same as predicted by the oscilla-
tor wave function in the lowest configuration with
the same spring constant. One could perhaps get
a larger magnitude of B(E20)than evaluated by this
set of parameters in the configuration-mixture
calculations. However, the change would not be
expected to be large enough to make the magnitude
of B(E20) anywhere near the observed ones. Be-
sides, any set of parameters other than those
quoted in Table II are not likely to give the cor-
rect excitation energy of the 3' state of 'Li.

8. DISCUSSION

50

The purpose of these calculations has been to
study the effect of the residual potential on the

IOOO

IO—

50 200—

0'=

800-

IO

200—

800-

IO ~ g ~ i

50 200-

~E 30

CV

LLI

IO

0
0.5

X
0.6 0.7

b

0.8 0.9 I.O

"SOO-

200

00.5 0.6
I

0.7 0.8 0.9 I.O
FIG. 6. The solid curves are for B(E2t) when

(1 —Cr/ro) is used with potentials (55b)-(55e), whereas
the broken curve represents B(E2)) with no correlation.
The dot-dashed lines represent the effective charge pa-
rameters q scaled on the right.

FIG. 7. The solid curves represent I& when (1 —Cr/ro)
is used with potentials (55b) -(55f), whereas the broken
curve shows the same with no correlation.
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Hamiltonian and thereby the effect of the nucleon-
nucleon correlation on the IPSM wave function of
'Li. This work has been motivated by the general
assumption that the two-body nucleon-nucleon in-
teraction cannot be replaced completely by an av-
erage central potential. The foregoing statement
is of particular interest in the case of 'Li. While
constructing the IPSM wave function of 'Li, the
central potential chosen to replace the actual two-
body interaction is either overestimated or under-
estimated. Such an erroneous estimate of the cen-
tral potential is bound to give a wave function
which is incapable of representing the actual be-
havior of 'Li. The over- or underestimated cen-
tral potential is likely to yield an over- or under-
corrected IPSM wave function for the system con-
cerned. As pointed out earlier, the effect of the
residual potential is manifested in the wave func-
tion through the nucleon-nucleon correlation func-
tion. Moreover, this correlation function should
be added to or subtracted from the IPSM wave
function according to the under- or overestima-
tion of the wave function in the first approxima-
tion because of the wrong assumption of the cen-

40

TABLE II. Reduced transition probability B(E2 t) of
6Li with configuration mixing, and admixture coefficients
g and e. These coefficients were evaluated in the first-
order perturbation theory using a Gaussian-type poten-
tial with parameters 'Hog = 1.36 fm, xo, =1.76 fm, Vo&

=47.6 MeV, and Vo, ——32.0 MeV. The harmonic-oscilla-
tor length parameter G.' = 0.55 fm

B(E2g)
(fm )

0.078 0.071 0.052 -0.065 -0.048

tral potential. Accordingly, we have studied both
aspects in this work.

Using the correlation function (1+Cr;&/r, ) in
either case, the energies in the ground state and
in the first excited state are corrected and an ex-
act amount of excitation energy hW can be ob-
tained with a certain set of parameters belonging
to the potentials (55). (See Table I and Figs. 1-5.)
Nevertheless, the use of the plus and minus signs
has opposite effects on the E2 transitions and oth-
er related observables. (See Table I and Figs. 6
and 7.) Using the plus sign with f(r) reduces the
quadrupole transition and enhances the mean life-
time for the E2 transition compared with what one

20

20—

Io;
Ii

4
E

OJ
LU

0
Kl

0.05 O.IO O.I5
I

0.20
I

0.25
I

0.30
I

0.35 0.40

0

)K I 0

c5

E

OJ
Lal

(XI

I.Q
Ro(fm)

I

l.5 2.0

FIG. 8. The solid lines representB(E2 t) when

(1-Cr/~0) is used with the potential (55f). The curves
are for A, =0.55, 0.60, 0.65, 0.70, 0.75 (from top to bot-
tom). The energy conditions are satisfied as before.

FIG. 9. The solid curve shows the reduced transition
probability B(E2), whereas the broken curve gives the
level width I' of the first excited state of Li in the sin-

y
gle-particle model.
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gets with the uncorrelated simple harmonic wave
function of 'Li. A similar effect has been found in
the E2 transition of AHe. " The use of the same
correlation function in those calculations enhances
the decay time of AHe* to the point of establishing
its —,

"state as isomeric. Alternatively, by the
admixture of higher configurations in the wave
function of 'He, the same conclusion about AHe*

was reached. '" In the present calculations, the
use of correlation term +f(r) has not enhanced the
lifetime of 'Li enough in going from the 3' to the
1' state to lead to its 3' state being isomeric.
Such a conclusion would not be physically correct.
The use of this correlation function gives the cor-
rect excitation energy of the first excited state
(see Table I). It cuts down the E2 transition rate
and the so-called effective charge —by an amount
depending upon the type of the potential used —ob-
tained from the calculations using the basis wave
function with no correlation (see Table I and Figs.
6 and 7}. Using the (1+Cr/r, )-type correlation,
many unphysical values of the parameters are ob-
tained, which we have not entered in Table I. In
Fig. 1 we also observe that there is a functional
relationship between V, and b for unphysical val-
ues of X (0.5 to 0.6), but for higher values of X

(which may be more readily acceptable) the val-
ues of Vo are indistinguishable for all values of

X and b.
Before we discuss these results and compare

them with the other theoretical and experimental
work, we would like to make one observation re-
garding the use of the correlation term preceded
by the minus sign. The evaluation of the correla-
tion energy terms in (26) and the correlation co-
efficients C, such as (29) from the variational
principle using the correlation function (1 —Cr/r, )
in (7}have been done ab initio. However, it is
found (as shown in Appendix C) that the effect of
this correlation function is the same as that of
(I +Cr/r, ) except for its effect in the C values.
The relevant formulas and expressions obtained
with the function (I+Cr/ro) can be used in case of
(1 —Cr/r, ) if the values of C, evaluated with (1
+Cr/ro) are replaced by C, while using the func-
tion (1 —Cr/r, ). More explicitly, the variational
principle admits both values of C given by (29) to
yield the minimum energy. The choice of either
of the two values of C depends on the sign of the
correlation function used in the wave function (7}.
The use of (1 —Cr/r, ) gives the correct excitation
energy for the 3' state of 'Li on one hand, and en-
hances the E2 transition and effective charge on
the other. Alternatively, such an enhancement in
the quadrupole transition has been obtained by the
admixture of higher configurations in other p-

TABLE III. The observed and calculated values of the reduced transition probabilityB(821) in Li. CM is
abbreviated for configuration mixing.

Reference Method
Other work

B(Z2&) (fm4)

Value

Experimental

This work
s.p. model CM model Correl. model

49
50
48
89
40
52

46, 48
46, 48

9
9

~Be(P, ye) reaction

Li(y,
Li(e,

(Li, e
'Li(e,
Li(e,

'Li(e,

d) reaction
e') reaction
d) reaction
e') reaction
e') reaction
e') reaction

Variational method with
Yukawa potential

Single-particle model
e-d cluster model
Shell model
Projected HF method with

Volkov potential
Projected HF method with

Brink potential

Very little compared with
B(M1). No quantitative
data given.

1.75
28.59

95
80 +8
82
25.1+2

Theoretical

Very little. No quan-
titative data given.

8.8
85

8.86
10.96

12.98

yes
yes'

no
Qo

no
no

yes a

no

yes ~

yes a

yes ~

no
no
no
no
no
Qo

Qo

5.8
no

Qo

yes b

yes b

yes b

yes b

yes b

yes b

no

yes 4 c

yes b

yes"

See Fig. 10.
b For the actual values of B(E2t) and the relevant parameters see Figs. 2-9.
cSee Table I.
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shell" "'"as well as s-d-shell nuclei. "'" The
inclusion of (1 —Cr/r, ) in the wave function (7) arid
the residual potential (2) in the Hamiltonian (1)
yields the minimum energy and correct excitation
energy for the 2' state of 'I i as does the (1+Cr/r, )-
type correlation function. In addition, it provides
a range of values of the so-called reduced transi-
tion probability B(E2; 1-2) and other related quan-
tities which are reasonably acceptable in relation
to other theoretical results'"'"'" and observed
data. "'"'"'"" Since all the theoretical and ex-
perimental values of B(E2) differ from each other
and also among themselves so drastically, it is
difficult to decide which to prefer (see Tables III
and IV). For this reason, we are giving the entire
range of transition probabilities and other related
quantities for a class of potentials (55) with those
sets of parameters which give the minimum ener-
gy states and correct excitation energy of the first
excited state of 'Li. Here we may emphasize the
need for a decisive experiment giving some defi-
nite observables pertaining to the E2 transition of
6L ~

On comparing the results of these calculations
with the existing data and other similar theoret-
ical work, we notice that an agreement of the val-
ues of B(E20) and I' for the 2+ state in 'l, i as re-
ported in Table I and Figs. 6-9 is found with the
experimentally observed and other theoretically
predicted values. There is, however, one excep-
tion, for the values reported in Refs. 46 and 47,
which we could not produce within the range of
parameters used in our computational work. It is

usual practice to report a set of parameters for
any potential or wave function. Since there is a
large uncertainty involved (although the results of
Refs. 39, 50-55 tend to agree with each other but
differ with those of Ref. 56), it is difficult to de-
termine a unique set of parameters for potentials
(55) for these experiments. Nevertheless, we are
reporting sets of unique parameters in Table V
which give the quantities agreeing with other work.
However, at this stage, it seems wisest to regard
this question as an unsettled problem until more
reliable values of observables belonging to this
transition are accepted for 'Li.

9. SUMMARY AND CONCLUSIONS

In this work it has been shown that the residual
nucleon-nucleon two-body interaction is important
if IPSM calculations are performed for 'Li. As a
consequence of the residual potential, a nucleon-
nucleon correlation exists in the IPSM wave func-
tion of 'Li. The two aforesaid effects have been.
studied by considering a cia.ss of potentials (55)
and correlation functions of the type (1+Cr»). A

method has been developed employing the varia-
tional principle which corrects the over- or under-

estimatedd

independent-particle harmonic-oscilla-
tor wave function. We have calculated the ground-
state and the first-excited-state energies of 'Li
and obtained the correct difference in the energies
for these two states. In this procedure the corre-
lation functions apparently affect the extracore
nucleons; in fact, they cause the readjustment of

TABLE IV. The observed and calculated values of the level width I'„of the first excited state 3' in 6Li.

Reference Method

Other work

r
(peV)

Value s.p. model
This work

Correl. model

49
50
39
51
52

54
55

56
46

9

6Li(y, d) reaction
'Li(e, e') reaction
I i(e, e') reaction

'Li(y, y ') reaction
'Li(e, e') reaction
4He(d, y) 6Li reaction
6Li(e, e') reaction
Li(e, e') reaction

Intermediate coupling
6Li-0. +d
Projected HF method

with Volkov's inter-
action

Experimental

30+15
410+300

519+ 52
140

431+34
450 + 130
440 + 34
390 + 50

Theoretical

30
1460 + 730

190

yes '
no
no

yes '
no

no

yes '
no

yes '

yes b

yes
yes C

yes C

yes
yes
yes C

yes c

yes '
no

yes c

See Fig. 10. bSee Table I. cSee Fig. 7.
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TABLE V. Some typical values of potential parame-
ters which give A%"= 2.189 MeU +10% and also the
Bg(E2)) values of interest by using the (1 —Cr/ro) type
of correlation function. The values of X are 0.59 and

0.55 for B(E2))=13.0 and 25.0 fm, respectively. There
is no Bo= 32.0 fm for any A, within the range considered.

c(E2t )

(f 4)
Type of

potential
vo

(Me V) C 0~ C 2]

13.0 0.680 88.0 0.54 0.49
0.695 136.0 0.68 0.49
0.700 166.0 0.64 0.50
0.715 ~ ~ ~ ~ ~ ~ ~ t ~

25.0

32.0

0.580
0.600
0.600
0.600

0.560
0,565
0.565
0.565

66.0
102.0
108.0
96.0

62.0
84.0
92.0
78.0

0.57 0.37
0,59 0.40
0.51 0.39
0.49 0.38

0.53 0.35
0.50 0.34
0.47 0.36
0.44 0.34

the inner core particles also. The so-called ef-
fective-Hamiltonian prescription used in these
calculations has retained the simplicity of the sim-
ple harmonic-oscillator-type shell-model calcula-
tions despite the inclusion of the relative coordi-
nates in the total wave function. The phenomeno-
logical Jastrow-type correlation" function makes
the calculations rather tedious.

The correlated wave functions have been used to
calculate the E2 transition. The transition is en-
hanced or cut down according to the under- or
overestimation of the uncorrelated wave function.
This seems to be an advantage of this method over
other procedures such as the one of mixing the
higher configurations or the three-body model.
The E2 transition has been estimated in this work
by other methods, namely the single-particle mod-
el, configuration mixing, and simple harmonic-
oscillator-type IPSM. On comparison with each
other and with other theoretical and experimental
values of the relevant quantities involved in the E2
transition of 'Li, it is evident that the correlated
wave function is the most plausible one. As a by-
product of these calculations, a comparison of the
reduced transition probabilities obtained by the
single-particle method and other work provides a
value for the parameter A0 for 'Li. Table I and
Fig. 6 provide the parameter q for the so-called
effective charge for the P nucleons in 'Li which
would avoid lengthy calculations in the future and
permit evaluation of the transition matrix element
Q by means of the relation Q =2Q0q.

To sum up, this method should be applicable to
other nuclear systems, particularly to those which
have a doubly closed shell and two particles or
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APPENDIX A

Effective-Hamiltonian Formalism

The effective Hamiltonian H has been written for
a two-particle system outside a doubly closed shell
in (14). In this Appendix we shall deduce the re-
sults for a general system of any number of par-
ticles and use their particular form in the main
text. The so-called effective Hamiltonian H for
an n-particle system is given by

C Q2
H =H + (r,P +—Hr;&) + , r;&Hro, —

0 0

where

H =H0+ V,

(Al)

(A2)

H=QH„=Q (-, 2
V', +U),

i=1 f=1
(A3)

V= Q V(~. (A4)

The subscripts of r, &
will be dropped from now on

unless it is necessary to specify them in order to
avoid confusion. It is desirable to evaluate the ma-
trix element of H with uncorrelated harmonic-os-

holes. The residual two-body interaction leads to
some clustering of the valence nucleons. The com-
bined effect of the residual potential and the nucle-
on-nucleon correlation in I i provides (i) the min-
imum energy for each level, (ii) the correct
ground-state and first-excited-state energies,
(iii) a considerable improvement in the Z2 tran-
sition rate in comparison with other models, and

(iv) correlated wave functions which are relative-
ly simple and realistic. Finally it is capable of
expediently yielding interesting results when ap-
plied to other nuclear problems as demonstrated
by the excellent agreement" with the electron scat-
tering data" from 'Li.



2130 M. A. K. LODHI

cillator wave functions such as (20). We have then and

C Q2
(H ) = (H ) + ((r—H +Hr)) +—,(rHr) .

rp rp
(A5)

s' 1 (x,. —x,.)'
8xi rij rij

(A15)

We have

rH+Hr = r(QH o)+(QH o)(r +2r g V(&. (A6)

(A14) a.nd (A15) readily give

V',r = (3/r —r'/r') =2/r.

Hence,

(A16}

The last term in the above expression has been
used for r V+ Vr. However, since V commutes
with r, it may be written as in (A6). Since it fol-
lows that the eigenfunctions of H«are used as the
basis, we may write

or

rVir = 2

(rV', r) =. 2. (A17)

=e„, (i)(r).

Also,

(y...( )y. . .(j)IH.;r I y...(f)e. . .(j))

(A7)

=(&t&,2 (i)&t&, 2 (j) le, ( (f)rl &t&,2 (f)p, 2 '(j})

So that

=e„, (f.)(r). (A8)

(0.2.(f)e. 2 .(j}lrH.;10.2 (f)4. 2 (j))

=(4.2.(f)e. 2 .(j}1«.2.(f) 14.2.(f}e.2 .(j})

Considering the last term in (A13),

r;jVirij V; = 2Virij V;
2 2,V, (r, +r& ——2r;r& cos(d;;) V, .

(A18)

The term containing cose» will vanish on integra-
tion over the angular coordinates of particles i
and j while actually evaluating the matrix element
of this operator. We shall, therefore, drop this
term from now on. It follows then that

(rV 2r ' V;) =(2V(r;y'. V;)

(rH„) =(H„r) = e„, (i)(r) . (A9)

n n

(rH+Hr) =2(r) Q e;+2(r P V;J) .
i&j

We next consider

rHr = r(+HO(+ V)r

(A10)

By means of (A6) and (A9), we get for an n-parti-
cle system

i i i

OO 8
R„,(r;)r, [R„,(r,)]r drnt ! i 8r ni g g

(A19)

= r(gH„)r+r'V (A11)

For a single ith particle and a given function P,
we can write

,H„,,2=,(, ', ,v,),2.
2m

(A12)

From the properties of the Laplacian operator,

52 S'
(rV', r&t2) = — [r V, &12+rpV,'r+2rV, r V;p].

2m ' 2m
(A13)

In the Cartesian expansion, we can write

(rV, r V,.) = --, . (A20}

The diagonal matrix element of (A12) can be im-
mediately written using the results (A13), (A17},
a.nd (A20) as

5 -2

(rH. ;r& = (r'(- V'; + rr,
2

(2+ 2( &]

For a well-behaved wave function such as 8„, as
defined by (17), the first term in the above inte-
gral vanishes on integration and the second term
is reduced to -3 by the normalization condition.
Hence

8 8 8Vr= + +8X2 8 2 882i i

x[(x, —x,)'+(y, —y, )'+(z, -a,)']"'.

Since

8 x -x-i j
8+i ij

(A14)

=(r'Ho;) +5 /2m

=(r')e; +I'/2m .

By means of (A11) and (A21), we get

n n

& ~ & =&"&Z; ", ~;,' Z r„) .
m i(j

Substitution of (A10) and (A22) in (A5) yields

(A21)

(A22)
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(H) = Q f
g
r (Q VH) +—(2(r) P r, ~ 2 (r P VH))

+ 2 r &'+2 + r]; V

C2
= r, r, 2 +2—-(r)+—,(r*))

f=l rp rp

+(V)+2—(rV)+ —, +(r'V)) .c c ne'

rp rp 2m

(A23)

(A24)

Using (10) and (A24), we get

(H) (V,N' (V)r~ 2=—(rV)+ —, +(r'V)),C C nh

0 0

(A25)

where Wp is the total energy of the system belong-
ing to the Hamiltonian II0. Finally, the total ener-
gy of the system belonging to the complete Hamil-
tonian H with a correlated wave function like (7)
is given by

W = (H)/N

2 ~@'2
= r, + (V) + 2 —(r V) ~ —. + (V' V))rp rp 2m

(A26)

APPENDIX 8

Infinite Integrals

In this Appendix we shall discuss the integrals
that arise while evaluating the various matrix ele-
ments of the operators N, H, and Q. These terms
involve harmonic-oscillator wave functions for
two p particles, an operator of the form r, ' I(vi),

and an expansion of r;~ or r&&'. Using the standard
method of Racah algebra, the angular part can be
evaluated. Whenever the Talmi method" is appli-
cable, the radial part is also readily obtained.
However, some integrals are of the type

-n (rl + r2 ) r I lr ~2
2 2

2 f 1 ~2 2

J
e ""~r,~dr, I e "' r,'dr, .

0 0
(B2)

If q is odd, the finite integral can be evaluated
easily in closed form. If q is even, the finite inte-
gral when evaluated by parts results in an error
function of the argument o.r, . As a result the in-
finite integral is reduced to the form

2 2

J
e "2 r,~ erf(o.r,),

0
(B3)

0+ 2

1 2y 1 r 0 1 1 2&

(Bl)
which lead to the integrals of the type

where"

erf(o.r, ) = ' e "dr
dp

2)2(~r )2H+ 2

e
v w 1.3 (2n+ 1)

n=p

(B4)

When (B4) is substituted in (B3) and integrated, it
yields a series of the type

n=p

(B5)

where l is a given integer. The infinite series
(B5) can easily be summed in a closed form for
finite l.

APPENDIX C

Correlation Coefficient

The correlation function introduced into the wave
function (7) has the form

f(r) = (1 + Cr/r, ) (Cl)

and leads to the two values of C (from the varia-
tional principle) as given by (29). It turned out
that in our calculations for the minimum energy
state that C, was selected with the form of the cor-
relation function (Cl). However, if the form of the
correlation function were chosen as

g(r) = (1 —Cr/r, ), (C2)

the other value of C, i.e. , C belonging to (Cl)
would be identical to -C, belonging to (C2). This
can be shown as follows.

Using the correlation functions (Cl) or (C2), we
have the total energy given by (25)

a, +a,C+a,C2

W =e, +2E+ 1+a4C+a, C' (C3)

where the plus or minus signs correspond to the
correlation functions (Cl) or (C2), respectively.
Using the variational principle, the value of C is
obtained as given by (29) if the plus sign is used
in (C3). When the minus sign is maintained in
(C3) and the same procedure is followed, the two
values of C are found to be

(a, —a,a, ) + [(a, —a,a„)' —(a,a4 —a,a,)(a, —a2a, )]' '
a,a4- a,a,

(C4)

The prime is used on C in (C4) to distinguish it
from C which belongs to (Cl). Comparing (29) and
(C4), one readily finds

c', =-c
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C' =-C, . (c5)
This is what one mould naively expect. The tmo
values of C or C' correspond to the tmo situations

whether the correlation term (Cr/r, )g, is added to
or subtracted from the uncorrelated basis wave
function go. This fact lea.ds to an interesting phys-
ical situation discussed in the text of this artic1e.
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