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The meaning of a particular form of cluster wave functions, which have been used in a pre-
vious paper to describe the ground-state rotational band of Ne, is discussed.

I. INTRODUCTION

Several forms of cluster wave functions ha.ve
been proposed. ' In a recent paper' we proposed a
form of cluster wave functions which seems to be
particularly suited for the nuclei "F and "Ne.
With our cluster wave functions the excitation en-
ergies of the ground-state rotational band of "Ne
were calculated, and reasonable agreement with
the experimental values was obtained. However,
what the wave functions actually represent is not
evident. It is the purpose of this paper to discuss
the meaning of these wave functions.

II. CLUSTER WAVE FUNCTIONS

For "Ne, cluster wave functions of the following
form were used:

Since the space part of 4 „is taken to be totally
symmetric, ' the total wave function 4 is a product
of a space function and a spin-isospin function:

C„=g X(S=O, T=O), (3)

=PC; g;, (4)

where C; are the expansion coefficients. Suppose
all terms in (4) with i )n' contain single-particle
orbital states occupied by the core nucleons. Then
the space part g' of 0"„is the sum

where g„denotes the space function, and X(S=O,
T = 0) denotes a totally antisymmetric spin-isospin
function with spin S=O and isospin T =0. g„can be
expanded in terms of products of single-particle
orbital wave functions:

4(JM) = Ng[C ("0)4' (JM) j = N'a[4("0)4"„(JM)j . n'

(5)

Here the function 4 „(JM) describes an o. cluster
with total angular momentum J and Z component
M moving in a potential well generated by an inert
"0 core. The function 4"„(JM) is obtained from
4„(JM) by deleting terms containing single-particle
states occupied by the core nucleons and normaliz-
ing. The function 4'("0) describes the inert "0
core. a is an antisymmetrizer. N and N' are
normalization constants. It is well known that
continual existence of subunits in a nucleus is not
allowed by the Pauli principle. In our model of
"Ne the probability of finding an a cluster (in its
internal ground state) outside the inert "0 core is
given by

(2)

where ff= (g;, IC, I') '" is a normalization con-
stant. Note that 4' = $'„g(S=O, T =0). Thus we
obtain

n'

(6)

The value of P was calculated' to be 3.8% for all
states of the ground-state rotational band of ' Ne.

III. DISCUSSION

The smallness of the value of P casts doubt on
the usefulness of the cluster wave functions (l).
In Appendix A we shall show that, for the low-lying
states of 20Ne, the wave functions (l) represent
states of two protons and two neutrons in the s-d
shell with the largest probability of occurrence of
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an o cluster (in its internal ground state). As the
breakup energy of an e cluster in "Ne is high,
the states (1) may be realized there with a small
amount of admixtures; these states should be en-
ergetically favored.

The result in Sec. II suggests that in general the
probability of occurrence of an e cluster in the nu-
clear surface is small.

In e-decay theory it is a valid assumption'' that
e-decay probability per unit time can be expressed
as a product of two factors: (1) the probability of
occurrence of an e cluster in the nuclear surface,
and (2) the probability per unit time that the a clus-
ter already formed will penetrate the Coulomb bar-
rier. Our calculation of P~ for "Ne suggests that
the first factor is much less than 1.

A complete basis for the states of "Ne can be
defined in the way shown in Appendix B. Thus,
using the notation of Appendix B (with A = 20 and
A' = 16) we can expand 4 (JM) as

4(JM)= P C„„„~C(p, ve(J, ); JM).
p V K J2

The coefficients C„,,J play the role of coefficients!!IU K J2
of fractional parentage in our coupling scheme.
Suppose the basis is defined so that C(p, ,v, v (J);JM)
=4("O)4'„(JM). Then the coefficient C„„„,~ is
given by

J [4 ("O)4 (JM)]*4(JM)

4 "0 4 JM * N'g 4 "P C~ JM

the same number of oscillator quanta. We now
show that, among all states of two protons and
two neutrons in the s-d shell and with total angular
momentum J and M, 4'„'(JM) has the largest proba-
bility of occurrence of an a cluster (in its internal
ground state). We assume, without loss of gener-
ality, that the space part of 4 has [4] symmetry;
for the space part of 4 has [4] symmetry, and
wave functions (in the L Sco-upling scheme) of
different orbital symmetries are orthogonal. Thus
4 is a product of a, space function Q and y(S= 0,
T=0). The probability of finding the nucleons in
an a-particle-like configuration in the state 4 is
given by

= f(g&;0;) 0 = j(~t'."0
t= ].

—4'*4 =I' I 4'*4 & p0! fy. j cx

(Al}

The last step follows because
~
f4"*4~ & 1, where

the equality holds only if 4 =4' with a possible
difference in phase.

APPENDIX 8

The shell-model Hamiltonian for A. nucleons in
an oscillator potential is

= N' O'* JM O'„JM,

A

II = P (P,
' /2m+ ,'m(u'r, ')-, . (Bl)

where N' = (16!4!/20!)'"is the normalization con-
stant in (1). Thus it follows that

P =(20!/16!4f)( C„„,, ~i'.

This result is expected because ~C„...„,~ ~' gives
the probability of finding an o cluster (in its in-
ternal ground state) formed from the last four
(17th to 20th) nucleons outside an "0 core, while
P gives the probability of finding an a cluster
(in its internal ground state) formed from any four
nucleons outside an "0 core.

APPENDIX A

Let 4"„(JM) be a wave function for two protons
and two neutrons in the s-d shell, and 4 (JM) be
any normalized wave function for two protons and

two neutrons in the same oscillator shell and with
the same total angular momentum J and Z compo-
nent M. Note that 4'~(JM), 4'„(JM) [from which

4"„(JM) is obtained], and 4(JM) are states ha, ving

where p; and r; are the momentum and coordinate
of the ith nucleon, m is the nucleon mass, and e
is the classical oscillator frequency.

If we introduce the center-of-mass and relative
coordinates for the subsystem consisting of the
(A'+1)th, the (A'+2)th, . . . , and the last nucleon,
the Hamiltonian takes the form

H =Hg+HTg+Hggg

with

II, = P (p, '/2m + ,' m cu' ')—r,

(B2)II„=P'/2(A -A')m+ -,
'

(A -A')muPR',

where 8 and P are the coordinate and conjugate
momentum of the center of mass of the subsystem,
and H»& is the Hamiltonian for the internal motion
of the subsystem.

For the internal states of the two nucleon groups
we can define complete sets of orthonormal wave
functions in the L-S coupling. ' The translational
states of the second nucleon group [consisting of



DISCUSSION OF A PARTICULAR FORM. . . 2115

the (A'+ 1)th, . . . , and the last nucleon] a,re la-
beled by three quantum numbers: a radial quan-
tum number and the quantum numbers for the or-
bital angular momentum of the center of mass and
its ~ component. Let the internal states of the two
nucleon groups be described by wave functions de-
noted by 4'~„'(1, . . . , A') and 4'P(A'+ 1, . . . , A), re-
spectively, and the translational state of the cen-
ter of mass of the second nucleon group be de-
scribed by a wave function denoted by 4,'~(A'+ 1, . . . ,
A). p, , v, and v denote (collectively) the respec-
tive quantum numbers. As 4,' is a function of the
center-of-mass coordinate of the second nucleon
group, it is symmetric in the last (A -A') nucle-
ons. To obtain complete wave functions of the A.

nucleons, 4,' and 4,' are first coupled to a state
C (vv; J,M, ) with a resultant angular momentum J,
and z component M, . 4 (va; J,M, ) describes the
motion of the second nucleon group in the oscilla-
tor potential. Next 4„' and 4 (vK; J,M, ) are cou-
pled to a total angular momentum J and z compo-
nent M, resulting in a function 4 (g v~(J, ); JM)
which is antisymmetric in the first A' nucleons
and in the last (A -A') nucleons. Then by antisym-
metrization of C(p. vz(J, );JM) a complete wave func-
tion is obtained for the system of A nucleons. The
functions 4(p, vw(J, );JM) constitute a complete ba-
sis for the (antisymmetrized) wave functions of
the A nucleons.
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