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The polarization of the neutrons from the 4C(P, n} reaction leading to the first three levels
of N has been measured at six bombarding energies between 7.2 and 13.3 MeV. The polari-
zation and angular distribution of the neutrons leading to the two 1+ states have been analyzed
with a microscopic distorted-wave Born-approximation formalism that has been extended to
include spin-orbit optical distortions and a tensor component in the effective two-body force;
the analog-state transition has been analyzed with the Lane model. The angular distribution
and polarization shapes for the analog transition are not well reproduced by the Lane model,
primarily because of lack of precise optical parameters as a function of bombarding energy.
However, the integrated cross sections between 8.8 and 18.3 MeV are reasonably well ac-
counted for with a constant real and imaginary isospin strength of 88 and 40 MeV, respective-
ly. The corresponding real microscopic charge-exchange strength is V&=9 MeV for a Yuka-
wa form factor of range 1.4 fm. The calculated 1+ angular-distribution shapes are in fair
agreement with measurements and are consistent with a constant central spin-spin and ten-
sor strength between 10.4- and 18.3-MeV bombarding energy: p« ——7+ 1 MeV and V z ——4.7
+ 0.7 MeV, although there is some indication that the tensor strength is decreasing with in-
creasing energy. Contrary to the angular-distribution measurements, the 1+ polarization
measurements do not clearly favor a tensor component in the effective two-body force; nei-
ther the pure central nor the central-plus-tensor polarization calculation fits the data partic-
ularly well. This disagreement is probably due to optical-parameter uncertainities and con-
tributions from second-order processes, and possibly to the neglect of tensor exchange and
small adxnixtures of intermediate-structure resonance processes.

INTRODUCTION

In recent papers" the distorted-wave Born ap-
proximation (DWBA) with a microscopic model has
been used for analysis of the (P, n) reaction data.
from this laboratory. It has been shown' that for
analog transitions with even targets the micro-
scopic model gives nearly the same result as the
Lane model, ' and the charge-exchange force
V,t ~ & shows consistency from one nucleus to an-
other. For analog transitions in odd nuclei and for
nonanalog transitions, the charge-exchange spin-
flip interaction will play a role. The presence of
spin-dependent forces was first noted4 in the ex-
perimental observation of the "80(P,n)' F(g.s.)
(0+- 1') transition, which can proceed only by spin
flip. Application of the microscopic model with
purely central forces to many analog (p, n) transi-
ti.ons and a number of nonanalog transitions (mostly
in light nuclei and which are expected to proceed
primarily through L = 0 orbital angular momentum
transfer) has yielded values of V, =24 MeV and
V, =16 MeV for a Yukawa two-body interaction of
range 1.0 fm." For L = 2 transitions the required

strengths are somewhat larger, V, =44 MeV. It
has been shown' that the inclusion of knockout ex-
change reduces this discrepancy considerably:
The V, for I.= 0 is reduced slightly to 18 MeV,
while the V, for L = 2 is reduced to -23 MeV. The
magnitudes and phases of direct and exchange am-
plitudes, particularly in the P shell, are fairly
close to being the same, so a purely direct calcu-
lation with an L-dependent interaction strength ap-
pears adequate to "mock up" the exchange effects.

A particularly interesting application of the
charge-exchange formalism is to the mass-14 sys-
tem. The ' C Gamow-Teller P decay, although su-
perallowed by selection rules, is retarded experi-
mentally by a factor of about 5000 when compared
with calculations employing simple wave functions
such as (P», )'. It was shown by Visscher and Fer-
rell' that this inhibition could be explained by the
presence of a tensor two-nucleon interaction with-
in the context of a purely P-shell nuclear structure
model. No central force mixture is capable of giv-
ing the required cancellation in the P-decay ma-
trix element. "Rose, Hausser, and Warburton'
have recently made a study of the effect of 2s, 1d
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configuration admixtures and have concluded that
a tensor interaction is still required to give the ab-
normally small P-decay rate.

The L = 0 contribution to the charge-exchange
amplitude is very nearly proportional to the al-
lowed P-decay matrix element. ' Thus one would
expect the '4C(P, n) ground-state reaction to pro-
ceed primarily through transf er of L = 2, which is
normally weaker than the L = 0 contribution but by
no means negligible, as it is in P decay. It has
been found, however, that the L = 2 contribution to
the (P, n) reaction to the ground state of '4N is too
weak and in addition has an angular distribution
which does not agree with the data. ' Similar diffi-
culties have been noted' in the analogous transi-
tions "C('He, t)'~N(g. s.), "N(P,P') 2.31 MeV,
' N('He, 'He') 2.31 MeV, and "N('He, f)"O(g.s.).
It was concluded' that additional spin-dependent
mechanisms such as a tensor force and/or ex-
change were needed to fit the "C(P,n) ground-
state transition. The fact that the angular distribu-
tion is not changed substantially by inclusion of ex-
change '" leads one to conclude that the tensor
force is crucial in explaining the '4C(P, n) ground-
state transition. Preliminary tensor calculations, "
with tensor-to-central strength ratios not too dif-
ferent from the one-pion exchange potential, seem
promising: The calculated ground state and upper
1+ integrated cross sections agree fairly well with
measurements. However, the ground-state angu-
lar distribution, although considerably improved,
still does not fit particularly well.

Because polarization is expected to be sensitive
to the character of spin-dependent forces, we have
undertaken an experimental study of the polariza-
tion of the neutron groups to the first three states
of '~N in the '4C(P, n) rea, ction. Microscopic DWBA
calculations, including spin-orbit optical distor-
tions and central and tensor charge-exchange
forces, are presented and compared with the ex-
perimental differential cross sections' and polari-
zations for the ground and 3.95-MeV 1' excited
state transitions. In addition, the analog-state po-
larizations and angular distributions' are com-
pared with the predictions of the Lane Model. '

EXPERIMENTAL METHOD

The experimental method for measuring neutron
polarization has been described in detail in a pre-
vious publication. " Briefly, the method consists
of precessing the neutron magnetic moment plus
and minus 90 with a suitably designed solenoid to
obtain the equivalent "left" and "right" scattering
measurements. The 90' precession results from
the fact that the reaction and scattering planes are
at right angles to each other (see Fig. 1 of Ref.

13). The analyzer was liquid helium, and the an-
gle of scattering from the helium was 60'. The re-
action angle was varied remotely from 0 to 90' by
mounting the solenoid and associated shielding on
a rotating platform fabricated from a 70-mm gun
mount. Figure 2 of Ref. 13 shows the solenoid and
associated shielding to reduce the neutron and y-
ray background. The neutron detector was a 5~ 5-
cm stilbene scintillator located 30 cm from the he-
lium scatterer. Time-of-flight and proton-elec-
tron pulse shape discrimination were employed to
reduce the y background. To further reduce the
background and in addition enhance the separation
between electrons and protons, recoil protons
were accepted only if they fell within prescribed
pulse-height limits. This pulse-height "window, "
which is a function of bombarding energy, Q of the
reaction and energy degradation of the neutrons
upon being scattered from helium, was optimized
for each bombarding energy and was the same for
all neutron groups and "ll reaction angles.

A. Targets

For the lower-energy measurements, E~ = 7.2,
8.8, and 10.4 MeV, the gas target is as described
in Ref. 13, i.e., 2.5~ 2.5-cm gas cell lined with
Ta. The entrance window was 0.0013-cm Ta and
was supported by a gold grid whose transmission
was approximately 909o. The cell was filled with
' CO, gas to a pressure of 1.5 atm; the isotopic
purity of the '~C was 91%.

Above 10.4 MeV, the background neutrons from
the Ta entrance window and stopper were appreci-
able. To extend the measurements beyond 10.4
MeV, a new 2.5 && 2.5-cm target with nickel en-
trance and exit windows was fabricated. The beam
stopper was also nickel and was located some 30
cm from the gas cell. With this design and shield-
ing arrangement (see Fig. 1) neutrons from the
stopper were effectively shielded from the detec-
tor since these neutrons no longer can travel down

the center of the solenoid. In addition, because of
the higher Q values for the ~8'eoNi(P, no) reactions,
neutrons from the bombardment of the nickel win-
dows do not interfere with the "C(p,n) neutrons.
[The "Ni and 6ONi(P, n, ) Q values are —9.4 and
—7.1 MeV, respectively, while the '«C(p, n, ) Q val-
ue to the 3.95-MeV level in "N is —4.6 MeV. ]
With this new target (two atm pressure and 9-mg/
cm unsupported Ni windows) measurements were
made at E~ = 10.4, 11.7, 12.6, and 13.3 MeV.

B. Measurements

At each reaction angle, four measurements were
made to obtain the polarization. The order was:
background and helium scattering measurements
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Beam Q--

Top

FIG. 1. Schematic draw-
ing of the target assembly
used at the higher bombard-
ing energies to reduce back-
ground.

A - Nickel Beam Stopper
B- Evacuated Cell
C — Nickel Windows
D- Gas Cell

for positive 90' precession, and then helium and

background measurements for negative 90' preces-
sion. The two helium scattering measurements
are adjacent to each other in order to minimize the
effects of any possible time drift in the electronics
and associated equipment. The background mea-
surements were obtained with an empty helium cry-
ostat. The reaction angle was varied as follows:
0, even angles increasing to 80', 90', odd angles
decreasing to 10', and another O'. The zero de-
gree measurements always gave a null result with-
in statistics showing the absence of instrumental
asymmetries. The data from the odd and even an-
gles were consistent with each other showing ade-
quate stability of the electronics and reproducibil-
ity of the data.

The solenoid current was adjusted for 90' pre-
cession for the analog-state neutron group. Hence
the ground-state neutrons are precessed less than
90' while the neutrons leading to the upper 1' state
in ' N at 3.95 MeV are precessed more than 90'.
Since the asymmetry parameter R is a slowly vary-

ing function of solenoid current (i.e. , R- sin2wI/Io,
where Io is the current for 90' precession and

I =- Io), the correction in the asymmetry parame-
ter for the ground-state group and upper 1' group
wa. s in general less than 3'%%uo and hence was neglect-
ed.

Figure 2 shows typical results for E~ = 10.4 MeV
and 0, = 20 . The dots represent the time-of-flight
spectrum of the neutrons scattered from He while
the crosses represent the corresponding back-
ground from an empty cryostat. Figure 2(a) cor-
responds to a "left" scattering measurement (+90
precession) while 2(b) corresponds to a "right"
scattering (-90' precession). " The three peaks
correspond to neutron groups leading to the ground
and first two levels of '~N. Qccasionally, the time-
independent backgrounds for the signal and empty
cryostat runs were different due to differing bom-
bardment times. In these cases, a correction was
applied to the net helium signal to compensate for
the differing time-independent background levels.
The asymmetry R for 90' precession is defined as:

N(+ 2w) -N(- —,'w)-
where N(+~v) are the net helium scattered counts
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FIG. 2. Typical time-of-
flight polarization data ob-
tained from the ~4C(p, n)
reaction at 0~ =20 and Ep
=10.4 MeV. The crosses
represent background tak-
en with an empty helium
cryostat. The three neu-
trons groupsno, n&, and
n 2 are clearly visible.
(a) corresponds to a "left"
scattering measurement
while (b) corresponds to
a "right" scattering mea-
surement.
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for +-,'m precession, respectively. "P„,is the polar-
ization of the neutrons scattered from the helium
and P is the polarization of the neutrons from the

(p, n) reaction.

EXPERIMENTAL RESULTS

The neutron polarizations were computed using
the above equation and are shown in Fig. 3. The
values of P have been corrected for multiple scat-
tering; these corrections varied between 8 and
12%. For a discussion of the P„, values used and
the multiple scattering calculations see Ref. 13.
The error on P was computed from the statistical
counting error on the product P„,P, since the sta-
tistical counting errors are much larger than the
uncertainties in the values of PH, . The proton
beam energy spread due to energy loss in the gas
targets varied between +0.18 MeV at E~ = 7.2 MeV
and +0.14 MeV at E~=13.3 MeV.

Figure 3 shows that the ground-state neutron po-
larizations vary slowly with energy; with the ex-
ception of the 13.3-MeV data, the polarizations are
negative at the forward angles (8 ~ 60'). The upper
1' state neutron polarizations exhibit a similar be-
havior if one were to exclude the data at 10.4 MeV.

The 10.4-MeV data. exhibit an anomalous behavior
in that the polarizations are positive out to 0 = 60 .
The analog-state neutron polarizations show little
energy dependence up to 10.4 MeV; the polariza-
tions are negative at the forward angles and posi-
tive beyond 60'. Between 10.4 and 13.3 MeV, the
energy dependence is more rapid. At 12.6 MeV,
the analog-state neutron polarizations exhibit an
additional positive peak in the region of 8 = 40',
which can be seen slowly evolving in the 11.7-MeV
data. At 13.3, the positive peak at 0 = 40' is still
evident but smaller. However, the polarization at
8= 10' is now positive, which is quite unexpected.

THEORY

In this section we present a formulation" of the
nonexchange scattering of a composite projectile
of internal wave function P~~&P by a nucleus with

internal wave function Q~!g~ through both central
and tensor two-nucleon forces. The internal wave
function of the projectile is assumed to be purely
8-state and we consider only elastic or quasielas-
tic processes for the projectile. The internal
spatial wave function of the projectile is factored
from the spin-isospin part of the wave function
and folded into the two-nucleon interaction, re-
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suiting in an interaction of the same character but
with a different radial shape. This has been car-
ried out" for a central force but may also be done
for a tensor force with similar results. We as-
sume that the spatial part of the interaction is the
result of such a procedure. The resulting effec-
tive interaction is with the center of mass of the
projectile; however, the spin-isospin operators
act on individual nucleons in the projectile and
those in the target.

The notation is nearly the same as in Ref. 17.
Projectile coordinates and quantum numbers are

where

denoted by primes. Conserved quantum numbers
are denoted by i and f and those which are to be
summed over by 1 and 2 in the initial and final
states, respectively. The circumflex is used for
unit vectors (r ="r/r), and for the abbreviation J
= (2S+ 1)"'.

The detai1ed calculation of the scattering ampli-
tude including a tensor interaction is presented in
the Appendix. The result is

A, „~=QC(J,J~I;M,. —. M~ —N)(-1)~

x (t (M,'M&IN), .

8 (M,'M~IN) =
L1L2ilf J1J2I'L

(4m) i ~ ~(-1)"" Y (0)Y (k )C(L J'J OM'M')
1 2

--- ~J J'LJ JI'~
x C(L,z'z„M, Mf', M+M,')( 1)'~ '~'C(-ZZ, I-;M', MM,',N-)-' '&. -&' L, I&L.IIY, IIL.)

X (RJ L R Ger'L R' Sz L
R' R' dR', (2)

In a problem where the spin-dependent distort-
ing potentials can be neglected the dependence of
the radial wave functions on J, and J, will disap-
pear. The resulting cross section is incoherent
in I, I', and L:

do 2m '~k 1
dO 2wk k, (2J, + 1)(2J'+ 1)

~ 2 l&x,
' 'IG„.(R') Y:(R')Ix',"&I', (4)

where the y are purely spatial distorted wave func-
tions.

The polarization can be calculated" from the
amplitude Eq. (1). Assuming that the initial beam
and target are unpolarized, the polarization is

lm [8(M,'Mf'IN) 8"(M(M~+ 1, IN)]
&J'i ) IN(E

JI &' Z ld(M'M'»)I'
INN 'Nf'

This is the only nonzero component of the polari-
A

zation if the y axis is chosen along k,. xk&.
It i.s worthwhile to point out some features of the

scattering amplitude with the inclusion of a tensor

where the (RJL are distorted radial wave functions
and G» ~(R') is the radial form factor Eq. (A28).
From Eq. (1) we obtain a differential cross sec-
tion which is coherent in I' and L but incoherent
in IN:

do 2m '~k 1
en 4~k' k, (2m+1)(2Z +1)

interaction. First, it is seen that the tensor force
is purely spin flip, I = 1. For the spin-flip ampli-
tudes and for a given total angular momentum
transfer I and isospin transfer 7 the contribution
from a given A. of the central and tensor terms
are proportional except for differences in the rad-
ial function; that is, all the j,j, dependent factors
are the same. The effect of the particular con-
figuration mixture on a transition rate will be ex-
pected to be nearly the same for both central and
tensor terms of a given value of the nuclear or-
bital transfer A.. However, the projectile orbital
transfer L need not be equal to A. as for a purely
central force but may be seen to have other pos-
sibilities. The restrictions satisfied by the vari-
ous transfer quantum numbers are:

I z,. —~, I
- I -

I z, +z,I.
I 7; -T~ I

& r ~
I T, +T~I.

i. I -I-Ii, +~-, f

I f, -I. I
- & -

I f, + f. I

II-I' I--I.-II+I' f

I
I If-~-I I+-I

f

L = A. (central force)

I, = A, A + 2 (tensor force)

0~&II~& 1

Q&y &1

(-1)"=(-1)'= (-1)"
It is possible to show that for the tensor force
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radial form factor [Eq. (A6)], the central and ten-
sor terms in the amplitude for which ~ = L are
constructively coherent, assuming that the signs
of central and tensor strengths are the same. The
sign of the A. L terms relative to the & = L terms is
is not definite but depends on the single-particIe
transition. It is destructive for j,= E, + &-j,

l ~ 1 ~ 1l2~2 and constructive for jl= ll~-, -j = l2~2
One must also include the short-range subtractive
term in the tensor force, Eq. (7). However, be-
cause of the absorptive optical potential the long-
range term will tend to dominate, particularly in
the ('He, f ) reaction.

As an example of the extra freedom permitted
by the tensor force, consider a transition with a

model wave function consisting purely. of P3/2-
shell configurations. For a 0+-3' transition the
relation L = I —I' and the parity rule would permit
L = 2, 4. For a central force only L = A. = 2 is pos-
sible, but for a tensor force L may be both 2 and
4. Another example in which the tensor force
plays an important role, is the ease of '4C(p, n)-
' N(1'p. s.). The transition is purely I ' = v= 1, and
I is restricted to a single value 1. The possible
orbital transfers are A. = 0, 2; L = 0, 2. With only a
central force, the L = A. = 0 term in the amplitude
is nearly proportional to the P-decay matrix ele-
ment, and is therefore very small. This transition
is then dominated by the L = A, = 2 term. When a
tensor force is also included we have the possibil-
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=2
't f having both L = 0, A. = 2 and L ==2 A. = 2 the
L = 2, A. = 0 being very small. The L = 0,
dominates for the forces used in calculations pre-
sented in the analysis section.

ANALYSIS

A. Method of Calculation

The analysis for the analog state has been done
using the Lane Model' with optical parameters
taken from the work of Watson, Singh, and Sege ."
Calculations were carried out with ethe LOKI" cou-
pled-channel code using a macroscopic form fac-
tor which includes a complex isospin term. " The

uld be ob-results are very nearly the same as wou e o—

tained with DWBA, the multiorder feature of cou-
pled-channel calculations not being important for
the analog transition.

For the transitions to the two 1' states a micro-
scopic coupled-channel code has been used. How-
ever, it has been made equivalent to DWBA by
scaling down the interaction strengths. Channel-
coupling effects will be considered separately in a
later publication.

In all cases the tensor force used in the calcula-
t' had the one-pion range, n = 0.714 fm ', and a
"regularizing" term with inverse range P = m
which was subtracted to remove the x ' singularity
in the radial form factor. The resulting form fac-
tor,

j„(inr,)i,"(inR') —(P'/n') j„(iPr,)I &'&(iPR')

OC

3 3 ~ ~ I (1) ~ gp+j~(inR')0('(inr, ) —(p'/n') jJ (inR')h'q'(inr, ) R & r, ,

is continuous wz'th a finite discontinuity in the first
derivative a = x, wat R' = x whereas either term by itself
ls
of the one-pion potential is not correct, because of
the x ' singularity, unless this subtractive term

is included.

B. Analog Transition

Since optical parameters as a function of bom-
barding energy are not available for protons on
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are the Lane Model predictions.
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cross section because of the inhibition of the X=O
nuclear amplitude, which is also responsible for
the near vanishing of the P-decay matrix element.
Thus, the normally dominant A. =O, L =0 central
force contribution is expected to be nearly zero.
For the transition to the 3.95-MeV state the situ-
ation is just reversed: the A, =O amplitude is
large while the A. = 2 amplitude is small. The cen-
tral L =0, X = 0 part of the amplitude should be
dominant.

As expected the cross sections for the 3.95-MeV
state (Fig. 7) are not much changed by the inclu-
sion of the tensor force. Its effect for the L=O
term is to decrease the cross section slightly
without affecting the angular distribution but to in-
crease greatly the L=2 contribution. The change

in the L =0 term comes from the A. = 2 nuclear
multipole, while the change in the L =2 part of the
cross section comes primarily from the A. = 0 mul-
tipole, which is strong.

The experimental and calculated cross sections
for the 1+ ground-state transition are shown in
Fig. 8. The large effect of the tensor component
in the two-body interaction improves greatly the
fit to the magnitude and angular distribution for
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the transition to this state.
Polarization of the neutrons was measured at

six energies between 7.2 and 13.3 MeV. The data
at 10.4, 12.0, and 13.3 MeV are shown along with
the calculations in Figs. 9 and 10. In general, the
calculated curves change little in character from
energy to energy whereas the data change fairly
rapidly.

between measurements and calculations is good at
8.8 and 10.4 MeV and poor at the other energies.
The disagreement at 7.2 MeV is not unexpected
since the Watson parameters are only valid above
=10 MeV (while the neutron energy is =4 MeV)

1and since the integrated cross sections show evi-
dence for sizeable resonance contribution at this

DISCUSSION

A. Analog Transition

From Figs. 4-6 it is seen that the agreement
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energy. It is interesting to note that at 8.8 and
10.4 MeV, where the angular distributions are
reasonably well described, the calculated polari-
zations agree fairly well with the measurements.
Conversely, at 12.6 MeV at the forward angles,
where the angular distributions are in poor agree-
ment, the calculated polarizations have the wrong
character. It would thus appear that if the optical
parameters and isospin form factors were suffi-
ciently accurate to predict the angular distribu-
tions then the calculated polarizations would also
agree with the measurements.

Although the calculated angular distribution
shapes above 10.4 MeV are in poor agreement,
the integrated cross sections are reasonably well
accounted for between 8.8 and 18.3 MeV using con-
stant real and imaginary isospin strengths of 88
and 40 MeV, respectively. Since the isospin
strength is expected to be constant and since the
square of the strength deduced from the analysis
is approximately proportional to the product of
the depths of the imaginary proton and neutron
optical potentials, this would imply that the ener-
gy dependence of the imaginary potentials deduced
by Watson et al. is reasonably correct.

The poor shape agreement above 10.4 MeV is
due to lack of knowledge of the optical parameters
as a function of bombarding energy and/or con-
tributions from nondirect processes. The prelim-
inary evidence would seem to indicate the poor
agreement is due primarily to lack of knowledge
of the optical parameters and isospin form fac-
tors because, first and foremost, the agreement
is poorer at the higher bombarding energies where
nondirect processes presumably should be less
important. Secondly, the energy dependence of
the polarizations and angular distributions is suf-
ficiently slowly varying to be describable with an
optical model with smoothly varying energy-depen-
ent parameters: Measurements and calculations,
likewise, can change significantly for bombarding
energy changes of 1-2 MeV as evidenced by the
calculations at 13.3 and 15 MeV and the measure-
ments at 10.4 and 11.7 MeV. Thirdly, the predic-
tions are quite sensitive to optical parameters
and isospin form factors. For example the dashed
curves at 13.3 MeV were calculated for a surface
real isospin form factor and optical parameters
deduced from neutrons on nitrogen. 2' Fourthly,
the magnitude of the integrated cross sections be-
tween 8.8 and 18.3 MeV can be accounted for with
a direct reaction model, i.e., Lane model with a
constant isospin strength. Indeed, the calculated
cross section is a factor of 2 lower than the mea-
surements at 7.2 MeV, which is suggestive that
compound processes are important only at this
energy. In addition intermediate-structure reso-

nance contributions, "if present above 8.8 MeV,
cannot be large since the isospin strength is rough-
ly constant as a function of bombarding energy.
Lastly, the agreement at 10.4 MeV is probably
not fortuitous and shows that the Lane model can
simultaneously predict the correct (P, n) angular
distributions and polarizations. In order to pro-
duce better agreement between measurements
and calculations, elastic scattering data and polar-
ization measurements are needed for "C plus
proton to determine the optical parameters as a
function of bombarding energy.

B. 1' Transitions

Since the optical parameters are not sufficiently
accurate to predict the shape of the analog-state
angular distributions and polarizations as a func-
tion of bombarding energy, a relevant question is
its effect on the 1+ angular distributions and polar-
izations. Since the DWBA and Lane Model calcu-
lations for the analog state are equivalent and
since the single-particle transition amplitudes are
independent of j, and j, for the P shell, it is con-
cluded that the calculated shapes for the upper 1
angular distribution and polarizations should also
be in error by the same amount. This follows
directly from the fact that the upper 1+ transition
proceeds mainly via the central spin-spin interac-
tion which, like the charge-exchange interaction,
assumes a Yukawan form factor. The ground-
state transition which proceeds via the tensor
force, should also be affected but a priori it is
not known whether it is more or less sensitive to
optical parameters. However, since the square
of the interaction strengths is proportional to the
product of the depths of the imaginary proton and
neutron potentials, it is felt that the strengths of
Vr and V„are meaningfully determined, since the
same imaginary strengths predict the correct an-
alog-state cross sections.

The calculations for the 1+ transitions were
carried out above 10.4 MeV because nondirect
processes should be less important at the higher
bombarding energies. The inconsistency between
the calculated cross sections to the two 1' states
and experiment can be removed by the introduc-
tion of a tensor force. That the magnitude of both
cross sections can be fit is not surprising since
the upper-state transition proceeds almost entire-
ly through the central force and the ground-state
transition through the tensor force. The tensor
strength is therefore obtained from fitting the
ground-state cross section. (Thus it is not sig-
nificant that the central and tensor strengths used
in the calculations for the upper and lower 1+

states are not always the same. ) However, the
central strength so determined (V~ =7+ I MeV) is
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consistent with the V,~ obtained from other tran-
sitions, ' so it is not really a free parameter. For
the ground-state transition the tensor force not
only raises the magnitude but also changes the
angular distribution from one of clearly the wrong
character to one which is a fair fit of the data. It
would thus appear that the ground-state transition
is less sensitive to optical parameters and the
neglect of tensor exchange. The data at 18.3 MeV
are beginning to resemble the angular distribution
for ' N(P» ~v, P', » M,v), which is essentially the
inverse reaction. The interaction strength is Vr
=3.9 MeV, V~=6.1 MeV, which is close to the
values V~ = 3.9 MeV and V~ = 6.3 MeV determined
from the "N(P, P') experiment. " However, the
latter strength was calculated with a regularizing
term P =2 instead of P =4 (as was the present
case); from calculations, the resulting strength
is weaker by about a factor of 1.6. Thus the
strength of the tensor force from the (P, P') ex-
periment is about 2.44 MeV using our potential
form factor with P =4.

As expected from optical-parameter uncertain-
ties, the transition to the 3.95-MeV state shows
an angular distribution which at the lower ener-
gies is not reproduced well by the central force
calculations, and the inclusion of the tensor force
does not significantly change the calculated angu-
lar distributions. It is interesting to note that the
pure tensor calculation does have the dip at for-
ward angles seen in the measurements; but the
magnitude of the tensor contribution is small
compared to the central and makes no significant
difference in the angular distribution at forward
angles. Inclusion of central exchange" also does
not reproduce this dip at the forward angles. It
can be obtained using an extremely short-range
force —about 3 fm, but this would be unrealistic.
The fit to the measurements at 18 MeV is good,

except that the dip at 3' is not reproduced.
In Fig. 7, the measured cross sections to the

upper 1+ state at the forward angles show consid-
erable Quctuation between 11.7 and 12.47 MeV.
At 3' there is roughly a factor of 2 change in
cross section for 800-keV change in bombarding
energy. Similar Quctuations are seen in the an-
alog-state transition but at 50' rather than 3'.
Fluctuations due to compound or intermediate
processes typically affect angular distributions
much more strongly than total cross sections. A
resonance in a particular partial wave, for exam-
ple, interferes with the direct contribution of only
that partial wave in the total cross section but in-
terferes with the entire direct amplitude in the
angular distribution. Thus it is reasonable that
our empirical strengths Vr and V,~ are nearly con-
stant in an energy range where the angular dis-
tributions fluctuate somewhat.

Table I summarizes the tensor strengths used
for fitting the '~C(p, n) reaction at various ener-
gies and the analogous '«N(P, P') 2.31-MeV reac-
tion." Also shown are strengths found in other
ways. Visscher and Ferrell7 used the one-pion
force in the shell-model study of the mass-14 sys-
tem to explain the "C long-lived P decay. In or-
der to compare this strength with others shown,
the r~ weighted volume integrals of the radial
form factor have been calculated. The tensor
force always selects relative orbital angular mo-
menta differing vectorially by at least two units,
so the ~' weighting is reasonable, and it gives a
finite result for the one-pion force. Also shown
is a tensor force strength of the regularized type"
with P = 4, determined by Schmittroth" from a
central-plus-tensor parametrization of Cohen and
Kurath's P-shell nuclear matrix elements" involv-
ing only 0+, T =1 and 1+, T =0 states. As these
are the kinds of states involved in Visscher and

Table I. Tensor strengths.

Determination
Begularizing term Strength

(MeV)

r2 integral
(MeV fm4)

10.4 MeV C(P, n)
12.7 MeV '4C(P, n)
13.3 MeV ~'C(P, n)
18.3 Mev '4C(P, n)
25 MeV ~4N(P, P')
Vis scher-Ferrell

(one pion)
Schmittroth ~

Love et al. "

4

4

2
none

1.92

5.4
5.1
5.1
3.9
3.9

3.7
5.1
2.08

1800
1730
1730
1305

760

2380
1730
404

Determined (Ref. 12) from Cohen-Kurath's p-shell matrix elements involving only 1+T = 0 and 0+ T = 1 states.
"Determined (Ref. 27) by matching even parts of the Hamada-Johnston potential cutoff below the separation dis-

tance to a regularized one-pion form.
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Ferrell's work, the strengths should be consis-
tent. Comparison of the y' weighted integrals
shows that the one-pion force is a little stronger.
These two force strengths are also reasonably
close to those obtained from the '~C(P, n) reaction.
This agreement is comforting, but should prob-
ably not be taken very seriously. It was also
shown'~ that when all the P-shell matrix elements
were used a weaker tensor strength was obtained.
The same parametrization" in the sd shelP'
yields a tensor force of the opposite sign. Thus
while the tensor force is clearly needed in nu-
clear-structure calculations it is not consistently
determined by empirical matrix elements. On

the other hand, the even central strengths are
consistently determined from the central-plus-
tensor parametrization. '2

Also shown is a tensor force strength recently
determined from the even parts of the Hamada-
Johnston potential by Love, Parish, and Richter"
by matching low Fourier components of the G ma-
trix to a regularized form. This force is consid-
erably weaker than the others shown in Table I.
The central charge and spin exchange strength,
determined in a similar way by Love et al. , is
also weaker than that determined empirically
from (P, n) reactions and that determined by Pet
rovich et al.2' to give equivalent scattering to the
Kallio-Kolltveit G matrix. In addition, Love et al.
showed that the tensor force cross sections were
reduced rather than enhanced by the inclusion of
exchange. On the basis of their results, the
strengths in Table 1 would have to be increased by
about 40% to get agreement with the data if ex-
change were included.

The inclusion of the tensor force does not pro-
duce any improvement in the polarization calcula-
tions. For cases where there is a large difference
between central and central-plus-tensor calcula-
tions, the latter is usually worse. This is true of
the g.s. transition at 10.4 MeV and the 3.95-MeV
transition at 13.3 MeV. The calculations in any
case, but particularly with a tensor force, pro-
duce too little polarization compared to the mea-
surements. Polarization is much more sensitive
to optical-parameter uncertainties and small ad-
mixture of nondirect processes than the differen-
tial cross section. It is therefore not surprising
that the quality of the fits to the measured polari-
zation is poorer and that the calculated energy de-
pendence is less rapid. In light nuclei even for
elastic scattering at the higher energies, where
nondirect processes are expected to be negligible,
it is difficult to obtain simultaneous fits to differ-
ential cross sections and polarizations. " It is
possible that the inclusion of tensor exchange
amplitudes" could have a significant effect on the

polarization. No such work has been reported,
but central force calculations have shown signifi-
cant differences when exchange is included. " It
is very doubtful, however, that the character of
the polarization would be affected enough to pro-
duce agreement with experiment from the ex-
change amplitude alone. Preliminary results with

coupling of the analog and the two 1 states in ' N

to the ground state of ' C show that the coupling
can have a significant effect on the polarization
without greatly changing the differential cross
section. It is clear from the calculated polariza-
tions that they are strongly affected by the pres-
ence of a tensor two-body force, but it seems
that a much more sophisticated calculation will be
needed to be able to fit charge exchange polariza-
tion data.

CONCLUSIONS

Although at some of the energies the agreement
of experimental and calculated angular distribu-
tions is poor, the effective-interaction parame-
ters determined are fairly consistent. The angu-
lar distributions for the ground-state transition
clearly require a tensor interaction. Between
10.4 and 18.3 MeV the V, and V~ strengths are
constant: V, =9 MeV while V„=7+1MeV for a
Yukawa two-body interaction of range 1.4 fm.
These strengths are consistent with those deter-
mined from a model-independent analysis of the
ratio of (P, n) cross sections for the lithium iso-
topes, ' where it was concluded that V,~/V~ =0.66
+ 0.08 and is independent of bombarding energy
from 10-20 MeV. The tensor strength V~ decreas-
es monotonically from 5.4 MeV at 10.4 MeV to 3.9
MeV at 18.3 MeV. Considering the uncertainties
in the determination of V~, the present results
are consistent with a constant tensor strength
(Vr ——4.7a 0.7 MeV). The poor shape agreement on
some of the angular distributions may be due to
lack of precise optical parameters as a function
of bombarding energy and to the neglect of other
possible reaction mechanism, e.g. , the two-body
spin-orbit force. The effects of intermediate-
structure resonances on the extracted strengths
of V„V„, and V~ cannot be large, since these
strengths are roughly constant between 10.4- and
18.3-MeV bombarding energy.

In contrast to the angular distribution measure-
ments, the polarization measurements for the 1+

transitions do not clearly favor a tensor compo-
nent in the effective two-body force. That the pure
central calculation is preferred at some energies
is probably not significant since the central cal-
culation, in itself, does not fit particularly well.
This lack of agreement is understandable since
polarization is much more sensitive than the an-



POLARIZATION AND ANGULAR DISTRIBUTION ~ . . 1917

gular distributions to optical parameter uncer-
tainties and small admixtures of nondirect pro-
cesses. To determine the sensitivity of the 1'
polarization measurement to the tensor force re-
quires more precise optical parameters and, in
addition, may require a more sophisticated cal-
culation, including channel coupling, tensor ex-
change, and possibly intermediate structure.
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APPENDIX

Scattering Amplitude Including a Tensor Force

In the presence of spin-orbit distorting potentials the projectile wave function will have the form
I

4wi ' Y~' (k)C(L,J'J, ; N~M'M, )[YI. (R')y~'r ]~'$~,~,(R'),
L 1Nl~I+1

(A1)

where R' is the center of mass of the projectile. We have the task of calculating the DWBA amplitude

(A2)

in which V consists of both central and tensor terms, which we now consider in detail.
The tensor force between particle 1 in the target and particle I' in the projectile is

V,(r)=S„V„(r)(V„+V„~, T;),
where S» is the tensor operator

1 )( 1 ), , (24 /5)1/2+S8Y84( )
8

with

Ss -=( , oo] ~,

and V»(r) is a radial form factor, which for the one-pion force is a spherical Hankel function

v„= v, h~&(inr).

(A3)

(A4)

(As)

(As)

Since the quantity Y~8*(r)v»(r) is a second-rank tensor in the r space its expansion in R' and ~, will have
the general form

(24m/5)'"V»(r)Y28(r) = P vt ~(R', x,)C(LA2; NilP)F„„(~,)YI,„(R').
LNXp

For the one-pion interaction the radial function is'~' '"
(AV)

v~y(R', r,)=(-1) "i x~~6(47r)'"(A((Y, ((L).
j~(iaR ')h, (iver, ) 0 &R ' &r, .

The central exchange interaction we write as

Vo(r) =f(r)(V«+ V»o, ~ o, + V0,7, T, + V»o, ~ ~ o,7, 7,) .

We first expand the spatial function

f(&)= Z (R' & )Y"(R')Y "(& )(-1)",

(As)

(A9)

(A10)

where, for a Yukawa interaction e "/nr

v~ = 4' ~(iur&)her, '(-in~)) .
In general, any over-all-scalar, charge-independent interaction can be written in the form'4

V(1', 1)= Q T~,
" (1')T ( )(1-1)"'~fr, ,

INTP

(A11)

(A12)

where Tz",~ is a rank Itensor in ordin-ary space and a rank-~ tensor in charge space, and f„ is a scalar
function of the coordinates. For the central and tensor forces it will be adequate to take
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(A14b)

(A15b)

2t~ &= I
5„o5po v= 0,

a&here ~a" and tt' are the spherical components of the nuclear spin and isospin operators, respectively.
We cRII obtRIII tile fol'nl (A12) fol' t11e central RIld tellsol' fol'ces by using tile expR11810118 iII splleI'Ical llRI'-

monies [Eqs. (AV) and (A10)], recoupling the spin operator and spherical harmonic of each coordinate
together first, and then coupling the resulting operators:

V, = P (-1)"'&(-1)' ' '[r, (ft')S, .(1 )],"r;&(1')V, .,v, (Z', ~,)[l;(~,)S,.(1)]vf.;~(1), (A15a)
IXI'Iv p

1' = Z (-1) "[1' (&') (1')] "f '(1')Z5l' (-1)"'ll'(L»1'21) (ft' )[& ( ) (1)]"f'(1)
INv'pI

The two may be combined in a single form like Eq. (A12) but with a little more detail:

P'= Z D-1)""~I(~I)(1')f .'(1')~I(~I) f'l(1) (-1)' ' '&II ~~.(ft' &I) (A16)
II'L X -Ep

Z„.„„=5„V,., v, (ft ', I.,)+5(-1)'V„5,.,W(r.zl 1; 2}fv, „( ft', I,) (A16)

We now write the potential in a second-quantized form:

(A19)

With the help of Eq. (A16) we may calculate the two-particle matrix element as

(j,m,a„.'v p, [V ~
-j,m, ()I;, .'v, p,) =—p (-1)"'('" I 'C(fr'f;-iVf -W X)r,"(ft)-

IXI,Af X.I' g'v'p

Z ZC( ''7 P P+--p)—( 1)'"' "C(-2-'r (x —(x —p)(-1)'"'
&» e28 g82

x
jj$2t81 fft2V 3 P2

ll
T

C(j,jp;m, —m, —N)'I IC(—,'-,'I'; v, —v, —N)

(A20)

C,',l;„I= "IftI„,(I"I)ZII ~~. (ft ' ~,)(f4.I.(~,)~,'«,
The spin or isospin reduced matrix element is

&lllII Ill&

II
and the reduced matrix element of Tl~~~. ~

is"

(A22)

& i, tf&I(.I)llj*&=~&JJ,lf' j. l 4 l«. ll&. lff,&.
I f' ~f

(A23)

Taking advantage of the Clebsch-Gordan coefficients in Eq. (A20), we may rewrite the interaction Eq.(A19)
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where the tensors A», (j,j,) and C,.„., are the single-particle transition operators defined in Ref. 17.
The over-all scalar form of the assumed interaction is evident from the form Eq. (A24).

With the help of Eq. (A24) it is easy to make a formal calculation of the scattering amplitude. The
operator A», operates only on the target nuclear states, and the operator [Y~(R')C, , ~]z operates only
on the coupled wave function of the internal projectile coordinates and the orbital coordinates of Eq. (Al).

The target-nuclear part of Eq. (A2) is

(yz~~A~„, (j,j,)~yz.'& =C( J; J&I M;-Mz —N)(-1) &"'C(T,Tf7';P, —P& —p)( 1) -S(JJ'f I; T;Ty &;I j2) ~ (A25)

The spectroscopic amplitude is as defined in Ref. 17. The projectile part of the matrix element has a
matrix element"

I I

( [y's. (R ')Wz'r ') z' I [y s (R '}Cr '. 7 —p ] r
"

I [ 1i, ,( R')tz 'r '] z',&

=c(JJ,I;M, -M,N)( 1)'~ "~-c(T-'T'~;P,' -P; p).( 1)'-~-s'(J'I', T'T)J,J,I'I J, J' L, l &L. Ill'illL, &,II'L)
(A26)

~here S'(J'I', T'T) is the projectile spectroscopic amplitude. " putting together the results of Eqs.
(A24), (A25}, and (A26) we have an expression for the scattering amplitude, Eq. (A2).

C(J OI;M M 'N)(--1)' —"~(-1)""~ (4v)'i ~ 2r"*, (i.)
L )Ny J' yNy

L2N2 J'242
INI'L

A A AJJ I'
xY'~2(k~)C(L,J'J, ;NM', M, )C(L2J'J2;N, Mf'M2)C(J, J2I;M, MN)(-1)-'

I I

where

/J, J
xl J, J L„

1
«2lly', IIL,& ~z,i, (R'')Gir c(R'')Nv, ,(R''}R"dR'',(I'I L'i

(A27)

Gzz z(R') = PC(T'T'r;P, ' —P&p)(-1) fS(J'I', T'7') P (23~2)(j2~(Tz&qz l ~( j )
rp

x C (T;T&r; P; —P& —p)(-1) ' S(J;J&I; T; T&'7';j,j2)G ",~z z (R ') .
We finally simplify slightly by taking k, = 0, so N, = 0 and replacing N, by M. We have then

A„.s. ~qs = QC(J;JfI;M; -Mf —N)(-1) ' 'C(M,'M~IN),
IN

where

n(MM, 'IN)= p (4v)'F~ '2( 1)""' 'P-, ,(O)Y',",($,)c(L,J'J OM'M, ')
L qL2@JjJ'2I'L

A A AJJI'
xc(L2J'J2;M, My, M+M~)(-1} ' ~C(J,J,I;M,'. , -M-My, N} I

jJ', J' L~}
xl J. J' L, ~(L.Ill; IIL,&)t@r,i,(R')Grs i(R')@;i,(R')R"dR'
iI I' L1

The differential cross section is coherent in I' and L but incoherent in IN:

(A28)

(A29)

(Aso)

(Asl)

(A32)

In a problem where the spin-dependent distorting potentials can be neglected the dependence of the radial

da 2m '~k 1
dQ 2v1P k (2J;+ l)(2J'+ 1),„~s

The triangle inequalities satisfied by the various transfer quantum numbers are r (Ij,j,), b, (IJ, Jf),
n. (IJ,J,), b, (Xl,l,), b, (&I''), r (LL,L,), r (LII'), A(I' —,'-,'), h(7.,' ,'}, n.(v T,T&). A—-n additional restriction comes
from the parity rule
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wave functions on j, and j, will disappear. In that case we can carry out the j,j, sum in Eq. (A27); how-

ever, it is easier to go back to the interaction Eq. (A24) and evaluate the amplitude for a, spin-independent
distorted wave. The resulting cross section is incoherent in I, I, and L:

dg 2m ~k I ( ) g + I (+)
(2j ~ l)(2j + I) 2 l(&~ IGtt'r, (&')&~(&') I& ) I

where the y are purely spatial distorted wave functions. This form is probably adequate for ('He, I),
since spin-orbit forces contribute relatively little to the optical potential.

(A33)

*Work performed under the auspices of the U. S Atom-
ic Energy Agency.
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Reserve University, Cleveland, Ohio 44106.
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