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We investigate the contribution of three-body forces to the binding energy of nuclear mat-
ter, including the effects of two- and three-body correlations induced by the two-nucleon
forces, and find that it may by approximated using plane-wave three-nucleon states cut off
when any interparticle distance is less than about 0.9 fm. Existing calculations can then be
used to estimate that three-body forces contribute about 1 MeV to the binding energy.

1. INTRODUCTION

In the past few years there has been a revival of
interest in theoretical estimates of three-nucleon
forces and their contribution to the binding energy
of nuclear matter E,. As early as 1957, the rela-
tionship of the pion-exchange three-body potential
8', which is illustrated in Fig. 1, to the virtual nN

scattering amplitude was discussed by Miyazawa
et al. ' Brown, Green, and Gerace suggested on

the basis of Alder's partially conserved axial-vec-
tor current self-consistency condition on this am-
plitude, which demands that it vanish when the
pion four-momentum is zero, that the contribution
of W to E, would be small. This conclusion was
immediately questioned by us' on the grounds that
the soft-pion limit was only applicable to the con-
tribution to E, which was of first order in 8' and
zeroth order in V, the two-body potential. Higher-
order terms in general introduce hard spacelike
pions, requiring extrapolation of the mN amplitude
to this region. Brown and Green4 then extended
their calculation to include first- and second-or-
der terms in 8', employing the device of regard-
ing the first-order term in W as a renormaliza-
tion of the pion mass. Nogami and his co-workers
at McMaster University have also been working on

this problem, ' and in a recent paper' have clari-
fied the nature of the effective-mass method and

have suggested some improvements to the Brown-
Green calculation. In these calculations the ef-
fects of correlations introduced by the two-body
force V were often ignored. In some calculations
a cutoff was arbitrarily introduced in the wave
function at small values of one or more of the in-
terparticle distances in the hope of simulating
their effect.

In this paper we show how to include these cor-

W

(a) (b) {c}
FIG. 1. Feynman diagrams for the pion-exchange

three-body potential S'. Solid lines represent nucleons;
dotted lines, pions; and the blob, the virtual xN scatter-
ing amplitude with the iterated one-pion-exchange poten-
tial removed.

relations in a consistent way. Our formal result,
derived in Sec. 2, is that the binding energy E~
contributed by a three-body potential W may be
written as

E~ = g ((+»,! II'!Q»,)+exchange terms),
123

where the prime on the summation indicates that
it is over all different triples of occupied states,
4' is a three-body wave function generated by the
two-body force, and 0 is a three-body wave func-
tion generated by the two- and three-body forces.
It should be emphasized that Eq. (I) represents
the sum of all diagrams involving two- and three-
body forces, some of which are shown in Fig. 2.
The properties of the wave function 4 may be ex-
tracted from the literature and are reviewed ig
Sec. 3. Its most important property for our pur-
poses is that the strong short-range part of the
two-nucleon interaction requires that it be "small"
in an average sense when any interparticle separa-
tion is less than about 0.9 fm, and very close to a
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plane wave when all interparticle distances exceed
0.9 fm. This suggests using a cut-off plane wave
as an approximation to %.

After reviewing the properties of W in Sec. 4,
in Secs. 5 and 6 we discuss the first- and second-
order terms in the expansion of E~ in powers of
W. We show that they can be estimated using this
cut-off-plane-wave approximation to 4 in the ini--
tial and final states, and using plane waves to ap-
proximate 4 in the intermediate states.

This immediately lets us conclude that higher-
order terms in Wwill contribute negligibly, since
onIy the weak Iong-range part survives the cutoff.
(The reason we have to go to second order is that
W has a tensor component. ) Similarly, three-body
potentials from exchange of other particles will
give negligible contributions having shorter range.
For example, the ng force of Fig. 3 will be signif-
icant only for r»s 1/m„= 0.4 fm, which is well
within the cutoff. This result was, of course, an-
ticipated on physical grounds —the hard cores keep
nuclei far enough apart so that a short-range three-
body force will not have a significant effect.

As only the short-range correlations in E3 have
been taken into account in our cutoff approxima-
tion, it is necessary to take the Iong-range two-
body interaction v, explicitly into account. This
leads us to consider diagrams involving one three-
body interaction W, and one long-range two-body
interaction e, with any number of short-range two-
body interactions. Such diagrams are discussed
in Sec. 6 in a way which precisely parallels the
account of the term of second order in W.

If we adopt the cutoff approximation, we can use
an existing calculation of Loiseau, Nogami, and
Ross (LNR)' to estimate that E,= —1 MeV (i.e. ,
1-MeV attraction). Our result complements the
vast literature on the contribution of two-body
forces to the binding energy of nuclear matter, '
and with it gives a coherent account of the two-
and three-body effects. In Sec. 6 we discuss the

FIG. 3. The Vrg three-body force.

present status of the binding-energy calculations.

2. BETHE-FADDEEV EQUATIONS

WITH THREE-BODY FORCES

T —T(',9 + T(2) + T(3) (2)

where T'" is the sum of the subset of diagrams in
which the last interaction is between particles 2

and 3, and obtained the coupled equations

T'"=g„-g„—(T"'+ T'"), etc.Q

in which g is the two-body reaction matrix ob-
tained from the Bethe-Goldstone equation, e is an
energy denominator, and Q is the Pauli projection
operator.

In the presence of a three-body force 8'we have
to include diagrams of the type shown in Fig. 2.
Let us call the sum of all three-body diagrams 7;
and call 7~ the sum of all diagrams with at least
one three-body interaction, i.e.,

Bethe, following the method used by Faddeev in
his classic work on the three-body problem, "ana-
lyzed the sum T of all three-body diagrams in nu-
clear matter of the type shown in Fig. 4." He
wrote

7 7 gf + T 0 (4)

W W

We can analyse 7 and 7~ in much the same way as
in Eq. (2), but we have an additional class of dia-
grams in which the last interaction is W. Figure
2(c) is an example. Calling 7"' the sum of such
diagrams, we have

7 =7 +7 ~+7 +7. @.

Following Bethe's analysis we have the equations

(a} (h} (c} (d}

FIG. 2. Some typical Bethe-Goldstone-Rajaraman
diagrams contributing to the three-body energy.

r(1) —
g g (r(0) + r(2& ~ r(3)),

23 23 e
Q
e
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5(b) and 5(d)] or by two-body interactions only
[Figs. 5(c) and 5(e)], and be preceded by no inter-
actions [Figs. 5(b) and 5(c)] or by interactions
[Figs. 5(d) and 5(e)]. Putting all these together
we obtain the various terms in Eq. (9).

To obtain the contribution E~ of 8' to the binding
energy, we must take the matrix element of 7~ be-
tween plane-wave states ~1, 2, 3)= ~4) and

~
I', 2', 3')

= ~4 '), where to allow for exchange the states 1',
2', 3' are a permutation of the states 1, 2, 3, and
then sum over all occupied triples and all permu-
tations, with appropriate phases to take account
of Fermi statistics. Thus, denoting this summa-
tion by g,

FIG. 4. A diagram contributing to the three-body T
matrix in nuclear matter. This diagram contributes to
T(3).

Equations for ~~(" may be obtained by subtracting
Eq. (3) from Eq. (6). They are,

g 2 7 &&&) g 9 (~(2) + v($))
O' 23 ~ 23 ~

5' 8'

To simplify Eq. (10) we define three-body wave
functions 4' and 0 by

and

The similarity between these equations and the
Bethe-Faddeev Eq. (3) suggests the ansatz

0= 1-—7 4. (12}

&(5 — T (xj T(o)

which is readily verified to be a solution to Eq.
(7). In this way we obtain

y=7+ 1 —p—g 1-—7

g&9 —@ (T (2) + Zr(8))&1)
8 (13)

4 is the correlated three-body wave function intro-
duced by Moskowskl. In terms of the part1al-
defect wave functions Z'", Z"', Z(3' introduced in
the solution of the Bethe-Faddeev equation, ' and
defined by

which could be used as the basis of an iterative
solution. Equation (9) has a simple interpretation
in terms of diagrams, as shown in Fig. 5. The
sum of all three-body diagrams with interactions
is the sum of diagrams without three-body inter-
actions, Fig. 5(a), and those with such interac-
tions. Select the last such interaction in the dia-
gram. It can be followed by no interactions [Figs.

0 is the obvious generalization of 4 to include the
three-body interaction. %e have now derived Eq.
(1),

123

expressing the energy shift due to 8" in the famil-
1ar form

energy shift = (unperturbed wave function~perturbation~perturbed wave function) .

Hexe 4' is called the unperturbed wave function because it does not contain the effects of the three-body
potential 8'. However, it does contain all the effects of the short-range two-body potential and could equal-
ly well be referred to as the correlated wave function. In the rest of this paper we will select one or the
other name according to which property of 4 we wish to emphasize.

Calculation of E3 thus involves three ingredients, namely
(i) the unperturbed correlated wave function 4',
(ii) the three-body potential 8', and
(iii) the perturbed wave function Q,
which we now discuss in turn.
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3. CORRELATED THREE-BODY WAVE FUNCTION

There is by now an extensive literature on three-body correlations in nuclear matter. This has largely
been concerned with calculating the three-body correlation energy, and it has therefore been found con-
venient to develop the properties of the defect wave functions Z'" rather than the correlated wave function

However, it is a trivial matter to obtain 0 from the discussion in the literature.
Day'8 has constructed an approximate analytic solution to the Bethe-Faddeev Eq. (3), for the case of a

central spin-independent potential. Dahlbolm" has given a solution which also includes the effects of two-
body tensor forces. For simplicity we use Day's solution, constructed for the spin-independent standard
hard-core potential of Moskowski and Scott,"with a core radius c. Expressed in terms of 4, this solu-
tion is

(»+ '728+'781)+ 12(&18+&28) +'728(&21+ &81) +'781(&82+ &12) (&»&is+ &12&28+ &is&82)

1
(qssf »~18 712' 18~28 )18~12~$2) ~12~28~811)t128 8/2

1
()03/2 ~123~123 &

(16)

D
—g)( (1 —7») (1 —

728) (1 781) ~ (i7)

Both (j)D and )j)„vanish exactly when any r(& is less
than the core radius c, and both become unity
when all ~,J exceed the healing distance 2.2c.
From the graphs of Fig. 6, and from the approx-
imation of Eq. (17), we also see that when one or
more of the x,&

takes on an intermediate value, g

where )),, (8',1) is the on-shell defect wave function
for the two-nucleon system, P,, (r, &) is the corre-
sponding off-shell wave function, g~3 is the spin-
isospin wave function, and t) is the normalization
volume. In deriving Eq. (16) the approximation of
neglecting the momentum of the hole states is
made, so that the space part of the uncorrelated
wave function, expi(k„x, +ks x, +k, xs), is re-
placed by unity.

Figure 6 shows the form of the space wave func-
tion ()»8 and the corresponding density ~(j)»J' for
various configurations. It was calculated using
quadratic approximations to the defect wave func-
tions with healing at 2.2c for g and 1.9c for f.
Since these are not very different, it aids visual-
ization of the results to consider the further ap-
proximation )7= 0, when Day's ansatz for (j) reduc-
es to that proposed by Moszkowski, "

is in general small.
Thus we can approximate P by assigning the

plane-wave value to it when all r, , exceed a cut-
off which we somewhat arbitrarily set at 0.9 fm,
and setting ()) =0 otherwise. Since it will be seen
that ~(j)~2 always appears in the expressions we
write down for E3, the cutoff approximation
should be quite good. We shall see that E, esti-
mated in the cutoff approximation will turn out to
be small. Only those interested in a precise val-
ue of this small energy need evaluate the inte-
grals in Eqs. (27) and (32) with the full expres-
sion (16) for 4. It should be noted that the fact
that 4' vanishes identically when r, , &c removes
the difficulties associated with contact interac-
tions discussed by Bhaduri, Loiseau, and Nogami.

Our discussion of 4' has concentrated on the cor-
relations induced by the short-range part of the
potential. As shown by one of us, "the long-range
part may be taken into account perturbatively.

4. PION-EXCHANGE THREE-BODY POTENTIAL

The three-body potential we will use consists of
the three terms of Fig. 1. It obviously suffices to
consider just one term, say W'2 of Figs. 1(b) and
7. This potential has the isospin structure

T(D[6 f (+) + e T(2)f(-)
j T($)

2 i jk j (is)

( & j = ( T )+ W +
W

+ +

(a) (b) (c) (e)

FIG. 5. Diagrammatic interpretation of Eg. {9).

where f'" and f' ' are related to the parts of the
mN scattering amplitude which are symmetric and
antisymmetric in isospin. Since the Day wave
function 4 has the same isospin structure as the
uncorrelated wave function 4, the arguments used
previously 'will apply. We find that only the iso-
spin-symmetric part f'" contributes in first or-
der, and it also dominates in second order.

This part of the potential has been examined in
detail by Brown and Green4 and Nogami and his
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FIG. 6. The spatial part of three-body wave function in Day's approximation. The solid line represents g and the
dashed line (g( . (a) ri2 ——r2&=r&& r; (b) r——i2 r23 ——1——.5c, r&& r; (c) ri2 r23 2——2c,——rz——.

& r, (d)——ri2 ——
r2& r, r3j ——2c.

colleagues. ~' It depends on how one chooses to
extrapolate the nN amplitude and the vertex func-
tion and propagator corrections, off the pion en-
ergy shell k =q = p, . We do not add to this dis-
cussion of how to extrapolate, but simply use the
method adopted by Brown and Green and Bhaduri,
Nogami, and Ross, which seems to us the best
available. Our method is readily adapted to any
other choice.

Bhaduri et al. write the isosymmetric wN ampli-
tude with qp kp —0 as

3'

1 2 3
FIG. 7. The pion-exchange three-body potential S'2.

T'"= 2iii5(0)[2(A+B)q k+2D].

This amplitude contains only p and s waves, and
is indeed dominated by the p-wave terms. As is
well known, s-wave nN scattering is small, so
we henceforth neglect D, the s-wave part of the
amplitude. From this one derives the three-body
potential

g, =-f.',- . ,-.-.;H(') 2(A, B)g.k- (~') .- .-

(20)

or in coordinate space

2

W, (r~arza) =, ."a a r~ rao'~ V~H(V )2~(A B+)2 12 2S 4~j2~2 1 S 1 12

a &(ria+rss)x V ~ Vases VasH(Vas) e
&12+&2S

(2l)

Here ii is the pion mass, f„ is the pseudovector
mN coupling constant (f„'/4m =0.08), and H(k')
takes into account the momentum dependence in-
troduced by the extrapolation technique. For the
purposes of illustration in the following we set
H(k') = l, to keep the algebra simple. The numer-
ical results we quote use the extrapolation method
of Brown and Green.
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Notice that, while we have neglected the spin-
isospin dependence of the correlations in the wave
function, we have included the full spin-isospin
structure of the three-body potential.

5. TERM OF FIRST ORDER IN W

To first order in W, we simply replace 0 by 4,
and we have

(22)

each 8', contributing equally. Since our correlat-
ed three-body wave function has the same spin-
isospin structure as the uncorrelated wave func-
tion, the analysis of Refs. 4 to 7 can be applied to
show that
(i) the direct term (4», ~ W, ~4»,& vanishes,
(ii) the only single-exchange term which is non-
zero is (4», ~ W, ~4»,&, and
(iii) while double-exchange terms like(4», ~W, ~+»g
are nonzero, they are much smaller than the sin-
gle-exchange term. We therefore wish to evaluate

Eg = -3 Q'(4 „,i W, i4 „,&.
123

(23)

dr, dr~ tdrs=v8w r» dr» r» dr»
0 0

T12 "23
X F31dy31

ITZ2- T23l

(26)

Furthermore, the space parts of 4'»3 and 4321 are
identical, so we have

Using the fact that we are neglecting the momenta
of the unoccupied states, and that 4'»3 is there-
fore independent of these momenta, we can sum
over k„k„k„obtaining a factor ~(N/4)', and we
have

E'"=-—— 3 4„, W, 4„, .
spin

lsospin

The explicit forms of 4 and 8', discussed above,
show that the space dependence of each is entire-
ly in the interparticle distances r~, r», and r31,
so we can immediately do the angle integration
using

(n 3 N ~'U8w t' 12+y'23

E~ = ———,r» dr» r» dr» r» dr»l(»(r», r», r») I' Xj &X»&I W, (r», r», r») I y»&&.6 4
~"12 "23~ spin

iso spin (26)

Notice that this gives E~n/N~ p' where p is the density, which is what one would expect for the density
dependence of a three-body energy. The explicit form of g is given in Eq. (16), and that of W~ in Eq.
(21). We can now do the spin-isospin sum explicitly, and setting H= 1 for simplicity, we obtain

E'~ 3 p' (2A+2B) $00 oo g+ P 2
N 6 4' (4x)'/L' " &« ~„,~

"' p p. p 3
f„&24 X8v dx dy dzxyz t/r»~

—
~
—

~
— —[3(x +y —z )2T(x)T(y)+Y(x)Y(y)j,

(27)

where

&= 9&12) g = PJ'23 8 =
/U, l"13

2A+2B = 1/p. ~,

T(x)= k(i )x

1+—+—

Y(x)= k( i)x=e "jx. (28)

This is the expression for the first-order con-
tribution of the three-body force 8' to the binding
energy of nuclear matter, taking correlations in-
duced by the two-body force correctly into account.
Our discussion of the properties of t/r in Sec. 3 sug-
gests that a reliable estimate of the integral in
Eq. (27) may be made by replacing ~g~' by unity
when all r„.exceed 0.9 fm, and by zero otherwise.
Calculations using this cutoff wave function,
which they introduced in the hope of simulating

the effect of correlations, have been made by Bha-
duri, Nogami, and Ross, 'in the case when P=1.
They find that EP~/N is 0.81 MeV for a cutoff at
1 fm. Calculations with the exact wave function
(16) are unlikely to yield a significantly different
result.

The extension to the more realistic case involv-
ing form factors P(k2) and P(q2) simply introduces
algebraic complications. The calculation, with
a cutoff wave function, has been performed by
LNR.

This method of evaluating E'~ differs from the
effective-mass method of Brown and Green, 4 who
first sum over the nucleon which scatters the pion
to obtain an effective two-body interaction between
the other two. This effective potential, added to
the usual one-pion-exchange potential (OPEP),
gives an OPEP type of potential with a renormal-
ized pion mass. In the presence of correlation it
is no longer possible to sum over the "middle" nu-



E FFECT OF CORRELATIONS ON THE. . . 1883

&e,.l v„,le„)= -g&e, , l w, fe„,&. (29)

cleon independently, so that the effective-mass
technique breaks down. However, it is, of course,
possible to perform the triple sum in Eq. (23) by
summing over "middle" nucleon first. As pointed
out by LNR, ' this procedure defines an effective
two-particle potential by

W

g
WWWlh

g

W

g

g

W W

This effective potential is simply a trivial defini-
tion if we are only interested in the first-order
terxn, but for the second-order term it is an es-
sential step in obtaining a tractable calculation. (a) (b) (c)

6. TERM OF SECOND ORDER IN W

From Eqs. (9) and (12) we can expand the wave
function 0 in powers of W,

Q=C ——1-T—$%+ ~ ~ ~
Q Q
e e (30)

and thus find that the second-order contribution
of W to the energy is

z'" =-E (4",„tT —
(1 —T ) tT 4„,). —

123

(31)

This includes the effect of correlations in the ini-
tial, final, and intermediate states. Introducing
a complete set of uncorrelated states 4 &&, we
can write E&~2 as

Zg'= —E E(4,'„W—4„~y)(4 S~ltTlT„,).

The correlated wave functions 4 8& which appear
in the expansion have arbitrary momenta, and do
not necessarily have the properties of the wave
function for particles inside the Fermi sea dis-
cussed in Sec. 3. Ne could, of course, adapt
Day's method to the high-momentum states.

However, when cut off by the correlations in
4»„W is a purely long-range force which will
not give rise to large momentum transfers. " The
tensor nature of W which excites relative s states
to relative d states increases the momentum
transfer somewhat. But even then Brown and
Green show that the momentum transfer induced
by 1V is typically of the order of q'=7p', or lgl
= 1.3k„. Their calculation was for W cut off only
in one radial variable. A triple cutoff is likely to
make the momentum transfers even smaller.

Thus, only states 4~&& just outside the Fermi
sea will be excited by W to any significant extent,
and for these states the correlated wave function
4 ~& will not differ greatly from the Day solution.
If we now go to the cutoff approximation for 4'nays
Eq. (32) simplifies greatly because the cutoff is

FIG. 8. Some diagrams of second order in W.

imposed by the correlated final state 4»„and we
can therefore set 4 z z

= 4
& &

in the intermediate
state and use closure.

Thus we have

123

(33)

In other words, we can neglect the correlations in
the intermediate states, and take them into account
in the initial and final states in a cutoff approxima-
tion.

The physical basis of this simplification from
Eqs. (31) to (32) is clear. The hard cores act
to keep the three nuclei apart, and at these dis-
tances W is a rather weak force so it does not al-
ter the configuration very much. At these large
separations the strong short-range nucleon-nucle-
on interaction has little effect, and cannot build
additional correlations into the intermediate state.
Diagrammatically, this says that in a typical dia-
gram of second order in W, such as that of Fig.
8(a), the nucleons are sufficiently far apart at the
level A so that the two-body interactions at this
level are weak. Thus the only significant dia-
grams are those like Fig. 8(b) with no interactions
at this level. Furthermore, the correlations built
up by the two-body interactions before and after
the three-body interactions are such that they may
be taken into account approximately by evaluating
the diagram of Fig. 8(c) with a cutoff when any r, ,
is less than 0.9 fm.

It is clear from the diagrammatic interpretation
of the argument leading to Eq. (33) that a similar
result will be obtained for the higher-order terms
—correlations may be ignored in all intermediate
states and a cutoff introduced in the initial and
final states. The long-range part of W is quite
weak, so that it suffices to retain only the first-
and second-order terms, and even the second-
order term turns out to be about 10% of the first.

To calculate the second-order energy we choose
correlated wave functions as intermediate states
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in Eq. (33) which then reads

EI2I=-Q" g &e,'„lwle„„& —&e.„lwle„,&

123 nba
u' e

(34)

The numerical evaluation of Eq. (34) would be
time consuming, even in the cutoff approximation.
However, we may estimate it using the effective
potential and writing

which is much simpler to compute.
The second-order energy has been obtained in

this way by LNR and is found to be about 10% of
the first-order term when the cutoff wave func-
tion is employed. We appeal to the smallness of
the result to justify the rather cavalier approxima-
tion in going from EIIs. (34) to (35).

where the intermediate states may be taken as
correlated or uncorrelated as is convenient. E~„
in the cutoff approximation is represented dia-
grammatically in Fig. 10, where 8'2 is consid-
ered for definiteness. In diagram (a), particle 2

is a spectator in the Iong-range interaction and
can be immediately summed over to give

(.)
W -~ 13 ~efr —Vi+Vi —~ef~ +13 .e e

13

(37)

states far outside the Fermi sea and therefore
does not upset the short-range correlations. Thus
the important terms involving v, are those of the
type illustrated in Fig. 9(b). They have one long-
range interaction v, and one three-body interac-
tion W'. The contribution to the energy is

7. TERMS INVOLVING THREE-BODY AND
LONG-RANGE TYCHO-BODY INTERACTIONS

Our analysis in the previous section took into
account an arbitrary number of short-range two-
body interactions of the type shown in Fig. 2 by
introducing the correlations they build into the
wave function. We have yet to discuss the effects
of a number of long-range two-body interactions
v, in conjunction with W and short-range interac-
tions g„ for example the graphs of Fig. 9.

As one of us has shown previously, '6 v, may be
treated perturbatively. It may thus be introduced
into the forma)ism of the previous section by the
replacement.

W(1, 2, 3) W(1, 2, 3 ) + v I (12)+ v I (23) + v, (3 1) .

Then all our arguments in that section still apply,
since, as shown in Ref. 16, v, does not excite

Diagram (b) is not so simply evaluated. However,
when v, is taken to be the OPEP potential the spin-
isospin couplings force it to contribute only to ex-
change terms as indicated in the figure. As has
been discussed in the literature, "such exchange
terms are small for potentials of the OPEP type
compared with the direct terms and we will not
consider them further.

E~ is now expressed in the usual second-order
perturbation-theory form and can be readily com-
puted. This has been done in the cutoff approxi-
mation by LNR, using the OPEP form for v„and
they find that it gives the dominant contribution
to the total energy E~.

8. DISCUSSION

Our major result, that the effects of correla-
tions may be approximated using a suitably cut-
off wave function, has long been suspected. LNR'

1 2 3 2 3 1

Vg
"e

W 3 2 1

g
g

(a) (b) 2
(a)

2
(b)

FIG. 9. Some diagrams involving the three-body
force and the long-range part of the two-body force. FIG. 10. Diagrams contributing to Ez„.
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TABLE I. Contribution of W to the energy of nuclear
matter as calculated by Loiseau, Nogami, and Boss
(Bef. 7). Energies are given in MeV.

Cutoff 0.8 fm 1 fm

gg)

~PP

Esv

E (total)

0.78

-0.06

-1.86

-1.14

0.54

-0.03

-1.03

-0.52

have recently evaluated the first- and second-or-
der terms with a triple cutoff of the type we rec-
ommend. In Table I, we quote their results for
cutoffs of 0.8 and 1 fm, using the off-pion-mass-
shell extrapolation of Brown and Green. It will be
seen that the results are sensitive to the cutoff,
and, as shown in Ref. 7, they are also dependent
on the extrapolation procedure used. They are
also dependent on the replacement of v, by the
OPEP form, which may be questioned at separa-
tion of 1 fm.

Because of these uncertainties, most of which
are independent of the influence of correlations,
we did not proceed to an evaluation of their ef-
fects more exactly. Rather, we have justified the
method used on an ad hoc basis by LNR. We show
that the cutoff they use should be the same in all
three interparticle distances, and that the larger
cutoffs, at about 0.9 fm, are to be preferred.

On this basis, remembering that the correla-
tions damp out contributions from heavier-meson
exchange, we conclude that three-body forces con-
tribute about 1 MeV to the binding energy of nucle-
ar matter. This confirms the popular superstition
that the effects of three-body forces are small.

Our results may be regarded as the three-body
analog of the Moszkowski-Scott separation meth-
od. " Moszkowski and Scott showed that one could
take the effect of two-body correlations approxi-
mately into account in the first-order expression
for the two-body energy of nuclear matter by tak-
ing the matrix element of the potential between
plane-wave states cut off when r &d. We find that
the effect of short-range two-body correlations on

the contribution of the three-body potential W' to
the binding energy of nuclear matter may be taken
into account by calculating the various terms in
an expansion in powers of 8'using plane-wave
states cut off when any interparticle distance is
less than 0.9 fm.

With the literature, our work completes the es-
timation of all two- and three-body contributions
to the binding energy of nuclear matter. To reca-
pitulate, we have shown how to take terms involv-
ing both two- and three-body interactions into ac-
count. We then found that a significant effect of
the two-body forces is to damp out terms in the
pion-exchange three-body force of higher order
than the first, and three-body forces involving
heavier mesons. This leaves the contribution
from the extensively studied pion-exchange three-
body force to be added to the binding energy from
two-body forces.

The contribution of two-body forces alone to the
two- and three-body energy in nuclear matter is
currently estimated to be about 13 MeV. " With
the contribution of 1 MeV obtained above on the
basis of the calculations of LNR, we get a total
binding energy of about 14 MeV from two- and
three-body effects.

Day' estimates that four-body clusters contrib-
ute an extra energy of about 1 MeV also. This
gives a current total of 15 MeV. We seem to have
exhausted the physical mechanisms which may
contribute to the binding energy, and it is there-
fore satisfying that our result is so close to the
experimental values of 16 MeV--especially so
when one recalls the many approximations in-
volved in arriving at this result.
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We have measured the neutron-proton total cross section in hydrogen gas at O'C between
0.3- and 400-eV lab energy to help improve the data for computing then-p singlet effective
range r, . To obtain the free n-p scattering cross section. at "zero" energy, we subtract the
capture-cross-section, effective-range, and molecular-binding contributions from the total
cross section. We used the asymptotic "MTV" theory of molecular binding due to Messiah,
which limits our final analysis to the range 6.02 to 329 eV. From these data we obtain
20.436+0.023 b for the free n-p scattering cross section. Using this number, the coherent-
scattering-length measurements by Koester, a model due to Lomon and Feshbach for the
triplet and singlet shape parameters, and the n-p cross section in the MeV range due to En-
gelke et al ., we obtain r, =2.56 + 0.05 F, 0.09 F higher than the former value. Adopting an

energy scale due to Davis and Barschall for the higher-energy data raises r~ to 2.74 F,
which is in close agreement with the value 2.70 F predicted by the charge-independence hypo-
thesis. A measurement of the neutron-carbon cross section, formerly related to this prob-
lem, is also discussed.

I. INTRODUCTION

The data available in 1962' on the neutron-proton
interaction indicated that the n-p singlet effective
range r, was 2.46+0.11 F (1 F =10 "m), com-
pared with rpp 2 71+0 011 F for the proton-proton
(singlet only) effective range. This is a greater
violation of charge independence in nucleon-nu-
cleon scattering than the one-boson-exchange stud-
ies current then or now' could account for, even
considering the known ~'-7l' mass difference. Two
possible problems with the data were noted. First,
data at 0.4926 and 3.205 MeV taken by Engelke et
al. ' were the chief source of a low value of r,.
Eliminating these points places r, at 2.64~ 0.12 F.
But Engelke's data are too precise to be cast aside
easily. Second, the low-energy data, particularly
the n-p incoherent scattering cross section cr„
were by then dominating the uncertainty in r, .
Noyes, ' who investigated the problem in detail,
suggested that new measurements of o, and its
companion quantity aH, the hydrogen coherent

scattering length, were needed before the high-en-
ergy data were worth remeasuring. Breit and col-
leagues, ' made a very searching study and reached
a similar conclusion.

The incoherent cross section was last measured
precisely by Melkonian' in 1949. His work was af-
flicted by rate-dependent efficiency in his BF, neu-
tron proportional counters. He used a fairly large
counter bank with a consequently large correction
for detector geometry. He determined his target
density by weighings, with no mention of the effect
of elastic distortion in his target vessel. We now

have the superior He' neutron proportional counter
at our disposal, and more intense neutron beams
to permit using smaller detector banks. We also
have improved data on the hydrogen equation of
state, and excellent instruments and standards for
assessing pressure, temperature, and length un-
available in 1949. Finally, the Harvard University
cyclotron is a copious source of neutrons of high
to eV energy. This suggested that we might under-
take a remeasurement of cr, ourselves.


