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Marumori's boson-expansion method is applied to the problem of particle-hole excitation
in closed-shell nuclei. It is shown that consistent (and in principle, straightforward) calcula-
tions yield correct results for the ground-state correlation energy, occupation probabilities,
and the lowest-order random-phase approximation. A method introducing higher-order ran-
dom-phase approximations based on the tranformation of Rowe's formulation in particle-hole
space is described.

I. INTRODUCTION

Recently, da Providencia and Weneser' have dis-
cussed the overestimation of ground-state correla-
tions by the conventional random-phase approxi-
mation (RPA)."After fairly elaborate discussion
which brings in higher-order terms of the Beliaev-
Zelevinsky boson expansions, 'they suggest a pro-
cedure which yields the various physical quantities
correctly in the lowest order. The modified for-
malism is, however, no longer recognizable as
the conventional RPA, yielding inte~ alia slightly
different equations of motion. Furthermore, the
explicit generalization to higher order is by no
means evident.

It is our purpose to show that by using Maru-
mori's boson-expansion method, ' one can repro-
duce the RPA equations, and at the same time
obtain correct ground-state correlations. More-
over, the method can be used to define in a con-
sistent way the higher-order RPA. The reason
one can achieve all this is that the Marumori meth-
od transcribes physical quantities in the fermion
space correctly into the boson space, taking ac-
count of the Pauli restrictions to all orders.

We shall consider a general shell-model Hamil-
tonian in the next section. Section III gives a brief
review of Marumori's method, with a perturbation
calculation showing that the transcribed Hamil-
tonian gives correct ground-state correlations.
In Sec. IV, the RPA equations are derived from
this Hamiltonian. Finally, we discuss in Sec. V
how one can define a higher-order RPA in the bo-
son space with Marumori's expansions.
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We quote here for later reference the second-
order perturbation formula for the ground-state
correlation energy:
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and for the occupation number in the ground state,

(ay~ay)'" = (y'"
I a/tap I lP)

ments of two-body interactions.
We now assume a Hartree-Fock-like decomposi-

tion which divides the single-particle states into
an occupied set a~, denoted by Greek subscripts,
and an unoccupied set a~ with Latin subscripts.
The Hamiltonian (1) then becomes

H =Esz +H»+H» + (H40+ H. c.) +H,', + (H»+ H.c.),
(2a)

where

II. HAMILTONIAN

The Hamiltonian is taken to have a general form
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where h„are matrix elements of a one-body oper-
ator, and V„,„are antisymmetrized matrix ele-
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We shall need these results later to compare with
those calculated from the boson Hamiltonian.

III. BOSON-EXPANSION METHOD

son expansions for the fermion operators a~ a„,
ata, and a~a ~ for a system with an even number
of nucleons.

In the space of N nucleons, a complete orthonor-
mal basis can be designated as {INp&«j, where p
labels the fermion states. Also we consider a bo-
son space with n bosons, where a complete ortho-
normal basis will be {Ink)s). Here k labels the
boson states.

In the method of Marumori, a subset {Inp}s} of
the entire n-boson space {I nk)s j is chosen as the
image of the fermion space {I2n, P&«). Once this
choice is made, a transformation V can be intro-
duced

A. Expansions of Fermion Pairs

We define the fermion-pair operators
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and
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which transforms any fermion operator T into the
boson space:

T~ = VTV

&an =&n ~

which satisfy the commutation relations
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We remark that V is not unitary, because

v'v=2
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where the right-hand side is not a sum over a com-
plete set of states and consequently is,not the iden-
tity operator.

If we write the boson states as

Next, an orthonormal fermion basis is given as:

Io&=- IHF&,

1m ~& -=Bt.
I 0&,

Imm'nn'& BBt=—~ .
I 0),

X k)s —=Ol«, IO)s, (10)
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by the method of iteration. Substituting the result
back into (11), one thus obtains the boson expan-
sion T~ for any fermion operator T.

In the following we will proceed to construct bo-

where IO)« is the boson vacuum state, and Oi««
is a polynomial of boson creation operators, then
(7) becomes

T« = Q T«p «& zOI«p I 0)z z(0 I Oz«ps.
NN'PP '

The projection operator
I 0)»(0 I can be solved in

terms of boson operators from the completeness
relation

0 OgIB...B „,]=6„ (16a)

and

B ~lo)e =0,

(16b)
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where IO)« is the boson vacuum state. Among the
boson states I 0}» Imo}s =Bt I0)» Imm'on'—)s
=Bt Bt .Io) etc«. , the physical boson states
are chosen according to Marumori's prescription'
as:

E
lm, m. "m ~&~a" ~«&-=II(B..., )lo& (»)

i=1

In the boson space, the boson creation operator
B~„andits Hermitian conjugate B have the prop-
erties
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where p„ is a permutation operator which per-
mutes the indices a.

With the physical boson space thus defined, the
expansion of B~„can be calculated to the second
order as
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where the factor —,
' occurs because we have

summed over all possible values of m„m„a„
and n, . Using the relation
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which is derived from (12}, the expansion of Bt
becomes

VB„V =B„+ -1+2 QB„B.„.B
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and
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With similar calculations we obtain the expan-
sions

The easiest way to verify the last two equations is
to start from the definition (7}.

Thus, the expanded Hamiltonian becomes

HB = ~('m-'a}BmaB~+ & VmsanB'maBns
1'& a 8 nt ff

and

VNaatv =QB aB a ~ + O(4) .

B. Expanded Hamiltonian

(23)

+2~~ Q (VmnaBBmaBnB +H.C.) +O(3),
a 8m n (25)

which is different from both the RPA Hamiltonian
and the Beliaev-Zelevinsky expanded Hamiltonian
[given in (2.9) and (4.6), respectively] in Ref. 1.

(Hll}B + «22)B + [(Hno}B +H c ]

+(822)B+[(H„}B+H.c.], (24a}

From (21)-(23}we can write down the expansion
for the Harniltonian (2) up to the second order in
boson operators: (We set E„2=0.}:

H~= VHV

C. Perturbation Calculations with the

Expanded Hamiltonian

With (25), one can calculate the correlation en-
ergy and Occupation number in the ground state
by the second-order perturbation method which
gives
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A comparison between the above results and
those given in (3) a.nd (4) reveals no discrepancy
of a factor 2 between them. As one can see, the
reason is that the Marumori expansion treats the
Pauli principle correctly by restricting the sum
over intermediate states in (26) and (28) to a, sum
over physical boson states only. In the next sec-
tion we shall show how the RPA equations can be
derived from the expanded Hamiltonian (25).

IV. RANDOM-PHASE APPROXIMATION
AS A BOSON APPROXIMATION

In Ref. 1, one starts with a boson Hamiltonian

specially constructed so that its commutator with
the boson operator B gives the RPA equations.
This seems to be artificial, though, because if
we were to derive RPA equations in the fermion
space, we would have considered the commutator
between the Hamiltonian (2) and the feymzon oPer
ator Bm . Therefore, what we should do in the
boson space is to calculate the commutator of the
expanded Hamiltonian Hs in (25) and the boson ex-
pansion of B

Let IG) be the ground state of the system, II)
one of the excited states, and

I G)s, II)s their
images in the boson space; we have

s(II [VBpyV, Hs] I G)s =
I
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The above equation is an exact result derived
from the Hamiltonian (2). Now in the boson ap-
proximation, we consider only the terms linear
in the boson operators. To the same approxima-
tion, the usual RPA amplitudes are given by

With these definitions we finally obtain from
(29) the following equation:

(31)

-(E, -B,)Z„(I)=(ep ey)Zpy(I)+Z V..-.Z „(I)
ma

+Q V p„yY*„(I),
ma

which together with its conjugate derived from the
commutator [VBy„Vy,Hs] constitute the usual
RPA equations.

We have shown that the Marumori method gives
a boson Hamiltonian which can be used in both the
perturbation calculation and the derivation of RPA
equations. This is in fact not surprising at all,
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[z„H,] = o

in the boson space, where

JB = VJU

(32)

is the boson expansion of the total angular momen-
tum operator J, and (32) will lead to a set of con-
ditions when arranged in normal form.

In the next section we shall discuss the exten-
sion of the boson-expansion approach to higher-
order RPA.

because it can be proved trivially from (6), (8),
and (9) that every algebraic identity in the fer-
mion space is preserved in the physical boson
space. For instance, if H is rotationally invariant,

[z,H]=0.
We must then have

one can derive the set of equations

&o(1)QNne Ys(I) =p(Lne Ys(I) +M„sZs(1}'I, (36a)
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V. EXTENSION TO HIGHER-ORDER RPA

To define higher-order RPA approximations in
the boson space, we shall start with Rowe's meth-
od' of generating higher-order RPA approxima-
tions in the fermion space. One expresses an ex-
cited state II) as

II& = o'(I)
I G), (33)

with

O'(I) =g [Y(o.)n'„- Z"(c.)n.], (34)

where (q~J is a complete set of n-particle-n-hole
operators, n = 1, 2, . . . , N. From the equation of
motion

-'&G
I [o, IH, o']]IG&+-.'(G

I [[O,H], o']I G&

= ~&G I [o, o']
I G),

As we have mentioned in the last section, every
fermion identity is preserved by the Marumori
transcription. Therefore all of the above equa-
tions are valid in the boson space. To define a
higher-order RPA in terms of boson operators,
we only have to evaluate the matrix elements (37)
in the boson space consistently to a definite order
in the boson operator. To illustrate this, we shall
rederive the RPA equations from (37} and (36).

The RPA results from the restriction of q„ to
one-particle-hole pairs and the approximation of
I G) by the Hartree-Fock ground state

I 0) in the
calculation of matrix elements (37). Thus we have
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and
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,',(0IB,[H„-VB„'svt]l 0},+-,', (ol [VB.„V',H, ]B„sIo), .
Using (29), we get

Lmn. ns = (em- en)6mn6ne+ Vmsnn ~

Finally, we have

, .s=-4&ol[B ., [H, B.s]]lo&-a&ol[B,H], B.s]lo&

=-s e(0lB [Hs, VB.s V']I 0}s+2s(ol B.s[vB „v',H ]IOs) s
= e(Vnmsn+ Vms ns}

= Vmnns ~

Substituting (38) into (36b), we have

(E~ -Ee)Z (I) =(e -—e„)Z (I) +Q Ve „„Z (I) +Q V„e Y*„(1),

(38b)

(38c)
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which is identical to (31).
It is now quite clear that in order to obtain high-

er-order equations, we must include more opera-
tors in the set g~ and then calculate the matrix
element (3V) to a definite order in the boson oper-
ators. For example, the next step beyond the
RPA would be to take q~ as a set of one- and two-
particle-hole operators, and then evaluate (37) in
the boson space, keeping only terms containing no
more than three boson operators. In this way,
our method does have the advantage of simplify-
ing the calculation of matrix elements by doing it
in the boson space so that only boson terms to a
certain order need to be considered.

VI. DISCUSSION

We have used Marumori's method to obtain the
boson expansion for a general Hamiltonian. With
this expansion, one can:
(1) Derive the usual RPA equations. Furthermore,
it provides a basis for the consistent definition of
higher-order RPA.
(2) Evaluate the ground-state correlations using
perturbation theory. The results are guaranteed
to be the same as that obtained in the fermion
space because the Marumori transformation V
preserves all matrix elements.
(3) Simplify the shell-model calculation by trun-
cating the expansion at a certain order. This re-
quires the assumption that terms of a certain or-

der in the boson expansion are smaller than terms
of the preceding order. This assumption cannot
be justified from the operator algebra (14), be-
cause it does not contain a small expansion param-
eter. Instead we have to consider the algebra of
the angular-momentum-coupled operators

@&)f(P ) = 2P Jc (—)&c ~c
ypg -m M &p p ~c c'

m mp c

etc. , where [ ] is a Clebsch-Gordan coefficient.
In addition, we have to choose a physical boson
space different from the one defined in (18) so
that the boson expansions will be convergent in a
certain subspace of the physical boson space. '
Since boson expansions with different choices of
physical boson spaces are related by unitary
transformations, all the results obtained before
are still valid in the convergent subspace.

We have thus found that the difficulties dis-
cussed in Ref. 1 can be solved by using the Maru-
mori expansions. We have also indicated how to
proceed further and define a higher-order RPA-
type calculation for the ground-state correlations
based on the boson-expansion method.

We remark finally that after this work was done,
we received a preprint' which describes how the
Marumori expansion used in this paper can be de-
rived starting from the Beliaev-Zelevinsky ap-
proach.
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