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A model is proposed for following the progress of nucleon-induced nuclear reactions as a
function of time. It predicts that the majority of protons and high-energy neutrons emitted
from heavy targets in these reactions appear before internal statistical equilibrium has been
established. However, for the. 18-MeV (p, xn) reaction with Ta the model predicts fewer
high-energy neutrons than are observed experimentally. Further, there is a difference in
shape between the predicted and observed spectrum. The same differences arise when a com-
parison is made between the experimental spectrum and that predicted by Griffin's model for
decay. It is suggested that these differences arise because both models fail to consider sur-
face reactions explicitly.

It is also suggested that this model might best be used in conjunction with Monte Carlo cas-
cade calculations of high-energy nuclear reactions to follow the complete equilibration of the
nonequilibrated excited nuclei left after these cascades are terminated. An example of using
the model for this purpose is given.

I. INTRODUCTION

The experimental results from both high-energy
and medium-energy nucleon-induced reactions
have usually been interpreted in terms of essen-
tially similar two-step models. At high energies

where the bombarding nucleon has an energy ~100
MeV, the reaction is assumed to proceedin thefol-
lowing fashion:

(a) In the first, or fast step, the incident nucle-
on develops a cascade in the target nucleus through
a series of binary nuc1.eon-nucleon collisions in
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which some particles escape.
(b) In the second, or slow step, the residual ex-

cited nucleus deexcites through the emission of
other nucleons, clusters of nucleons, or y rays.

In the first step the incident nucleon excites very
few degrees of freedom in the target nucleus. How-

ever, in past calculations of the second step it has
been assumed that many degrees of freedom in the
residual nucleus are excited. In fact, it has been
assumed that the residual nucleus was in internal
statistical equilibrium. Hence, its deexcitation
could be treated by the statistical theory of nucle-
ar reactions. However, this last assumption re-
quires that the residual excited nucleus equilibrate
in such a manner that no further nucleons are emit-
ted between the end of the fast step and the com-
pletion of internal equilibration. In a previous ar-
ticle, ' hereafter denoted as I, this assumption was
examined and it was found to be essentially valid
for a highly excited one-component Fermi gas
which had the gross characteristics of a nucleus.
This conclusion was reached through the solution
of a set of Boltzmann-like master equations for
the evolution of the occupation numbers of the sin-
gle-particle states of the system while at the
same time allowing for the escape of particles.

The usual model for medium-energy reactions,
where the bombarding nucleon has an energy be-
tween -15 and -50 MeV, is the following:

(a) In the first step, it is assumed that the inci-
dent nucleon interacts with one or more nucleons
in the target in such a manner that some of them
may escape. In analogy with the first step in the
model for high-energy reactions, this step excites
only a few degrees of freedom in the target nucle-
us and is thought to occur relatively fast. This
step has usually been denoted as the direct com-
ponent of these medium-energy reactions.

(b) The second step of these reactions is as-
sumed to be completely analogous to the second
step of high-energy reactions. That is, it is as-
sumed that many degrees of the residual nucleus
are excited or, equivalently, that the residual nu-
cleus is in statistical equilibrium.

Recently, Griffin' proposed a slightly different
model for these medium-energy reactions in which
an attempt is made to calculate the decay probabil-
ity of an excited nucleus at each stage of its ap-
proach to statistical equilibrium. Blann, ' and
Blann and Lanzafame' recently expanded on Grif-
fin's model, and Williams' has examined some of
the details in its original derivation.

In the following, an attempt is made to describe
the progress of medium-energy reactions as a
function of time by a model which, in some re-
spects, is similar to Griffin's. That is, this mod-
el will also monitor the escape of nucleons as

more and more degrees of freedom in the emitting
nucleus are excited until, finally, the emitting nu-
cleus is in statistical equilibrium. This will be
accomplished by solving a set of Boltzmann-like
master equations for the evolution of the single-
particle-state occupation numbers of a two-com-
ponent Fermi gas which again has some of the
gross characteristics of a nucleus.

The main results obtained by solving these equa-
tions for targets whose mass number is greater
than approximately 100 are:

(I) A portion of the experimentally observed
high-energy tail in the emitted neutron spectra
from medium-energy (p, xn) reactions is predict-
ed by these equations. As is well known, a sta-
tistical-model calculation would not predict the
presence of these high-energy neutrons, because
of the low temperatures or excitation energies of
the emitting nuclei. Further, these high-energy
neutrons are emitted before statistical equilibri-
um has been reached.

(2) Nearly all of the protons emitted from proton-
and neutron-induced reactions at these energies
appear before equilibrium has been established.
A statistical-model calculation would predict a
very small emission probability for protons from
these nuclei because of their high Coulomb bar-
riers.

(3) The conclusion that few particles escape dur-
ing the equilibration phase of high-energy nuclear
reactions that was made in I does not change when

a two-component Fermi system is considered.
In Sec. II the model that was used in these cal-

culations is examined. Some of the results and
conclusions from this study are presented in
Sec. III.

II. MODEL EMPLOYED

The assumptions used in developing the master
equations for the relaxation of a two-component
Fermi gas are essentially the same as those giv-
en in I for the relaxation of a one-component gas,
except for minor modifications.

The nucleus is viewed as being composed of in-
dependent proton and neutron Fermi gases. There-
fore, the proton and neutron occupation numbers
for the single-particle states of these gases com-
pletely specifies the internal configuration of the
nucleus at any time. Further, it is assumed that
the mechanism for the equilibration of the gases
is through binary nucleon-nucleon collisions.
These two gases are initially confined to transla-
tional states within a volume V=-, mroA, where r,
= 1.5&& 10 " cm and A is equal to the total number
of nucleons within the nucleus at time t =0.

For medium-energy reactions it is assumed that
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A —1 of the nucleons are in their ground state (i.e.,
two zero-degree Fermi gases with a total of A —1
nucleons}. It is further assumed that initially the
incident nucleon occupies an internal translational
state whose energy is the sum of the channel ener-
gy, the binding energy, and the Fermi energy for
the incident nucleon in a nucleus of A nucleons.

The maximum energy of a bound proton or neu-
tron state in this model is the sum of the corre-
sponding Fermi and binding energies for that type
of nucleon in the nucleus containing A nucleons.
The two gases are either allowed to scatter by
binary collisions into or to occupy, only those
states within the nucleus that are consistent with
the initial excitation E* deposited by the incident
nucleon. Further, it is assumed that nucleons
whose internal energies are greater than their cor-
responding Fermi-plus-binding energies have ac-
cess to all those states outside of the nucleus
which are, again, consistent with the initial ex-
citation energy of the system. For computational
convenience, the states have been grouped into
1-MeV bins, and the difference in mass between
the neutron and proton has been neglected.

The total number of internal proton translational
states, g&, in the ith group of states with average
energy c; is given by

pE) + 1/2

g( =
I pP(E')»ff ~P -1/2

where pP(e) is the density of internal proton trans-
lation states. A similar expression is used for
g,", the number of internal neutron translational
states with average energy e";. For protons, 1
&e, &&&+AD*, while for neutrons 1 &a, &ez +F.*,
where e& and e, are the neutron and proton Fermi
energies and E* is the excitation energy of the nu-
cleus. Similarly, the states outside of the nucle-
us which correspond to escaped particles were
also grouped such that g, and g;"r are the total
number of proton and neutron translational states
in the i'th group with average energies c, ~ and c;.,
respectively. For example,

t

eg P+1/2P

6 ~ /- 1/2
PP (E)dP. ,

where pP(e) is the density of laboratory proton
translational states. For protons, 1 & e, ~ &E*—Bp
and for neutrons 1 & c, ~ &E*—B„, where B~ and

BN are the binding energies for the protons and
neutrons, respectively, in the nucleus containing
A nucleons. The average occupation number for
the ith internal proton group, n&, is then defined
by»(, g, =N, =the total number of occupied states
in the ith group. The defining equation for n";, the
average occupation number for the ith internal neu-
tron group, is similar to the above defining equa-
tion for n; . The master equations describing the
relaxation of the proton Fermi gas are then:

Q[(d(»( (( g(» g( g( n„n, (1 —I, )(1 —n( ) —»»(((» g( g~ g( n, n& (1 —n~ )(1 —n, )]5(e( +e& —e, —e» )
f»

+Q [(d»(";(g~ g("g("n( n(, (1 —(»; )(1—n( ) —(d((" ~( g("g("g~ n» n( (1 —ng)(I —n»()) 5(cP( + e&» —ef —q»()
f»
nP(dP (,g-P. 5(CP, —eP+e~~+BP),

=»((g(»»(( (igni ~(&( —&( +tf +EP), ( = 1, . . . , g~ +E, i =1, , E —8 (2)

where N, .=the number of escaped protons with
laboratory energy e, ; e;, is the probability per
unit time that a proton in a particular state of the
ith group escapes, with co. ..=0 for e, & e& +Bp;
and co&&» is the probability per unit time that a
proton in a particular state of the ith group scat-
ters from a proton in a particular state in the jth
group such that one proton goes to the lth group
and the other to the kth group. The 5 functions
ensure energy conservation in the transitions.
Hf" » is the probability per unit time that a pro-
ton in the ith group scatters from a neutron in the
jth group such that the proton goes to the kth

group while the neutron goes to the lth group. The
master equations for the relaxation of the neutron
Fermi gas are identical with the above except that

everywhere that a I' appears in the above it is to
be replaced with an N and vice versa.

For a given set of initial conditions and a given
set of transition probabilities the two sets of mas-
ter equations can be solved numerically for the
proton and neutron occupation numbers and the
number of escaped protons and neutrons as a. func-
tion of time. For medium-energy reactions we
have already specified the initial conditions: two
zero-degree Fermi gases plus one nucleon in an
excited state. Therefore, the only quantities that
still remain unspecified are the transition prob-
abilities. As in I, the internal transition probabil-
ities used were purely classical, i.e.,

oPP(f ( + f( )[(2/M)(e( + 6( )]"
('I yg~ gPgP g(~P + ~P ~P ~P} ~
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(4b)

where Q is the laboratory volume and o;„,(e; ) is
the inverse cross section for the absorption by a
particular nucleus of a proton with channel energy
e, The quantity +", , ~ is defined in a similar
manner. The inverse cross sections were taken
from the approximate continuum-theory cross sec-
tions of Dostrovsky, Fraenkel, and Friedlander. '

If we neglect the escape of nucleons, then at
equilibrium (t =™)the solutions to the master equa-
tions are

1nP(t=~) =

e 8(6~ PP) + 1
(5a.)

1
n";(t= ) =

ee(~;-P~) + 1

which are the expected values of n, and n", for a.

two-component Fermi gas system at equilibrium,
where p=(kT) ' and the pN and pP are the chem-
ical potentials for the neutron and proton gas, re-
spectively. The quantities P, p,„, and p.~ could,
of course, be determined from the total energy,
number of neutrons, and number of protons of the
two-component Fermi systems. Further, after
equilibrium has been established we expect that
the neutron spectrum emitted during a short time
interval will be proportional to ee 8'. We shall
show later in the discussion of the results that
this latter requirement is obeyed. Note that in
the formulation of the relaxation process in me-
dium-energy reactions we neither consider struc-
tural details of the nucleus (i.e., diffuse edge,
etc.), nor do we consider any conservation laws

where HAPP(e) is the elementary proton-proton elas-
tic scattering cross section after Coulomb effects
have been removed and is therefore equal to oNN(e)

(see I for a further discussion). M is the neutron
mass and the prime on the summation means that
the summation is only taken over those states that
are allowed in the proton-proton scattering pro-
cess within the nucleus. Therefore, co,&» differs
from ~,.~ » only in the normalization factor,
Q „g"g„"&(&";+e&"—e„"—e", ), since, in general,
a different number of states are involved in the
neutron-neutron scattering process. e;," » is
given by

opN(eP + e,")[(2/M)(eP, + e", )j"'
0 Nl yQ gPgNg(&P++N eP eN)

'

where o»(e) is the elementary proton-neutron
scattering cross section. The elementary scatter-
ing cross sections were taken from Chen et al. '
co, ; is given by

other than energy conservation in the individual
binary collisions. We could, of course, modify
the master equations to consider these other de-
tails. However, in so doing, the complexity of
the equations would be increased enormously.

III. TYPICAL RESULTS OF CALCULATIONS

A. Comparison with Neutron Spectrum

from 18-MeV Protons on Ta

There are a number of properties that can be
derived from this proposed model of medium-en-
ergy nucleon-induced reactions. However, we
shall be concerned here with only one of them:
the production cross section and energy spectrum
of the relatively high-energy neutrohs from (p, xn)
reactions on heavy elements.

Since the model only includes gross features of
real nuclei, the most reasonable test of it would

be for reactions on targets which are far from
closed shells. An ideal candidate is Ta"' because
it has a large atomic number, should not exhibit
any closed-shell effects, and, more particularly,
because Verbinski and Burrus' have recently mea-
sured'the neutron spectrum from this target when

it was bombarded by 18-MeV protons. This spec-
trum clearly shows the presence of high-energy
neutrons. For the above reasons we shall present
our results calculated for 18-MeV proton-induced
reactions on Ta"' as being representative of some
of the studies that have been made with the model.

For proton-induced reactions with Ta"', the val-
ues of 7.0 MeV for BI, and 8.0 MeV for B» which
are the proton and neutron binding energies, re-
spectively, in W"' were used. In the calculations
the initial values of the proton and neutron occupa-
tion numbers were established in the manner dis-
cussed previously, andthenthetwo sets of the mas-
ter equations were solved numerically using the
method of Runga-Kutta-Gill. The proton and neu-
tron occupation numbers as well as the total num-
ber of escaped protons and neutrons were record-
ed as a function of time. In most cases a reaction
was followed only until the proton and neutron oc-
cupation numbers reached their equilibrium values.

First we shall compare the calculated high-ener-
gy neutron spectrum with that measured by Ver-
binski and Burrus. ' The relevant data are tabulat-
ed in columns 2 and 5 of Table I. Although the
model does indeed predict that neutrons should be
emitted in this high-energy region, the calculated
value is low by about a factor of 4. Further, the
spectrum does not have the same shape as the ex-
perimental one: The difference between the two
spectra increases as the energy of the emitted
neutrons decreases.



PRECOMPOUND DECAY FROM TIME-DEPENDENT POINT OF VIEW

TABLE I. Calculated vs experimental cross sections
in mb/MeV for the emission of high-energy neutrons in
the (p, xn) reaction induced by 18-MeV protons on Ta~

Neutron energy do- do
(MeV) de A

do'

ck
do'

de

10+0.5
11+0.5
12+0.5
13+0.5
14+ 0.5
15+0.5
Total

2.5 2.8
2.0 2.4
1.6 2.0
1.3 1.6
0.9 1.2
0.5 0.8
8.8 10.8

10.2 + 1.1
8.7 + 1.0
8.2+ 1.0
8.8+ 1.0
5.1+ 0.8
3.7 + 0.6

44.7 + 2.2

10.4 + 2.
9.3+ 1.
7.6+ l.
4.9 + 1.
2.8+ 0.5
0.9+0.3

35.9 + 2.7

~Cross sections taken from this calculation.
Cross sections calculated from the "exciton model. "
Cross sections taken from a Monte Carlo calculation

described by Chen et al. (Ref. 6).
Cross sections taken from the experiment by Verbin-

ski and Burrus (Ref. 8).

In this context, it is also of interest to examine
the neutron spectrum that is predicted by the mod-
el for pre-equilibrium decay that has been pro-
posed by Griffin' and extended by Blann and Blann
and Lanzafame. ' This model, the exciton model,
is similar to the one used here in that it also puts
particles into single-particle states and assumes
that changes in configuration can only arise
through two-body interactions. One of the pri-
mary differences between the two models is the
manner in which the state of an excited nucleus
is designated. In the exciton model the state is
characterized by the sum of the number of parti-
cles excited above the Fermi level and the number
of vacancies below the Fermi level: this sum is
defined as the number of excitons, n. On the oth-
er hand, in the present model the state is charac-
terized by the average occupation number of each
of the single-particle states. Thus, in the exciton
model a nuclear reaction induced by a nucleon in-
cident on an even-even nucleus is considered as
proceeding through n =1 as the nucleon enters the
nucleus, going to n =3 when there are two excited
particles and one hole resulting from an allowed
two-body interaction between the incident nucleon
and a nucleon in the Fermi sea, going to n = 5
when three particles and two holes result from an
interaction in the n = 3 configuration, etc.

Ignoring differences among the many different
distributions of particles and holes that corre-
spond to the same exciton number at a given ex-
citation energy, an excited nucleus with n excitons
has three possibilities: another particle-hole pair
may be created in a two-body interaction leading
to exciton number n+2; a particle-hole pair may
be annihilated in a two-body interaction leading
to exciton number n —2; or if one of the excited

particles is in an unbound state, it may be emit-
ted, which leads to exciton number n —1. If, on
the basis of phase-space arguments, it is as-
sumed that the rate of interactions leading from
n to n —2 is negligible, at least for values of n ap-
preciably less than the most probable value after
equilibrium is established, then the energy spec-
trum of particles that are emitted prior to equilib-
rium may be simply expressed as

„E*
I(e') = QP(n, E)I(e'

~ n, E)dE, (6)
n

where E* is the initial excitation energy of the nu-
cleus, P(n, E) is the probability density that the
excited nucleus pass through a state characterized
by exciton number n and excitation energy E on
the way to equilibrium, andI(e'~n, E) is the prob-
ability density that a nucleus with excitation ener-
gy E and n excitons emits a particle with labora-
tory kinetic energy e'.

The quantity P(n, E) in the integral accounts for
the depletion of the original nonequilibrated nucle-
us through particle emission and allows for the
emission of more than one particle prior to equil-
ibration.

If, as is not necessarily correct, it is assumed
that before equilibrium all configurations of a nu-
cleus with n excitons and excitation energy E have
equal a Priori probability, the second factor in the
integral may be expressed as

p, i(U)pi(&) &(&'I&)

pn(E) ~(~'
I
~)+ ~(n+2ln, ~, U}

'

( f)

where p„(E) is the density of states of the nucleus
with excitation E characterized by n excitons,
p„,(U) is the density of states with excitation en-
ergy U characterised by n —1 excitons, pz(e) is
the density of single-particle states with kinetic
energy e within the nucleus, X(e'~e) is the prob-
ability per unit time that a particle with kinetic
energy ~ inside the nucleus escapes to the outside
where its kinetic energy is c', and X(n+2~ n, e, U}
is the probability per unit time that the excited nu-
cleus with n excitons in the particular set of con-
figurations which includes one excited particle
with kinetic energy e within the nucleus and the
residual excitation energy U randomly distributed
among the remaining n —1 excitons undergoes a
two-body interaction which changes the exciton
number to n+2. The first factor in Eq. (7} is just
the probability that the nucleus with excitation en-
ergy E is in a configuration such that there is a
particle in an unbound state with kinetic energy e.
The second factor is the probability that the par-
ticle in the unbound state escapes to the continuum
where its kinetic energy is e', rather than there
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be a two-body interaction which raises the exciton
number to n+2.

The expression for A.(e'I e) may, like Eq. (4b),
be immediately written down from the law of de-
tailed balance

x(e'Ie) =
p, (e )0 (8)

where cr,„, and 0 have been defined previously, V~

is the velocity of the emitted particle relative to
the residual nucleus, and p, (e') is the density of
external translational states.

The quantity A(n+2
I n, e, U) is much more diffi-

cult to evaluate and, hence, is a primary source
of difficulty in using the exciton model. In pre-
vious work it has essentially been left as a free
parameter which is proportional to the density of
states with n+2 excitons. In the present calcula-
tion we obtain an estimate of this quantity from
the solutions to the master equations. However,
this estimate, as well as the previous ones, is an
average over all configurations consistent with
the excitation energy and the exciton number rath-
er than the appropriate set of particular configura-
tions that X(n+ 2

I n, e, U) specifies in its definition.
It is worthwhile digressing at this point to show

that Eqs. (7) and (8) lead to the usual expression

for the emission of particles from equilibrated nu-
clei. For this situation it is not necessary to
know &(n+2I n, e, U). At equilibrium, the prob-
ability that the excited nucleus is in a state with
exciton number n is, by definition of equilibrium,
p„(E)/p(E), where p(E) is the density of all states
with excitation energy E, p(E) =Q„p„(E). The
probability that the excited nucleus with n exci-
tons be in the particular set of configurations such
that there is a particle with kinetic energy c in an
unbound nuclear state and the residual excitation
energy U is randomly distributed among the re-
maining n —1 excitons is just, as stated before,
the ratio of the density of such states to the
density of all states with exciton numbers n:
p„,(U)pz(e)/p„(E). Finally, the probability per
unit time that the particle with kinetic energy e
escapes to outside the nucleus where its kinetic
energy is e is given by Eq. (8). The combination
of all these factors gives the following for the
probability per unit time and energy that an equil-
ibrated nucleus emits a particle with kinetic ener-
gy ~:

(,)
~P„(E)P„,(U)P, ( ),„,V P,( ')~ p(E) p.(E) p&(e)fl

Realizing that within the context of this model

Q p. ,(U) = p'(U),

Io

where p'(U) is the density of states of the residual
nucleus with excitation U, the expression for e(e')
becomes

(,)
p'(U);„, U„p,( ')
p(E) n
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FIG. 1. The excitation number versus time for Ta
bombarded with 18-MeV protons. The curve is derived
from the solutions to the master equations for this sys-
tem.

Equation (10) is precisely the usual expression
for describing the emission of particles from
equilibrated, excited nuclei.

We now return to the emission of particles from
nonequilibrated nuclei. The precompound emis-
sion of neutrons from Ta"' bombarded with 18-
MeV protons may be calculated from Eq. (6) if
some method is found for the estimation of
X(n+2 I n, e, U). An estimate of this quantity may
be obtained from the time dependence of the
exciton number as illustrated in Fig. 1. This
curve was taken from the solutions to the master
equations, and its slope was used to estimate
X(n+ 2

I n, e, U). To complete the evaluation of
Eq. (6) the quantities X(e'I e) and p, (e}were taken
to be the same as those used in solving the mas-
ter equations, and p„(E) and p„,(U} were taken
from the approximate expression for the level den-
sity in terms of the particle number p and hole
number h that is given by Ericson'
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p „(E)=g,&'"E("" '/p! h! (p+h —1)!,
where g, is the density of single-particle states
at the Fermi energy and, consistent both with its
definition' and with the nuclear model that is used
here, has a value of 12.8 MeV '. From Eq. (11)
p„(E) is simply given by

and p„,(U) is given by

Finally, Eq. (6) was evaluated by using the above,
setting P(n, E) = 5(E —E*), and summing over odd
values' of n starting with n=3. In the evaluation,
only particles emitted from nuclei with the initial
excitation energy were considered, since our only
concern was the escape of high-energy neutrons.
The results calculated in this manner are present-
ed in column 3 of Table I. As one can see, these
results are again lower and, more importantly,
again fall off less rapidly with increasing energy
than the experimental ones. A conjecture as to
why neither the results obtained from the master
equation nor those obtained from the exciton mod-
el agree with experiment will be advanced shortly.
In the mean time it is interesting to note that the
master-equation results are very similar to the
exciton model's when the quantity A(n+ 2~ n, e, U)
is approximated by means of the master equation.

For further comparison, there are also present-
ed in the fourth column of Table I the results from
a Monte Carlo intranuclear-cascade calculation
described by Chen et al. ' which uses a step poten-
tial, but does not allow for the refraction of re-
flection of cascade nucleons at potential boundar-
ies. While there are serious theoretical objec-
tions that may be raised to using this semiclassi-
cal calculation at such low incident energies, it is,
nevertheless, another technique for examining the
relaxation through two-body interactions of a nu-
cleus that is excited and partially equilibrated.
Further, in contrast to the other methods for treat-
ing this problem, the Monte Carlo technique fol-
lows the spatial as well as the energy distribution
of the excited particles. From Table I it is seen
that the Monte Carlo calculation predicts the neu-
tron spectrum fairly well; in fact, it predicts the
total cross section to within -20% of that measured
experimentally.

In this Monte Carlo calculation it was found that
the majority of the pre-equilibrium (P, n) reaction
occurs in the diffuse edge of the nucleus. It is
evidently the inclusion of explicit consideration of

the spatial distribution of the excited particles, in
particular the position of the first two-body inter-
action of the incident particle, that leads to better
results with the Monte Carlo method than with the
approaches that ignore geometrical factors. This
result is not surprising. Clearly the probability
for the escape of a particle that is in an unbound
state depends on the position of that particle:
those close to the surface have a greater probabil-
ity than those in the interior of the nucleus. Ex-
pressions for escape probabilities such as Eqs.
(4b) and (8), which do not explicitly include geo-
metrical factors, must represent some kind of
average over the position of the escaping particle.
There is no reason to assume that this kind of av-
erage is necessarily the same as that computed
from the spatial distribution of excited particles
resulting from the bombardment of a nucleus with
a nucleon. This suggests that the use of those for-
malisms which do not include explicit considera-
tions of the spatial distribution of the excited par-
ticles and holes is probably most reliable when
the trend toward equilibrium has progessed to a
point where this distribution zn space is fairly ran-
dom; a formalism, such as the Monte Carlo meth-
od, which includes geometrical factors seems to
be required for the early stages. Thus, the mas-
ter equation might find its most fruitful application
by using the output from a Monte Carlo intranucle-
ar-cascade calculation as its initial nonequilibrium
configuration. This approach will be used in the
following section.

B. Equilibration in High-Energy

Nuclear Reactions

The extension of the model to higher excitation
energies and the examination of the deexcitation
of a few highly excited nuclear systems will now
be considered. In order to consider the relaxation
of nuclei with high excitations it was not necessary
to change the form of the master equations but on-
ly the range of internal and laboratory energies
involved. In particular, for highly excited sys-
tems we used 1 &a, &100, 1&a, &100, 1&a",
& 100 —Ey —Bp and 1 & e&'- 100 —e& —BN.

The first example is the deexcitation of a com-
pound nucleus produced in a Monte Carlo cascade
calculation of 200-MeV protons on U'". The cas-
cade calculation is as described by Chen et aL'
except that a square rather than a step potential
was used for the target nucleus. The calculation
included refraction and reflection at the potential
walls. The radius of U' ' used in this calculation
was 1.5x 10 "(238)'~' cm. A binding energy of 6
MeV for both protons and neutrons was used both
in the cascade and relaxation calculations. As
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FIG. 2. (a), (b) Proton and neutron occupation numbers versus energy at t = 0 and t =- tz in a compound nucleus pro-
duced in a Monte Carlo cascade calculation of 200-MeV protons on U~ 8 using a square-well potential and including re-
fraction and reflection.

mentioned previously, the output from the cascade
calculation provided the initial configuration need-
ed by the master equations.

The internal average proton and neutron occupa-
tion numbers of the system both after the cascade
(t =0) and after a, time ta when the system had in-
ternally equilibrated are presented in Figs. 2(a)
and 2(b). It may be seen there that after the cas-
cade was terminated (t =0) all protons ha.d internal
energies less than that needed to escape from the
nucleus, whereas there mere neutrons which had

internal energies greater than that needed to es-
cape [i.e., all those nonzero occupation numbers
above the neutron escape energy in Fig. 2(b)].
These neutrons mere present because the cascade
calculation folloms the neutrons until their kinetic
energies fall belom a certain arbitrary energy
picked for convenience which in this instance mas
greater than the energy required for emission.

It is also seen in Fig. 2 that by t = t~ both the neu-
tron and proton occupation numbers have assumed
the form that one mould ascribe to tmo Fermi gas-
es in equilibrium. It is morthy of mention that
even the initial distribution of particles and holes
has some resemblance to that at equilibrium. This

is as it should be; the Monte Carlo calculation is
itself, after all, another may of simulating the
equilibration of an excited nucleus. It is just not
a very efficient may of folloming the completion of
the equilibration process after most of the excited
particles are below their escape energies.

Figure 3 presents the spectra of neutrons emit-
ted from (a) t =0 (the end of the cascade) to t=ta,
(b) t=0 to t= 5', and (c) t=tz to t =5'. The
spikes in the total neutron spectra, for (a) and (b)
represent the partial emission of those neutrons
left after the cascade whose energies mere above
the neutron escape energy. These spikes do not

appear in the spectrum emitted between t~ and 5t~,
because of the requirement that preferential emis-
sion of those neutrons that mere originally above
the neutron escape energy must occur before equi-
librium has been reached.

The calculated spectrum of the neutrons emitted
between t~ and 5t~ is seen in Fig. 3 to be propor-
tional to e e 8' with a, value for P

' of 2.5 MeV.
This, of course, is the form of the spectrum that
is expected for neutrons emitted from an equilib-
rium system. By the time t~ has been reached,
the system has lost -1 nucleon and -j.V MeV of ex-
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citation energy; thus a temperature of 2.6 MeV is
predicted for this equilibrated nucleus of mass
number 238, and E*=189MeV bythe usualapprox-
imate model based on a two-component Fermi gas
with a constant single-particle level density.

Finally, we would like to conclude with a few re-
marks concerning the relaxation of a two-compo-
nent Fermi system with an excitation energy great-
er than its total binding energy. For this purpose,
the relaxation of W with an initial excitation of
1724 MeV was followed. It was found that the sys-
tem lost -14% of its excitation energy and -5/~ of
its constituent particles before reaching equilib-
rium. This is in favorable agreement with the re-
sults obtained in I from studying a one-component
system of 100 fermions excited to 1054 MeV,
where we found an excitation loss of -10% and a
particle loss of -5% before equilibration was
formed. Therefore, the conclusions made in I
based on a one-component Fermi system are equal-
ly valid for a two-component system.

Io 0 Io 15 20
~" (Mev)

25 30

FIG. 3. The spectra of neutrons emitted fromt =0 to
t = tz, from t = 0 to t =5', and the difference between
these two spectra. The curve through the difference
spectrum is proportional to Pe 8~ with P

~ =2.51 MeV.
The spectra were taken from the relaxation of a com-
pound nucleus produced in a Monte Carlo cascade cal-
culation of 200-MeV protons on U 3 using a square-well
potential and including refraction and reflection.
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