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Quasielastic electron scattering from 3He and H is investigated with a model in which the
two-nucleon interaction is described by a separable potential. Cross sections are given in the
impulse approximation for the ejected proton and scattered electron detected in coincidence,
and for detection of only the scattered electron. Both two- and three-body breakup of 3He and
H are considered, with final-state interactions between the spectator nucleons included in

three-body breakup. Good agreement is obtained with all the electrodisintegration data, ex-
cept the He coincidence data, for wave functions derived from separable potentials which re-
produce the s-wave two-nucleon phase. shifts at low and medium energies. Rescattering cor-
rections between the spectator particles are found to be important in calculating three-body
disintegration. The need for more refined and reliable coincidence data is reaffirmed.

I. INTRODUCTION

Electron scattering is a powerful tool to probe
the structure of the trinucleons, 'He and 'H, and
to obtain information about nucleon-nucleon inter-
actions. The electric charge and magnetic form
factors of 'He and 'H, which provide information
about the three-nucleon ground state, can be mea-
sured by elastic electron scattering. Electrons
scattered inelastically from the trinucleons also
are sensitive to the ground-state wave function,
but such experiments also involve the three-nu-

cleon continuum states. A great amount of work
has been done both experimentally and theoretical-
ly on elastic electron scattering, "but the work
on inelastic electron scattering from 'He and 'H

has been more limited.
'He and 'H inelastic electron scattering experi-

ments have involved both low and high nuclear ex-
citation energies, but no pion production. The
most recent experiments have been concerned
with the threshold region. Frosch et a/. have
searched for excited states of 'He by measuring
inelastic spectra up to 17-MeV excitation energy.
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The Ml continuum in 'He has been studied by Cher-
tok et al. with 180' scattering. Prior to these ex-
periments, effort was concentrated on the quasi-
elastic region. ' The first was the coincidence ex-
periment of Johansson. He measured electron-
proton coincidences for both 'He and 'H. Follow-
ing these measurements, Collard et al. and, later,
Hughes et aL measured the inelastic cross sec-
tions throughout the quasielastic region, again for
both 'He and 'H. ' Until recently, theoretical ef-
fort' has centered on the Johansson and Collard
et al. experiments.

The coincidence experiments of Johansson mea-
sured the cross sections for

(A) e +'He —e'+P + D,

(8) - e'+p+n+p,

(C) e+'H- e'+P+n+n,

and theoretical effort has been devoted mainly to
reaction (A). Griffy and Oakes' analyzed reac-
tion (A) in the impulse approximation, keeping
only those terms corresponding to scattering from
the ejected proton. The interaction between the
proton and deuteron was neglected, which should
be a valid approximation at the quasielastic peak.
The coincidence cross section was then shown to
depend on the momentum distribution in the bound
state of the ejected proton. As a result, the theo-
retical analysis distinguished markedly among
various radial forms of the three-body ground
state. They extended their work to reactions (B)
and (C) by means of dispersion theory and thus
eliminated the need for detailed knowledge of wave
functions (see Appendix C). Griffy and Oakes cal-
culated the cross sections on the basis that the
proton-pole term dominates and the relative ener-
gy of the spectator nucleons is zero. This model
reproduces the shape of the coincidence data, but
does not predict the amplitude, since the constant
vertex parameters are undetermined. If the ver-
tex parameters are chosen on the basis of the coin-
cidence data, then the predicted inelastic cross
sections are 30 to V0% higher than the experimen-
tal points. A reanalysis of the coincidence data
by Gibson and West' resulted in qualitative agree-
ment, but is limited because of the ambiguities in
interpreting the experimental data and the lack of
an accurate calculation of the three-body coinci-
dence cross section. ' Thus these circumstances,
along with the availability of the Hughes et al.
data, ' indicate the importance of an accurate
three-body coincidence calculation and of a cal-
culation of the inelastic cross sections without
use of the coincidence data.

The objective of this paper is to describe a the-
oretical analysis for the reactions

e+'He ('H)-e'+D+P (n),

—e'+n+p+p (n), (2)

based solely on an assumed form of the two-nucle-
on interaction, thus eliminating the need to fit pa-
rameters to three-body data. ' In Secs. II-IV we
describe the model employed and derive the coin-
cidence and inelastic cross sections. Section V
contains a discussion of the separable nucleon-nu-
cleon interaction which is used, along with a de-
scription of the resulting ground-state wave func-
tions. The results and conclusions are given in
Secs. VI and VII, respectively.

II. MODEL

The model we use to study quasielastic electron
scattering from 'He and 'H is similar to that used
by Griffy and Oakes, and later by Gibson and
West. ' The experiments of interest involve elec-
trons with energies of hundreds of MeV's, indicat-
ing that the extreme relativistic limit is valid and
that the incident and final electrons can be treated
in the Born approximation. The high electron en-
ergy also implies that the electron-nucleus inter-
action can be handled in the impulse approxima-
tion. Consequently, we retain only those contri-
butions corresponding to the electron interacting
with the ejected nucleon. In both the two-body and
three-body final states, we neglect interactions
between the ejected nucleon and the spectator pair,
but include final-state interactions between the
spectator particles. Graphically, these consid-
erations lead us to diagrams like those in Fig. 1.

The graphs of Fig. 1 display the approximations
delineated in the previous paragraph. The elec-
tron-photon vertex is handled by standard tech-
niques. The vertices of major concern are the
nuclear ones Figure. 1(c) indicates, as an exam-
ple, how we decompose the P-D-'He vertex. Graph
(1) corresponds to the case where the ejected nu-
cleon interacts with the electron, whereas graph
(2) depicts the situation where the ejected particle
is not the one which interacted with the electron.
We keep only contributions like graph (1), since
contributions from graph (2) can be shown to be of
minor importance at these energies (see Appendix
C). The electron-nucleon interaction is treated
by use of the McVoy-Van Hove interaction, ~ and
the nuclear states are described by nonrelativistic
wave functions. All intermediate nuclear states
are taken to be on the mass shell, and we do not
consider meson-exchange effects.

The effective Hamiltonian for the interaction be-
tween an electron and a nucleon of mass M is
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FIG. 1. Typical graphs in electrodisintegration of He. (a) and (b) show the one-photon-exchange two- and three-body
breakup of 3He. (c) shows the decomposition of the P-D- He nuclear vertex into the proton pole (1) and a correction to
the proton pole (2). All intermediate states are on the mass shell.
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correct through order 8'q'/fqf' c'. The notation is
as follows: p, =8k; and p& =Skf are the initial and
final electron four momenta, hq=k(k; —kz) is the
four-momentum transfer at the vertex, the P's
denote nucleon momenta, 0 is the nucleon spin
operator, and the subscript j denotes the jth nu-
cleon. I'» and I'2N are the Dirac and Pauli nucle-
on form factors, and ~„ is the static anomalous
magnetic moment in nuclear magnetons. a is the
electron's Dirac operator, which operates on the
free-electron spinors ~u, & and ~uz&. The range of
validity of this form of the electron-nucleon inter-
action is estimated by McVoy and Van Hove to be
q'6 6.2 fm ', sufficient for the experiments of in-

terest.
Equation (2) describes the electron-nucleon inter-

action for an unbound nucleon. To handle the nucle-
ar case, we make the usual assumption that the nu-
cleons in a nucleus do not differ greatly from free
nucleons. This permits use of the free-nucleon
form factors. Then, since the operators for dis-
tinct nucleons commute, the electron-nucleus Ham-
iltonian is simply Eq. (2) summed over all nucleons
present. "

The matrix element for the reactions under con-
sideration can be written in the form

4 2

&f IIf'lf& =-
~ [&~&ls;&Q &s&l o'ls-;& ~], (4)
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2 2 3
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"' +e " '~
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+ &m, Z

e "'"~ O&Xq 2 &+&»
g=1

3

~ Q ~ i".e(q')e "' (t««xi)) —,'(1 —e, )« i).
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In the above expressions, we have used the nucle-
on charge and magnetic form factors, which are
defined in terms of the Dirac and Pauli form fac-
tors as

h2 2

F,„(q') =F,(q') +, , «F,(q'),

F,g(q') = F,(q') + «F, (q') .

We take the neutron charge form factor F,"„(q') to
be zero, "and in computations use the three-pole
fit to F,h(q') and F,&(q') given by Janssens et al."
The states Ii) and If) are the initial and final nu-
clear states, and the expressions —,'(1+v, )& are the
nucleon isospin projection operators.

The cross sections of interest are obtained in
the usual manner. Their evaluation reduces es-
sentially to consideration of the matrix elements
Q and J.

III. COINCIDENCE CROSS SECTIONS

1 for total spin or isospin 2. Of course, the final-
state wave functions depend on the reaction. In
evaluation of the matrix elements, we can write

If) =W3y~(l, 23)x,(,(1)y~(23)q,(x(1)qr(23), (10)

where y~(1, 23) is the spatial function and S (T) is
the spin (isospin) state of the 2-3 pair. The num-
ber v3 is introduced to take care of the effect of
antisymmetrization. For two-body breakup,
y~(1, 23) becomes y, (1, 23) and represents parti-
cle 1 free and 2-3 bound. Likewise, for three-
body breakup, q z(1, 23) can be either cp, (1, 23) or
cp,(1, 23), where again pa.rticle 1 is free but 2-3
are interacting in either a spin triplet or singlet
s-wave scattering state.

Derivation of the coincidence cross sections is
a straightforward, but lengthy task. We substitute
Eq. (9) and the appropriate form of Eq. (10) into
Eqs. (5) and (6), and perform the nuclear-spin
sums as shown in Appendix B. The form of the
coincidence cross sections is as follows:

The coincidence experiments measured the
cross sections for reactions (A)-(C). Specifically,
they are given as a function of proton angle when
the electron energy and angle are kept fixed. The
experimental conditions were such that the reac-
tion can be considered coplanar, thus providing
some simplification in the kinematics (see Appen-
dix A for kinematical details). The incident and
final electron energies are approximately 550 and
450 MeV, respectively, and the electron is detect-
ed at 50'. For these conditions, the laboratory en-
ergy of the detected proton is always -100 MeV,
and the relative energy of the spectator pair in
three-body breakup is on the order of 10 MeV.
The high proton energy justifies the impulse ap-
proximation, while the low relative energy of the
spectator pair suggests that only s-wave interac-
actions need to be considered for this pair.

In order to derive the coincidence cross sec-
tions explicitly, we must specify the initial- and
final-state wave functions. The dominant compo-
nent of the trinucleon ground state is fully sym-
metric under exchange of the spatial coordinates
and we consider only this part. This function has
the form

(A) e+'He-e'+p+D,

3

dg dg dE 2 Mottl 1 I

f

(B) e+xHe- e'+P+(nP),

d g
d Q~d QPdEf

(C) e+'H- e'+p+(nn),

CPS f&max
=oM~„ji d k IMO(k) I

f 0

where

(12)

(13)

li) =(2) "'0:(123)[X'(123)n"(123)—g (123)q'(123)],
(9)

where g,'(123) is the symmetric spatial part and
the y'(q') and y"(q") are the. spin- —,

' (isospin- —,')
functions for three particles. The notation prime
(double prime) signifies nucleons 2 and 3 coupled
to spin or isospin 0 (1) and then coupled to nucleon

2 @C COS 28
+Mott 4+ 2 ~ 4 &

gE) Sln 2 0'

» Eg. (11), IM, I' is given by

(14)
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where

@8 2

Z'(l„l,) =F,'„'(q') 1+, , [I,+I,('+, , tan'-,'8) J,+J, i'

sec'-,' 8((k, + kz) ~ [(J,+J,)*(I,+I,) + (I, +I,) *(J,+J,)]]4Mc

+» sec' —,'8[k& (J,+ J,)*k, (J,+ J,)+k, (J, +J2)*kz (J, +J,)]M'c

—(1+2tan 28)~ 2 [F g'(q') (I, -I, )'+Z "«'(q') II~ I'-~3F~~«(q')Z~«(q') Ir,(I|-Ia) I ]. (16)

%e have used the notation P& =51& and PD =-P, =-kl„where P, represents the momentum of the ejected nu-

cleon in the nucleus prior to ejection. E& =P&c, E&=p&c, and 8 are the electron's initial energy, final ener-
gy, and scattering angle, respectively, while 0 is used to mean solid angle, n is the fine-structure con-
stant, and k is the relative momentum of the spectator nucleons. The nuclear wave functions enter through
the integrals Iy I2 Jy and J,. In the momentum representation, these integrals have the form.'

I,(1() =(2v)' 'Jtd'pq 3(p))0(p, 1,), (17}

I2(l„ ly) =(2w) Jt d'P qua(p)g(2(p+ly+ ~1,),p —l~+ 21,),

J|(lq, 1~) = (21~ —j)I,(l(), (19)

J2(1(, ly) (2v)' '2 Jtd'P ye(p)pg( —,'(p+lz+ —,'1,), p —lz+ —,'1,) —lg, (1„lf) . (2o)

2

-(1+2tan' —', 8)~,F~«'(q') ~I, ~'. (21)

Now that we have the coincidence cross sections,
it is interesting to note the correspondence of the
terms with our graphs in the previous section. In
Fig. 1(c), we have decomposed the basic vertex
into. two graphs: (1) pole dominance and (2) cor-
rections to pole dominance. The pole-dominance
graph corresponds to all contributions from the I,
and J, integrals, and the corrections to the I, and

J,. It is the contributions from I, and J, which
can be neglected at these energies (see Appendix
C}, and from here on, I, and J, will not be con-
sidered.

The expressions ~M0(k} ~' and ~M;(k) ~' differ in
form only slightly from ~M, ~'. The same inte-
grals as Egs. (17)-(20) can be defined if ye(p) is
replaced by the appropriate scattering state y', '(p).
However, E (1„lz) - F'(1&, lz, k), Mz& - 2M, and the
magnetic-form-factor term in Eg. (16) changes.
For the triplet part of reaction (B}, F'(l„lz, k} has
the same form as Eq. (16); however, the singlet
part has the factor ——', in front of the last term re-
placed by +2. Reaction (C) has only the magnetic-
form-factor contribution

IV. INELASTIC CROSS SECTIONS

~f) =&3ye(1, 23)y "(1,23}q'(1,23); (22)

The inelastic experiments involve detection of
only the electron at a given angle and energy. The
experimental data involve incident electrons of ap-
proximately 250 and 450 MeV detected at 90 and
75', respectively. As in the coincidence experi-
ments, the data involve primarily the quasieI. astic
region, for which our model is valid. However,
the reaction can no longer be considered planar,
and the distribution of energy among the nucleons
is different. The spectator pair can now have a
relative energy as great as 100 MeV. Naturally,
this reduces the relative energy of the spectator-
pair center of mass and the ejected nucleon, limit-
ing our model to nuclear excitation energies great-
er than -50 MeV. Below this excitation energy,
we would expect three-body rescattering correc-
tions to be important. "

Once we have specified the final states, we can
derive the inelastic cross sections. This is easily
done if we classify the final states by isospin. For
electrodisintegration of 'He as an example, we
have:

two-body (I =-,'},
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three-body (I= -', ),

If) = V3 y, (1,23)y"(1, 23)() '(1, 23),

If) =93 po(1, 23)y'(1, 23)q "(1,23);

three-body (I =-,'),

If) =V3cpo(1 23)g (1 23)q'(1 23)

(23)

(24)

(25)

and the form factor g(k) is taken as

g(k) = (k' + P')-' . (29)

The strength parameter A. and the range param-
eter P are determined by fitting low- to medium-
energy (0 to -100 MeV) properties of the two-nu-
cleon system.

The spatial part of the three-nucleon ground
state in the momentum representation is

d'(T ~ d'c(R)
dEyd Qe ~dEy d QeR=l

(26)

where qa(1, 23) is the isospin-o function with z pro-
jection -„and the remaining notation is as before.
The inelastic cross section is obtained from the
incoherent sum of the isospin amplitudes. When
the I, and J, integrals are neglected, we derive
for 'He

(30)

g(k, p) =Ntg, (k, p) +g, (-,'p+-,'k, % ——,'p)

+g,(ap —ok, -k -op)],
where k is the relative momentum of a pair of the
nucleons, and p is the relative momentum of the
remaining nucleon relative to the center of mass
of this pair. For a separable potential such as
Eq. (28),

where g,(k, p) = 2'(k)a(p)(k'+ —,'p'+K') ', (31)

d'o(R) "d d'o(R)
dE~d Q, J dE~d Q,d Qp

(27)

and R represents the following final states (sub-
scripts 1 and 0 mean spin triplet and singlet, re-
spectively):

V. WAVE FUNCTIONS

A separable-potential representation of the two-
nucleon interaction permits an exact solution of
the three-nucleon Schrodinger equation. We
choose one of the simplest forms of the nonlocal,
separable potential, that of Yamaguchi. " In the
momentum representation, this potential has the
form

xk'
&kI VI k') = — g*(k)g(k'), (28)

R=1, P+D;

R = 2, p+(np)„.

R =3, p+(np), ;

R =4, n+(pp)„

and likewise for 'H, only R represents the follow-
ing final states:

R=1, n+D;

R =2, n+(np), ;

R =3, n+(np)„.

R =4, P+(nn), .

Therefore, the 'He-'H inelastic cross sections
are simply the sum of the given coincidence cross
sections, with explicit forms given in Sec. IV, in-
tegrated over proton angles. "

with -K'/M equal to the three-nucleon binding en-
ergy. The sum k'+-,'P' is invariant under permuta-
tions of particles. The function g(k) appears in

Eq. (28), and the spectator function a(P) must be
determined numerically from an integral equation.
Along with the three-nucleon ground state, we

also need the two-nucleon bound and scattering
wave functions. They are given by

4, (k) =X, g( k)( k'+ y')-',

o
- - f*(ko)g(k)

(32)

(34)

with the two-nucleon binding energy equal to
-y'/M. We use these expressions to evaluate the
cross sections. '""

Two sets of parameters are considered in our
computations. ' The first set is based on an effec-
tive-range analysis of the nucleon-nucleon scat-
tering data, and we denote them by SK (Sitenko
and Kharchenko). " The second set is that of
Tabakin, "which provide a fit to the s-wave phase
shifts at low and medium energies. We tabulate
these parameters in Table I. From this table,
we note that SK predict a three-nucleon binding
energy of 12.55 MeV, whereas Tabakin's model
2 gives 9.33 MeV. The experimental binding ener-
gies of 'He and 'H are 7.71 and 8.48 MeV, respec-
tively. The charge radii of these wave functions
are 1.75 fm for Tabakin and 1.52 fm for SK when
the proton charge radius is taken to be 0.80 fm,
compared with the values obtained from elastic
electron scattering Rob('He) = 1.87 s 0.05 fm and

R,&('H) =1.70+0.05 fm. o In Fig. 2, we give the
charge form factors predicted by these wave func-
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TABLE I. Parameters for separable interactions. I.O

Tabakin

p (fm-')
A. (fm ~)

K (fm-&)

W (fm. ')
B.E. (MeV)

Ground state .

1.450 1.150
0.353 0.182
0.550 0.474
0.579 0.886

12.55 9.88

P, (fm-')

y (fm ')
N~ (fm '~2)

Final-state
1.450
0.415
0.232
0.402

triplet
1.150
0.220
0.232
0.266

p, (fm ')
A,o

(fm-')

Final-state singlet
1.304 1.150
0.211 0.148

tions out to 8-fm ' four-momentum transfer. As
would be expected, the Tabakin ground state is
superior and gives a good fit to the data" out to
-4 fm

The point should be made that only Tabakin's pa-
rameters are used for both the coincidence and in-
elastic cross-section calculations. The SK param-
eters are based on an effective-range analysis of
the two-nucleon data and are not valid for relative
energies exceeding -10 MeV. Therefore the SK
parameters are considered only in the coincidence
calculations, since the relative energy of the spec-
tator pair is always on the order of 10 MeV, in
contrast to the inelastic data, where the relative
energy of the spectator pair can be as great as
-100 MeV.

He

2 3 4 5 6 7 8 9
q (f~-2)

FIG. 2. Charge form factor. Curve (A) is the theoret-
ical prediction with the Tabakin ground state and curve
(B) with the SK ground state. The data are from Ref. 20.

VI. RESULTS

The results for the coincidence cross sections
are given in Figs. 3-5. Figures 3(a) and 3(b)
compare the theoretical results with the two ver-
sions of the experimental data for the two-body
breakup of 'He. Figure 3(a) gives the experimen-
tal points as they were obtained by Johansson, ' by
subtracting the 3H coincidence data (appropriately
modified for threshold differences and divided by
2) from the total 'He coincidences. Figure 3(b)
shows the reanalysis of the data by Gibson and
West. ' Neither the Tabakin result, curve (A), nor
the SK result, curve (B), agree with either set of
data points. The Tabakin result is 45% below the
data at the peak for the Johansson analysis and
30%%uo below the peak for the Gibson-West analysis.
The SK curve is 40% below the Tabakin curve at
the peak. Contrasted with this poor agreement in
the He two-body case is the excellent agreement
with experiment obtained for the Tabakin interac-
tion in the H case. This is especially interesting,

sincethe'8 coincidence data are three-body break-
up. We show the results in Fig. 4(a). Though the
Tabakin curve (A) agrees very well, the SK curve
(B) does not. However in Fig. 4(b), agreement
still is not attained when the Tabakin results for
the two- and three-body breakup of 'He are com-
bined and compared with the total 'He coincidence
data. Yet in Fig. 5(a), our Tabakin theory implies
that Johansson's method of subtracting the three-
body coincidences from the total 'He coincidences
is reasonable. Finally, in Fig. 5(b), we see the
importance of the singlet final-state interactions
between the spectator nucleons for Tabakin's in-
teraction. They enhance the result -20% at the
peak.

The results for the coincidence cross sections
suggest that the Tabakin parameters give the best
results. This is confirmed in the results for the
inelastic cross sections. In Figs. 6(a) and 6(b)
we give the theoretical curves for 'H and 'He su-
perimposed on the Hughes et aL data for initial
electron energy equal to 398.4 MeV." The agree-



1834 D. B. LEHMAN

7

6-
(a)

ment with the experimental data is excellent over
a range of final electron energies corresponding
to excitation energies from -40 to -130 MeV." In

Figs. 7(a) and 7(b) we show similar results for
initial electron energy equal to 248.8 MeV. The
agreement with experiment is good for nuclear ex-
citation energies from -35 to -90 MeV. No differ-
ences between the 'H and 'He results occur, in
contrast to the coincidence case. Figures 8 and 9
display the two- and three-body contributions to
the various cross sections. The three-body break-
up is dominant in 3H, whereas the two-body break-
up is dominant in 'He. We also note that the trip-
let three-body breakup is small for 'He and neg-
ligible for 'H. The role played by the final-state
interactions is shown in Figs. 10 and 11. Final-
state rescattering not only changes the amplitudes,
but also changes the shape of the three-body con-
tribution. Of course, final-state effects play a
bigger role for 'H than 'He, but in both cases it
makes the difference between good or poor agree-

ment with experiment.

VII. DISCUSSION AND CONCLUSIONS

We have seen how' a representation of the low-to-
medium-energy two-nucleon s-wave interactions
provides good agreement with the inelastic elec-
tron scattering data for 'He and 'H. Thus, within

present experimental errors, quasielastic elec-
tron scattering requires only gross information
about the two-nucleon interaction. However, sin-
glet final-state rescattering between the spectator
particles is an important effect and must be includ-
ed. Therefore, the Griffy-Oakes' assumption that
the relative energy of the spectator particles can
be neglected is not valid.

We conclude that this simple model of electro-
disintegration of 'H and 'He yields good results
for the inelastic cross sections in the quasielas-
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FIG. 3. Coincidence cross section for e +3He e' +p
+D. (a) The data as originally analyzed by Johansson,
Ref. 4 ~ (b) The reanalyzed data of Gibson and West,
Ref. 6. Curve (A) is the theoretical result with Taba-
kin's parameters, and curve (B) with the SK parameters.

40 50 60
PROTON ANGLE

FIG. 4. (a) Coincidence cross section for electrodis-
integration of 3H. Curve (A) is from Tabakin's param-
eters, and curve (B) from the SK parameters. The data
are from Johansson, Ref. 4. (b) Coincidence cross sec-
tion for electrodisintegration of 3He. The theoretical
curve is obtained with Tabakin's parameters, and the
data points are from Johansson, Ref. 4.
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tic region, and indicates the limited validity of the
coincidence data. Disagreement with the inelastic
data is expected in the regions of low and high ex-
citation energy. When the excitation energy is low,
the three-particle aspects of the final-state inter-
actions are important. " At high excitation energy,
the cross section should be more sensitive to high-
momentum components in the ground state. How-
ever, within these two extremes, the approxima-
tion of a spatially symmetric ground state corre-
sponding to Tabakin's model 2 appears to be ade-
quate within experimental errors. The disagree-
ment of the model with the 'He coincidence data
seems to indicate that the experimental results of
Johansson' could be incorrect by as much as 40%
rather than his estimate of 20% in addition to sta-
tistics. Hopefully within the next few years, new
coincidence measurements with higher reliability
and more points can be made.
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FIG. 6. Inelastic cross sections for electrodisintegra-
tion of 3H, (a), and 3He, {b), withE; =398.4 MeV and 9
= 75'. The solid curves are the theoretical results with
Tabakin's parameters. The data are from Hughes, Year-
ian, and Hofstadter, Ref. 4.
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FIG. 5. (a) Coincidence cross section for e+ He e'
+p + (np). The theoretical curve is from Tabakin's pa-
rameters. The dots represent data points from Johans-
son, Ref. 4, and the blocks are from the reanalysis of
Gibson-West, Ref. 6. (b) Coincidence cross section for
electrodisintegration of 3H. The theoretical curves show
the Tabakin results with (A) and without (8) the singlet
rescattering corrections for the spectator neutrons. The
data points are from Johansson, Ref. 4.
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FIG. 7. Inelastic cross sections for electrodisintegra-
tion of 3H, {a), and 3He, (b), with E; = 248.8 MeV and
0=90 . The solid curves are the theoretical results with
Tabakin's parameters. The data are from Hughes, Year-
ian, and Hofstadter, Ref. 4.
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APPENDIX A. KINEMATICS

The kinematic equations are based on Fig. 12.
We define a three-dimensional coordinate system
with the incident- and final-electron momentum

(a)

Pg Pf cos8 +P& cos 8~ +PD cos 80

0 = -P& sin 8+Pf sin 8~ sing~ + PD sin 8D sinyD,

0=P&sin8~ cos ye+Pc sin6n cosyn.

(Al)

(A2)

(AS)

If y~ = 90' in Eqs. (A1)-(AS), then yz&
=90' and we

have the equations applicable to the coincidence
experiments. They are

p, =p& cos8+P& cos8~+PD cos80,

0 = -P~ sin8+P& sin8~+PD sin8D.

(A4)

(A5)

The energy-conservation equations are the same
for both experiments and can be written as

vectors. The incident momentum defines the z
axis, and the final momentum defines the y-z
plane. The nucleon momenta then lie out of the
y-z plane, in general. Conservation of momentum
leads to

E( =E~+Py /2M+Pz)'/2Mn +B2 (A6)

(a)
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FIG. 8. Inelastic cross sections for E; =398.4 MeV
and 8=75 . The curves are computed with Tabakin's pa-
rameters. (a) Decomposition of 3He cross section (A) in-
to the two-body (B), three-body singlet (C), and three-
body triplet (D) contributions. (b) Decomposition of SH

cross section (A) into the three-body (B) and two-body

(C) contributions.

FIG. 9. Inelastic cross sections for E; =248.8 MeV
and 0 = 90 . The curves are computed with Tabakin*s pa-
rameters. (a) Decomposition of 3He cross section (A) in-
to the two-body (B), three-body singlet {C), and three-
body triplet (D) contributions. (b) Decomposition of 3H

cross section (A) into the three-body (B) and two-body

(C) contributions.
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for two-body breakup, and

E, =E~ + Py /2M+ Pn'/4M + k k /M + B, (A7)
(a)

for three-body breakup. B, is the energy required
to break the trinucleons into a deuteron plus nucle-
on, and B, is the trinucleon binding energy.

In the coincidence experiment, E;, Ef, 0, 0~,
B„and B, are known, so only Pf, PD, and Q are
unknown in two-body breakup, but Pf, PD, , and
k are unknown in three-body breakup. Since there
a.re three independent equations (A4)-(A6), all
quantities are determined in two-body breakup.
However, three-body breakup has one more un-
known than independent equations —namely, k. We
must, therefore, integrate over k in the cross
sections from 0 to kma„, where k~a„ is determined
from the minimum proton energy in the experi-
ment.

The inelastic cross sections are handled simi-
larly, but Jmt,„ is now determined from the kine-
matics. Since we integrate over Q~, Pf can be
expressed in terms of 6~, y~, and k. In order
that Pf remain real, it can be shown that

y(k') ~ ~(n cos6~+ p sine~ sing~)'

must be satisfied, where

V)

OJ

E
O

l.5

O

b ~ l.o

W
D

0,5

(b)

0
225

I

250
I I

275 500

(Mev)

525 350

FIG. 10. Comparison of the three-body contribution to
the inelastic cross sections, E; =398.4 MeV and 0=75,
with and without final-state interactions. Figures (a)
and (b) give the results for 3He and 3H, respectively.
Curves (A) are results with final-state rescattering be-
tween the spectator pair and curves (B) without. Yaba-
kin's parameters are used in al1. cases.

y(k') =4(k'-E)+k +kz' —2k;kf cose,

n = 2(k; —
k& cos 8),

p=2kf sin6},

(A9)

(Alo)

(A11)

E =M(Ei —Ey —Bs)/k (A12)

The equality in Eq. (A8) gives an equation to de-
termine k,„.

APPENDIX B. SPIN SUMS

The nuclear-spin sums are trivial except for the magnetic terms. As an example, a typical magnetic
term of J* ~ J for takeo-body breakup of 'He is

P",&(q')F~,&(q')I, I2(1+T»)}i&t(312)o,xq yg(123) . (1+T»)yg ~(123)o,x q X,'(312), (B1)

where T» is the two-particle permutation operator and we take particle 3 to be the unlike nucleon. The
initial state must be antisymmetric in the pair 1-2 and have spin —,'. The final state can be either spin —,

'
or &, but it cannot have the unlike spectator pair coupled to spin 0. Therefore, when we sum over the
final spine and average over the initial spine, we must utilize the spin projection operators, P, (i, jk), in
order to remove the spin functions by use of completeness iPO"(1, 28) projects total spin- —,

' states with par-
ticles 2-3 coupled to spin 0]. So from Eq. (Bl), we have for the spin part

I —= —', gg (1+T»)}inst(312)o,x q }tg(123) (1+

T»)gpss(123)o,

x q y,'. (312),
f

= -,' x 4 QQ }tI~(812)o,x q[1 —Po"'(1, 23)]yg(128) ~ }t"~(123)o,x q Po"'(3, 12) }t,'. (312),
a11 possible

spin ~cns

(B2)

(B4)

(B5)

= 2Epo, x q[1 —Pp(l, 23)] ~ o, x q P~ol'(3, 12)).

To obtain Eq. (B4), we have used the completeness relation Q}t}tt=I,I2I, —= 1 for three particles. I~ is the
unit operator in spin space for nucleon j. The trace N means Tr, Tr, Tr, . The remainder of the computa-
tion is simply trace algebra with Pauli spin matrices. The result is

I=-q .
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( )
8my

"' (4nP)"'
1 yr, (y-+ n)(P'+ l, ')

' (Cl)

APPENDIX C. POLE DOMINANCE

The objectives of this Appendix are to demon-
strate the relationship of the Griffy-Oakes pole
model to wave-function calculations and to justify
keeping only the I, contributions to the cross sec-
tions in the quasielastic region. This is accom-
plished by studying the coincidence cross sections
derived from asymtotic wave functions. " The phi-
losophy is that the amplitudes should be deter-
mined by the asymptotic structure of the wave func-
tions; at least, apart from normalization. We ex-
pect this to be a good approximation, because the
electron interacts only (essentially) with the eject-
ed nucleon, leaving the spectator pair either bound
or with low relative energy.

The integrals appearing in the cross-section ex-
pressions, Eqs. (17)-(20), can now be easily eval-
uated with the asymptotic wave functions given in
Knight, O' Connell, and Prats. " We obtain for the
two-body breakup

8 my
"'2(4nP)"', qI.(l„l,)=N

1 q(p" l')tan '2( ~ )'
(C2)

where the notation is the same as Ref. 23. [Note
that the P appearing here is not the same as the
one appearing in Eq. (29), etc. ] The three-body-
breakup results are

4'(4nP)'i' 1 f,(k)
P'+l, ' n'+k' n -lk

4wN(4nP)" 1
I2(lip ~fr k) 2 2 2 Ik l~i2

P +iy n +(k+2qj

(C3)

q 2(n -fk) (C4)

where f,(k) =(kcot5-ik) ' is the two-body scatter-
ing amplitude. The J, and J, integrals are essen-
tially the I, and I, integrals, so we do not display
them here.

The fact that the I, contribution is negligible in
quasielastic scattering can be seen by comparing
I, and I,. The ratio written as an inequality is

I P+i;
I~ P +ly

(C5)

(b)

where the right-hand side is bounded by 0.18 for
the proton angles 30-60 in the coincidence exper-
iment. For a great part of this range, the ratio
is less than 0.10. Moreover, when the two-body
coincidence cross section is computed with these
wave functions, we find the difference between in-
cluding the I, contribution and neglecting it to be
less than 1% at the peak, 8~ -52.5', and less than
5% at the worst point, 8~ =30.0 . This is what we
would expect from the square of Eq. (C5), and it
agrees with the conclusion of Gibson and West' for
other assumed analytic forms of the wave func-

~b~
D ~"a

, Z

Pn

Qi
i%0 !60 180

E, (Mev)

200 220

FIG. 11. Comparison of the three-body contribution
to the inelastic cross sections, E; =248.8 MeV and 0

=90, with and without final-state interactions. Figures
(a) and (b) give the results for 3He and 3H, respectively.
Curves (A) are results with final-state rescattering be-
tween the spectator pair and curves (B) without. Taba-
kin's parameters are used in all cases. FIG. 12. Kinematics for electrodisintegration.
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and

(kq —Py) —M c gP( +2B~M
(C6)

yB orC yB orC
(kq —P ) —M c ~P +2BPf

(cv)

tions. Analogous study of the three-body breakup
leads to similar conclusions. However, outside
the range of the coincidence data the I, contribu-
tions become more important, but we do not in-
clude them in the inelastic calculations where we
integrate over proton angles. The reason for this
comes from the fact that I, only becomes impor-
tant compared with I, when l, increases at the ex-
pense of lz. When this occurs the coincidence
cross section decreases rapidly, since it is pro-
portional to lf. Therefore, the contributions to
the inelastic cross section in this region are
small, and neglecting the I, contributions intro-
duces only small errors. We emphasize that this
is valid only in the quasielastic region. For low-
energy electron scattering the I, contributions are
as important as the I, contributions throughout.

When the I, integrals are neglected, we can com-
pare the asymptotic-wave-function model to the
dispersion-theory pole model of Griffy and Oakes. '
Comparing their cross-section expressions with
those derived in Sec. III, we have

y» y» and y~ are undetermined constants repre-
senting the nuclear vertex [see Fig. 1(c)(1)j. Com-
parison of Eqs. (Cl) and (C6) yields B,=3k'P'/4M
(in agreement with a different determination of P
by Knight, O' Connell, and Prate") and

2r& ~ 6W "'(4~P)"'
3h' l-yr, (y+n) (C6)

A similar comparison can be made for reactions
(B) and (C), provided it is done with i, =0. Other-
wise, we arrive at the contradictory conclusion
that B~ = B2 = 3h' p'/4M.

The relationships of the pole-model and the as-
ymptotic-wave-function approach, combined with
the fact mentioned earlier that the pole model re-
produces the shape of the coincidence data, lead
to two conclusions. The first is that the pole ap-
proximation is valid in the realm where the major
contribution to the amplitude comes from the ex-
ternal region in which there is no nuclear interac-
tion between the particles. This is equivalent to
saying the kinetic energy is much larger than the
interaction energy. Secondly, the asymptotic be-
havior of the ground-state wave function, which is
determined by the relative binding of the three nu-
cleons, governs the shape of the cross section.
Of course, the correct magnitude requires a care-
ful treatment of both the initial and final states.
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We show by direct calculation that the heavy-particle-transfer model of backward elastic
e-particle scattering, together with the assumption of a-cluster structure of ~~O and ~~C,

is capable of explaining the large backward peak in elastic m scattering from ~60.

I. INTRODUCTION

Several authors have reported a strong backward
peak in the angular distribution of n particles
elastically scattered by ' 0, at several incident
energies. ' 4 Since this backward peak cannot be
fitted by the standard optical model (at least, not
without considerable adjustment of its parameters)
a variety of alternative theoretical descriptions
have been proposed including giant resonances, '
Regge poles, ' and heavy-particle transfer. '

The aim of this paper is to demonstrate that the
observed backward peaking is well described by
the simplest heavy-particle-transfer (HPT) me-
chanism, and that the failure of previous authors'
to reach this conclusion probably results from
their approximations. Although we have not yet
investigated the other (4n) target nuclei (which
also exhibit a strong backward peak in elastic a-
pa.rticle scattering) we feel certain that these data

also can be similarly interpreted.
We next describe our formalism; in Sec. III we

present the results of our calculations, and in
Sec. IV, we enumerate our conclusions and dis-
cuss briefly how and why they differ from pre-
vious work.

II. THEORY

The extreme backward scattering of n particles
involves rather large momentum transfer which
may be imparted either by a succession of small
impulses or by a fundamentally backward-peaked
mechanism such as heavy-particle exchange. In
the presence of many open inelastic channels, the
consequent absorption of the projectile greatly
favors the latter type of process, since the Qux
loss at each stage of multiple scattering is pro-
hibitive. (This is why it is impossible to fit the
backward-scattering data using an optical potential


