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A three-fluid model of nuclei is introduced, the three fluids being the protons, the neutrons
of the same orbitals as protons, and the excess neutrons, to account for the fact that the ex-
cess neutrons interact less strongly with the protons than do the neutrons which occupy the
same space-spin states as the protons. Calculations of proton and neutron density distribu-
tions, of isotope shifts, and of isospin impurities have been carried out. The giant-dipole
phenomenon is also studied in the present model. It is found that considerable improvement
is achieved in the results for the proton density distribution and for the isospin impurities as
compared with the two-fluid model. The other results are found to be consistent with previ-
ous calculations.

1. INTRODUCTION

There have been several attempts, based on

hydrodynamical models, to explain some of the
collective properties of nuclei, e.g. , giant-dipole-
resonance (GDR) phenomena, neutron and proton
distributions in nuclei, the isospin mixing in the
ground states of nuclei, and fission, etc. In all
cases, the nucleus was considered to be composed
of a proton fluid and a neutron fluid (except for
fission where only one fluid is considered). Gold-

haber and Teller' proposed three different models
in an attempt to account for the cross sections and

the & dependence of the GDR energies. In the first
model it was assumed that a displacement of the
average position of the protons from the equilibri-
um position requires a force which is proportional
to the displacement but is independent of A. This
would be a good assumption if the nucleus con-
sisted of n-particle clusters. In this model the
GDR energy will be the same for all nuclei. In
the second model the protons and neutrons on the
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Since the nuclear forces are of short range we
can approximate the restoring-energy density as
inferred from (1.1) by

e =K(P.—Pp)'/Po I (1.2}

where p„and p~ are the neutron and proton densi-
ties, respectively. The A dependence of the GDR
frequencies was found to be given by

K(uo =(4ZN/2')" 6QA

Experimentally, the A' ' law seems to hold for
heavy nuclei (»100}. For lighter nuclei, surface
effects become important.

The two-fluid hydrodynamical model, with the
restoring force and assumptions of Ref. 2, was
used by Steinwedel and Danos' to estimate the
variation of the equilibrium proton density inside
a nucleus. Their results showed that the proton
density near the nuclear surface rises as com-
pared to the central proton density. It was re-
cently found ' that for ' 'Pb this rise is of the
order of 50% smaller than that which is required
by the data from electron scattering and p.-meson-
ic x rays.

In a previous paper by the present authors' a
three-fluid hydrodynamical model of nuclei was
introduced to account for the rise in the proton
density near the nuclear surface. The three fluids
are the protons, the neutrons occupying the same
orbitals as the protons, and the excess neutrons.
We shall call the first kind of neutrons the
"blocked" neutrons. The obvious reason for con-
sidering the nucleus to be made up of three fluids
instead of two is the difference in the interaction

surface of the nuclei have fixed positions with re-
spect to each other. The restoring forces per
unit mass, in the event of a relative displacement
of the neutron and proton fluids, is proportional
to the gradients of the neutron and proton densi-
ties, and the GDR frequencies have an & ' ' de-
pendence. The third of their models assumes that
neutrons and protons are two interpenetrating in-
compressible fluids. In this model the two sur-
faces do not coincide. The total restoring force
is proportional to the surface, i.e. , R', and the
GDR frequencies have an A ' ' dependence.

The drawback of the Goldhaber and Teller mod-
els is that they require the use of arbitrary param-
eters. Steinwedel and Jensen' improved upon the
second of their models by eliminating the arbi-
trariness. They introduced a restoring force re-
lated to the symmetry-energy term in the ex-
pression for the binding energy per nucleon:

(B.E./A), z =K(N —Z)', with K-25 MeV.

of the protons with the two "kinds" of neutrons.
The blocked neutrons interact much more strongly
with the protons than the excess neutrons because
of the large spatial overlap of protons and neu-
trons having the same space-spin quantum num-

bers. The blocked neutrons and the protons are
coupled to isospin zero in the absence of any iso-
spin violating interactions. The electromagnetic
interactions break the symmetry between protons
and neutrons, resulting in a state of the nucleus
containing a mixture of isospins. The excess neu-
trons, on the other hand, are coupled to a unique
isospin of T, = ,'(N —Z-). (See also Ref. 4,)

We present the model and its assumptions in
Sec. 2. In Sec. 3 we use it to calculate the proton
and neutron distributions in nuclei. It will be
shown that the rms radius of protons for heavy
nuclei is larger than that of neutrons and nuclear
matter even though the neutron and nuclear-matter
(neutrons plus protons) distributions extend be-
yond the proton distribution. In Sec. 3 we also
calculate the isotope shift for the isotopes of lead.

For completeness, in Sec. 4 we summarize very
briefly the isospin impurities in the nuclear ground
states. This subject is treated in detail in Ref. 6.

Section 5 describes the GDR phenomena for
neutron-excess nuclei. In the three-fluid model
there are two independent modes of vibration in
"'Pb; one has its lowest dipole eigen energy at
about 13.3 MeV and the other at about 4.4 MeV.
The latter is found to be weaker by a factor of
about 500-600. It is also shown that the present
model gives an A. '" dependence of the GDR ener-
gies. Throughout our presentation we shall take
the example of "'Pb.

2. MODEL

p~+p, +p, = pp=constant for r ~R,

=0 for r& R. (2.1)

The subscripts p, b, and e stand for protons, the
blocked neutrons, and the excess neutrons. The
densities are normalized to yield

p, dv = p,dv =Z, p, dv =N —Z . (2.2)

In analogy with expression (1.2} we introduce three
restoring-energy densities corresponding to the

The three-fluid model is essentially a straight-
forward generalization of models of Steinwedel
and Jensen' and Steinwedel and Danos. ' We assume
the nuclear fluid to be incompressible, and to be
distributed uniformly inside a sphere of radius
R =RpA' '. The three fluids, by themselves, are
compressible. Formally
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three pairs of fluids:

&pp K=pp(pp —Pp} /Po,

e pe =Kpe(p p Pe-) /Po ~

&,p=K,p(P, —Pp) /Po ~

(2.3)

Only the terms quadratic in p; —p, have been re-
tained in (2.3), since constants and linear terms
influence only the binding energy and the position
of the energy minimum. They have no bearing on
the strength of the restoring forces.

In contrast to the two-fluid model where the
constant K could be determined from the symmetry
energy, the situation here is more complex. Phys-
ically, the energy densities e are averages con-
taining both kinetic and potential energy contri-
butions. One could think of obtaining them from,
say, nuclear-matter calculations. We shall, how-
ever, estimate them from other sources.

The constant K» seems to be the most certain
one. According to Meyers and others, ' ' the con-
stant K» should depend upon A. as K = n +PA ' '
while being independent of N- Z. Using this hy-
pothesis we can obtain K p for 'O'Pb from the value
of K valid for a nucleus with A =164. We use Bram-
blett's data' and obtain K»= 25.2 MeV.

Less can be said about K„and Ke~. An estimate
of their ratio can be made by noting that the ratio
of the related two-body interaction matrix ele-
ments, i.e.,

This yields

pp —pb 4K 2pb+ pp po
Pb

p
be

0 po

and

pp —pb 2K
2p +pp —p()

pb
p

+ be
p

2' + pb —po
eP

—A. , =O
p()

(3.2)

yp(r) = P dv'.e pp(r')

r —r' (3.4)

To find X, and X, we integrate (3.2) and (3.3) over
the nuclear volume obtaining

X, = 2(2K„+K,p)(4 —3Z)/A (3.8)

Z, = 2(K„+2K„}(A—3Z)/A —e, .
The constant &, is given by

(3.8)

po

(3.3)

where A. , and A., are the Lagrange multipliers and
tllp(r} is the electrostatic potential due to the pro-
ton distribution; i.e. ,

(4, 4.lvl4, 4.}/(4 A. l I4, 4.} e,=, , Jt egp(r)dv,
I

3
(3.7)

is on the average of the order of 3. Even though
the constants K, , are not directly proportional to
the two-body matrix elements, the ratio can be
expected to be of a similar order of magnitude.
Still, we will have to condider this ratio to be an
almost free parameter. We shall see later that
this ratio is not of critical importance; the re-
sults of our calculation are quite insensitive to it.
We shall tentatively assume it to be 3.

3. DENSITY DISTRIBUTIONS AND ISOTOPE
SHIFTS

To determine the equilibrium proton and neutron
density distributions we need only the "static"
Hamiltonian:

H = EPb+EeP+Ebe dV + —,', I

l' epp(r) xepp(r')'' 'I.--.-[
(3.1)

We insert (2.3) and eliminate one of the densities,
say p„using the condition of constancy of total
density, (2.1). Then we can apply the variational
principle to (3.1) with the constraints (2.2) in-
cluded with the help of Lagrange multipliers.

p (K p+K~+4K, p) =pb(Kpp 2Kp, —-2K,p}

+ (3z!A)p,(K„+2K„)

—[egp(r} —e, ].
(3.9)

Elimination of p, between (3.8} and (3.9) yields

8K ~-—+eg —e =0p Z

p p c
0

where

(3.10)

Pb be be eP eP Pb

4 Kgb+4Kb +K P
(3.11)

Applying the Laplacian to (3.10} and using -V'g
=4mep~ we obtain

[8K,/(4«'P, )1&'P = Po (3.12)

substituting A., and A., back into (3.2) and (3.3) we
get the following expressions:

P p(Kp p+ 4Ko. +K.3 = Pp(Kp p 2K pp
- 2Kp-p)

+ (3Z/A) po(2K p, +K,p) (3.8)

and
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=0 for r&R,

The solution of (3.12) is

p~= p~,(r/X) 'sinh(r/A) for r-R,
(3.iS)

we write

p oo
2 2

p (r) = p (r~)eps 0++ J p (3.16)

X' = 8K,/(4ve 'p, ),
where

Ppc =

(3.14)

(3.16)

It turns out that a unique set of parameters R, 0,
and K, can be chosen so that pp, exhibits the ex-
perimentally observed skin thickness, rms radius,
and rise (R in nuclear density at the surface. This
last quantity can be defined as

is the central density.
In order to compare our results with experi-

ments we have to incorporate the nuclear surface
into our model. To this end we recall that the nu-
clear shape is, in fact, not rigid but can undergo
surface vibrations. Upon quantizing this motion
the surface becomes diffuse owing to the zero-
point motion of all the possible surface modes.
This effect has been estimated by Pieper and
Greiner, "who showed that the full experimental
surface diffuseness can be essentially accounted
for by this mechanism when starting with the sharp
intrinsic density drop-off, as, for example, in
(2.1}. As the vibrational ground-state wave func-
tions are Gaussians, we shall smear out the ob-
tained density with a Gaussian, considering the
diffuseness to be an adjustable parameter. Thus,

g Pp max Ppc

Ppq
(3.iv}

For "'Pb, 6I has been found' to be 0.10. Curve (a}
in Fig. 1 shows the proton density distribution for

Pb as given by the expression

(3.18)

The parameters w=0. 32, c =6.40, and ~ =0.54
were obtained by Heisenberg et al. ' by fitting the
data on elastic electron scattering and on p, -mesic
x rays. Curve (b) is obtained by minimizing the
quantity

(3.i9)

0.2—
(c)

O. l5—

O. I

I

005- (

by varying K„R„and o. In (3.19} the subscript
pg refers to quantities calculated using the density
given by (3.16) and ex refers to the experimental
results as obtained from (3.18). The skin thick-
ness t is the distance in which the density falls
from 90 to 10/o of the maximum value. Table I
lists the set of best-fit parameters obtained in this
manner. Experimental and theoretical values of
6I, f, and the rms radii (r')+' are also listed. The
agreement between these values is quite good al-
though visually there seems to be some discrep-
ancy in the two curves. The inability of the two
curves to match perfectly results from the dif-
ference between the two shapes. The density
p~,(r) falls more rapidly at the surface than the
charge distribution fitted to the electron scatter-

0 4 6

r(fm)

TABLE I. Rise 8, skin thickness t, and rms radius
of the proton distribution in Pb in the three-Quid mod-
el and from the electron scattering data (Ref. 5). Best-
fit parameters: X =10.4 MeV, Ro =1.300.

FIG. 1. Density distributions in Pb. Curve (a) is
the proton density resulting from fitting the data on elec-
tron scattering and p-mesic x rays. (b), (c), and (d) are
proton, neutron, and total (neutron+proton) density dis-
tributions calculated from the three-fluid model.

Rise S
Skin thickness
(& 2)1/2

p

Three-fluid model

0.122
2.14 fm
5.472 fm

Ref. 5

0.125
2.16 fm
5.481 fm
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ing experiment because of the factor 1+lvr'/c' in
(3.18).

The value 10.4 MeV for K, determined in this
fashion provides us with a rather strong hold on

the values of the E parameters. For example,
with K»= 25 MeV and K,~/K5, = 3 we have, using
expression (3.11), K,2=4.8 and K„,=1.6.

In the present model, the neutron density is ob-
ta.ined by taking p„=p, —p2, with p2 given by (20),
and then smearing p„out in the same manner as
p2 in (23) with the same set of para, meters K„R„
and o which gave the best fit for the proton density.
The rms radii are:

TABLE II. Isotopic shift in isotopes of lead. First
three rows are the reduced radii.

Three-fluid model Anderson et al.

'O'Pb

210pb

1.1686
1.1682
1.1679
0.91

1.1987
1.1979

0.79

model is very inflexible with respect to this quan-
tity. Thus, deviations resulting, say, from shell
closure, cannot be incorporated without modi, fi-
cation of the model.

Protons Neutrons Matter
4. ISOSPIN IMPURITIES

( 5 (r 2) 5/2}//ll/3 (3.20)

for 6Pb and Pb. Column 1 gives the results of
the present calculation and column 2 that of Ander-
son et al." A charge distribution of the Fermi
type

p(r) =p [1+e "&" '~ 'j (3.21)

was assumed by Anderson e t al. , with n = 14.37
and 13.95, respectively, for Pb and 2 Pb to ob-
tain the results shown in column 2.

The deviations from the A ' law can be ex-
pressed in terms of &he quantity

(3.22)

Generally, y is found to be less than 1 for isotopes
and greater than 1 for isotones. We computed y
for "'Pb for the three-fluid model and found it to
be 0.9+0.01, while the data of Ref. 14 give y=0.8.
The uncertainties in the former reflect the un-
certainties with which the parameters of the mod-
el have been determined. As can be seen, the

(r2)' ' 5.472 fm 5.348 fm 5.397 fm.

Although the neutron and the matter densities ex-
tend beyond the proton density, the rms radii
(r„2)'/2 and (r 2)' ' are smaller than (r22)'/2 Thi.s
apparently arises because of the central depres-
sion in the proton density.

We must point out here that the shell-model
calculations and also the Hartree- Fock calcula-
tions"'" fail to account for the experimentally
observed central depression. This indicates that
nuclear short-range correlations are better taken
ea, re of in a hydrodynamical model. The require-
rnent of incompressibility of nuclear matter seems
to accomplish this quite effectively; in fact, over-
effectively. (See also Ref. 4.)

In Table II we give the values of the "reduced"
radius r5 (the unit radius of a, corresponding uni-
form distribution) defined by

A detailed description of this problem has been
given elsewhere. ' Since the three-fluid model
plays an important role in that problem we briefly
summarize here the relevant results.

The early calculations of the ground-state iso-
spin impurities"' "used the independent-particle
shell model. They gave values 1 to 2 orders of
magnitude larger than one would expect from P-
decay data. "

Bohr, Damgaard, and Mottelson" introduced the
two-fluid hydrodynamical model to include the
residual interactions. They derived the following
expression for isospin impurities:

f(T,) = [1/(T, +1)]x5.55Z5» x10 '. (4. 1)

I(T5) = (Mpp —
Wp/, ) dv,

1
(4.2)

The values calculated from (4.1) are still too high,
especially for neutron excess nuclei. A shell-mod-
el calculation with a 6-function residual interac-
tion, carried out by the present authors, ' also re-
duces the impurities to about the same order of
magnitude as (4.1).

In the three-fluid model a further reduction
arises in the calculated isospin impurities as
compared with the results of the two-fluid model.
In the three-fluid model the impurities result
from the loss of overlap between the distribution
functions of the protons and the blocked neutrons.
In the two-fluid model the neutrons have to move
in a direction opposite to that of protons to pre-
serve the nuclear-matter density. On the other
hand, in the three-fluid model, the protons and
the blocked neutrons ean both move toward the
surface without violating the incompressibility
because the excess neutrons, i.e., the third fluid,
can move in toward the nuclear center to take
their place. The expression for the isospin im-
purity in the three-fluid model, derived in Ref. 6,
is
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~ TWO — FLUID MODEL
0 THREE — FLUID MODEL

(a)
l ~

~ ~

F0'
~ ~

p b

(b)

Io'—I
~ ~

(b)

OO
0 Oy
0 OOsC

0 ~ .
0

0 o0
0

0

10 I

40
I

l20

A

I

200

FIG. 2. Isospin impurities: (a} two-fluid model of
Bohr, Damgaard, and Mottelson; (b} the three-fluid
model.

p~ is given by (3.13) and p, by (3.8). We must also
take into account the fact that the monopole excita-
tion of some of the proton orbitals does not result
in isospin breaking, because the neutron level
corresponding to the excited proton level is occu-
pied. For heavy nuclei, this means multiplying
impurities from (4.2) by a factor of -~. Isospin
impurities calculated with the help of expressions
(4.1) and (4.2) are plotted in Figs. 2(a) and 2(b).
We note that, as expected, there is a significant
reduction compared with the two-fluid model; i.e.,
by a factor of -6.

5. GIANT DIPOLE RESONANCE

p b

(c)

p b

FIG. 3. Possible modes of vibration in a three-fluid
model.

p~+divp~v~ = 0, g =p~ b, e ) (5.1)

and that no surface vibrations are allowed (rigid
surface):

r.v. =0. (5.2)

In the case of three fluids, four unique modes of
vibration are possible. They are depicted in Fig.
3. The arrow heads pointing upward indicate mo-
tion of the fluid toward the surface, and the ones
pointing downward indicate motion toward the cen-
ter. Mode (a) involves center-of-mass motion
and contibutes only to Thompson scattering. Out
of the remaining three, only two are independent,
because of the constant-density condition.

We shall set up the Lagrangian

2 apply here also; i.e., the nucleus is considered
to have a sharp boundary and only those modes of
vibration are allowed which preserve the condition
that p~+ p~+ p, = p, = constant. In addition to these
we assume that individual fluids are compressible,
l.e. ~

Until now we have been discussing what can be
called a "static" three-fluid model, because no
kinetic energies were involved. We were interest-
ed only in the quantities in equilibrium under the
influence of opposing forces. In this section we
shall include the oscillatory motion of the three
fluids. We shall then derive an expression for the
dipole eigen energies in this model. The relative
strengths of the various modes of vibration will be
determined and an attempt will be made to identify
the mode corresponding to the experimentally ob-
served GDR.

We shall extend the formalism of Steinwedel and
Jensen ' to three fluids. The assumptions of Sec.

L = T —V+A. (p&+ p~+ p, —po),

where A. is a Lagrange multiplier, and

T= —d r Pp~p +~O~b +~e&e

and

ft= r(d„ee„++e„).
4

Then Hamilton's principle states that

)t5L dt = 0.

(5.3)

(5.4)

(5.5)

(5.8)
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If we want to take into account friction damping
and interaction with the electromagnetic field, we
must include one more term in (5.6); i.e. , instead
of (5.6) we have

where

Pp- Pb P —PP
gp Pb eP

po p()

(5L+ 5A)dt = 0, (5.7)
Pb Pe ~ PP

—Pb
gb be Pb

po pp
(5.iS)

where

K4= d'r -mI» ~ '
v~ —v ~ dr~ —5r

po

Pe Pb ~ Pb- Pe
ge =

eP
p

be
po po

vg) pg (v v )p,

—ml'„' '(v, —v,) ~ (5r, —5r,)
po

—m 1',~
' (v, —v~) ~ (5r, —5r~) + ep~K ~ 6r~
p()

(5.8)

(v, —v,)p, ~ (v, —vip,

(v. v~) po (vg v.)»
e eP

p
be

(5.i4)

Here the I's are the damping widths and the 6r's
are the displacements of infinitesimal volume ele-
ments of the fluids. The first three terms are
what we may call the "friction" terms because of
their proportionality to relative velocities, rela-
tive displacements, and the products of densities.
The last term is the Lorentz force

Because of the introduction of the Lagrange multi-
plier A. , the three variations are now independent
and the equations of motion are

Bp.
mp, '+ 2p,. gradg, + mph, —5,.~p+ —p„gradA = 0.

(5.15

K= E+v&xH/c. (5.8)

6v,. = (a/at + v, ~ grad) 5r, ,

6p,. = -div(p, .5r,) .

(5.io)

(5.1i)

Using these and the assumptions made above we

arrive at
p| b, e n~

Bv,.
(EiL+5A)dt= I

I
dtd'r g -mp, '+2p, . gradg, .

j

g;g;+g;g dX) 'g; o K g =0,

(5.12)

It accounts for the interaction with the external
electromagnetic field which supplies energy to
the system.

To obtain the equations of motion from (5.6),
we assume that there is no rotational motion and
make the usual linearization approximation of
hydrodynamics; i.e. , all second- or higher-order
terms in velocities are gradients are neglected.
Since the surface is rigid, all terms evaluated at
the surface in performing partial integrations van-
ish. This implies that coupling between surface
oscillations and the dipole vibration are not taken
into account. This assumption simplifies the der-
ivation tremendously. It can be easily incorpor-
ated after quantization of the motion. "

Before proceeding further, we express the
variations in v, and p, in terms of 5r,.

~0

m—~ —2V g. —m divf +V y=0. (5.16)

Eliminating A. we obtain two independent equations
of motion

tg ~ 0

m —~ ——' —2V'(g —gg —m div(f —fg =0,

(5.17a}
~ 0 ~ g

m —g ——' —2V (g —g ) —m div(f g
- f ) = 0 .b e b e

(5.17b)

To solve (5.17) we (i) express f, in terms of p,
using the equation of continuity, (ii) eliminate p,
in (5.17) with the help of the condition of constant
total density, (iii) approximate p, /p, by A/N, out-
side the differentials. Here N~=Nb=Z and N, =N
—Z. The equations of motion become

my(p', —p'J —v'(n~p~- n~g+m(y~p —y~g =0,

(5.18a)

m pp+~ pg —&'(P~~+ ppJ+m(5u ps+ 6a p) = o
A

(5.18b)

We take the divergence of (5.1) and neglect non-
linear terms. Furthermore, since divE = 0 for an
electromagnetic field and div(v~ xH)/c is a, second-
order term, the equations of motion reduce to
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u, =2(2K„-K„+2K„),
o.'~= 2(2K'„+2K', —K,q),

P, = 2(-K„+2K„+2K„),

P, 2=(K„+4K +K,g,

yq
= 21 q~- I ~, +Nr, ~/Z,

y~= 2r~~+Nr~, /z —r,p,

5, = r„+-Nr„/z+Nr„/(N z},-
6,= r»+N'r „/[z(N- z)]+zr„/(N- z).

(5.20)

of spherical Bessel functions as

q,(k, , r) = Q C',.(i)1,(k,~)l,.(e, y),

(5.26)

The condition for the existence of a dipole reso-
nance can be obtained by combining the boundary
conditions r v, ~, „=0with (5.15). This yields

(-2r ~ gradg, + 5,~ r K+ r ~ gradh) ~„s= 0.
(5.27)

On adding the three equations (5.27), the terms
containing g's drop out on account of (5.13}and we

obtain the following expression for grad%, :

Let us now assume that the solutions of (5.18) are
of the form

grae. („„=--,'r k(„„.
Substitution of (5.28) in (5.27) results in

(5.28}

p,(r, I) = p~+ q,(r)e

py(r~ &) = p~ + 'gy( }re
This leads to the time-independent equations

(n, 'v+k, ')ri, (a,v—'+k,')q„=0,

(p~v'+ I~') q~+ (p,v'+ I,') q, 0, =

(S.22a)

(S.22b)

r 'gradR'p~r=s = sr 'K l~=s ~

r ~ gradg, („„=-&r K~„„.

(S.28a)

(5.28b)

(5.28c)

Using the condition p~+p~+ p, = po we can eliminate

p, and p, from any two of the above equations to
yield

k~' = m(u'(A/z +iy,/a),
k ~~ = m(u'(A/Z+iy Ju)),

{s.23)
I,' = m~'[a/(N —z) +is,/~],

I,' = m(u'[AN/Z(N —Z) + is/(u].

(5.22a) and (5.22b) can be reduced to a single
fourth-order partial differential equation

[(n,p, + p~ngv4+(k, 'p, +I,'o~+k, 'o, pv'

(C/p, )r gradp, („„=r K~„„,
where the constant C is given by

(K„-K„)(K„-K„)
be Pb

2K~, + K~~

KeP+ 4K~, +E~~
'

For "'Pb, with the K parameters of Sec. 3,

(5.30)

(5.31)

(5.32)

(v'+k, ')(v'+k, ') q~ = 0

with

+(I; k,'+I,'k, ')]q, = 0

(s.24)

(s.2s)

8

&~ „=, (c/p. )

E is the electric field and 8 is the angle between
E and r. Thus from (5.26)

(s.33)

For the dipole resonance, (5.30) can be written as

kp P~+l~ np+k~ P~+l~ e~
-k,' 2(a~P, + P~o.)

, F,(1+ir,/u))

F,(1+ir,/~)
' (S.2Sa)

q,(k, , r) =Cf,(i)j,(kg) cosg (s.34)

~(.)
eE &j,(k,R)

(c/p, ) sr

eER
=( / }[j,(k;R}—k,Rj,(k,.R)] '.c po

(S.3Sa)

(s.3sb)

and dropping the subscript 10, ere finally obtain

Let us ignore the imaginary parts of k,' and k,'
for the moment. Then for 0 Pb the substitution
of the K parameters obtained in Sec. 3 yields

k, = 0.0238m(u'; k,' = 0.240m(u'. (5.25b)

The solutions of (5.25) can be expanded in terms

The poles of C~(i) will correspond to the dipole
resonances of the system. These poles occur at

k';R=2. 08, 5.95, 9.20, 12.42, . . . . {5.36)

It has been shown by Steinwedel and Jensen that
the lowest resonance exhausts about 86 jq of the
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dipole sum rule. The lowest dipole resonances
of 'O'Pb corresponding to the k,.' given by (5.25b)
occur at 13.3 and 4.44 MeV, respectively.

The giant dipole resonance in 'O'Pb occurs
experimentally at around 13.5 MeV. To identify
the theoretical 13.3-MeV resonance with this
resonance we shall have to show that almost all
of the dipole strength is associated with this mode
and almost none with the one at 4.44 MeV. To see
if it is really so, we shall compute the integrated
cross sections for the two modes.

It is obvious from (5.21) and from the condition

pp+ pg+ p~ = p() that

(5.s7)

since the functions q~, q~, and g, are all of the
form (5.34) we have

TABLE III. Dipole eigen energies and ratio of the di-
pole strengths as functions of K~&//K&~. The quantities

K» and K, are kept fixed at 25, 2 and 10,4, respectively.

K~e

Kgq

Dipole energies (MeV)
Mode 1 Mode 2

O.lnt (Mode 1)
O'I~g (Mode 2)

4.87
4.57
4 44
4.37

426
515
576
620

dF'; 1
dt W;' (5.41}

&,. is the resonance frequency and I „, is the radia-
tion width of mode i. This latter quantity is given

by

c~(i)+c'(i)+c'(i) = 0. (5.35)
where 8",. is the stored energy. The power radi-
ated at resonance is

Substituting i)~ and q, in (5.22a) we obtain the fol-
lowing relation between C~ and C ~

C~(i) -o.P,.'+0,'
(5.s9}

C'(i) -o.,k +k ' '

The amplitudes in the two modes calculated using
(5.38) and (5.39) are shown in Figs. 4(a) and 4(b)
with the normalization [C (i)] +[C (i)] +[C (i}]
In the first mode, corresponding to 13.3 MeV, C'
and C~ have a phase opposite to that of C, whereas
in the second mode p~ and p& move together and

p, moves in the opposite direction. The lengths
of the lines indicate the relative amplitudes. The
relative amplitude for the protons is much larger
in the first mode than in the second one.

We now calculate the ratio of the integrated
absorption cross sections in the two modes. The
classical integrated cross section in terms of the

radiation width is given byxa'2o

dW;' = p(u, '[c'{i)xd]',

where P is a radiation constant, C'(i) &d is the
dipole moment in mode ~, and

kv ezcos6). (5.4s)

w,. = —,'G,.[c'(i)] 'x, {5.44)

c '(i) ' c '(i) c '(i) '
i Pb C P(&) be CP(i) C P(i)

'c'(i)
eP CP(i}

(5.45)

Using (2.3) and (5.34), the stored energy W, can
be written as

v; „,(i) = sr'(C'/u, .') 1 „, (5.40)
X=~[dv[q, (f ~) cose]'/p, '.

Therefore the expression (5.41) reduces to

I „;= constant x &u,.'/G, ,

(5.45)

Cb where the constant does not depend upon the mode.
Thus the ratio of the two cross sections is

o;„,(1)/o; „,(2) = (u, 'G, /(u, 'C, . (5.45)

((j) 15.3MeV mode
CP

(b) 4.44 MeV mode
Ce

FIG. 4. Relative amplitudes of three fluids in the bvo
giant-dipole-resonance modes.

For the values of the para, meters K used in Sec. 3

this ratio is found to be 576. That is, the 13-MeV
mode is found to be about 600 times stronger than
the 4-MeV mode.

As noted earlier the value of 3 assigned to Z~, /
K~, is rather uncertain. Therefore we have com-
puted the dipole eigen energies and the strength
ratios of the two modes for values of this ratio,
ranging between 1 and 4. The lower limit was
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slope of this line is precisely -0.3330, implying
an A ' ' dependence. Experimentally the A
dependence is found to apply well for A & 100 nuclei.
For lighter nuclei, the collective model becomes
inaccurate. Therefore, the A "' dependence ob-
tained from this model is not expected to give
good agreement with experiment for the light nu-
clei. It should be pointed out that the K's have
been assumed to be independent of A. This is not
true, but their variation with A is small. Devia-
tions from the A. ' ' dependence should be expected
if the A dependence of the K's is taken into account.

CONCLUSIONS

FIG. 5. A dependence of the giant-dipole-resonance
energies in the three-fluid model.

imposed by the fact that the proton-neutron inter-
action is greater than the neutron-neutron inter-
action. The results are contained in Table III.
Here the values of K» and K, were kept fixed at
25.2 and 10.4, respectively. We note that the
eigenvalue at 13 MeV is almost independent of
variations in Z,~/K„,. Also, the eigenvalue at
about 4 MeV changes only by about 10% in this
range. The ratio of the integrated cross sections
is seen to vary from 400 to 600. Thus most of the
strength remains in the 13-MeV mode.

The expressions (5.25a), (5.35b), and (5.36) do
not provide a transparent form for the A depen-
dence of the eigenfrequencies. But, using the set
of parameters of Sec. 3 we can calculate the GDR
energies for the entire range of neutron excess
nuclei. This was done for a number of nuclei be-
tween 'Ti and "'U. The results are shown in Fig.
5. We have plotted log,g aga.inst log,g. The

A three-fluid hydrodynamical model for neutron-
excess nuclei was introduced to take into account
the difference in the interaction of excess neutrons
and of the remainder of the neutrons (the blocked
neutrons) with protons. Equilibrium density dis-
tributions, isotope shifts, giant dipole resonances,
and isospin impurities were studied within this
formalism. The results show that the three-fluid
model is a definite improvement over the two-
fluid model in calculations of density distributions
and isospin impurities. While in these cases the
results are qualitatively consistent with previous
calculations, a qualitative change arises with
respect to the giant dipole resonances. Namely,
in the three-fluid model there exist two indepen-
dent modes instead of the single dipole mode in
the two-fluid model. Numerically, for '"Pb, one
lies at 13.3 MeV and the other at about 4.4 MeV.
The former is stronger (by more than 2 orders of
magnitude) and is identified with the observed
giant dipole resonance. The giant-dipole-reso-
nance energies are found to obey an A ' ' law.
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