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The solvable two-level pairing model is used to test two new number-conserving approxi-
mations. These approximations are compared with the exact results, with perturbation the-
ory, with the BCS method, and with the projected BCS method of Kerman, Lawson, and Mac-
farlane. It is found that second-order perturbation theory and one of the tested approxima-
tions work rather well for not too high values of the pairing-force strength, while for higher
values the other approximation turns out to be quite good.

I. INTRODUCTION

The first step in many nuclear calculations is
made by use of the BCS method. However, in this
procedure an important symmetry of the system
is broken; namely, the wave functions are not
eigenfunctions of the number operator. The dis-
persion in the number is of the order of N' ',
where N is the number of the.particles in the sys-
tem. This is almost negligible in the theory of
superconductivity, whence the BCS approximation
originated, but its spurious effects may be quite
considerable in the nuclear case. Another draw-

back inherent in the BCS approach is, as is well
known (see, e.g. , Hogaasen-peldman, ' Rho and
Rasmussen, ' Mang, Rasmussen, and Rho'), that
there may be a critical value of the pairing-force
strength below which there is no solution to the
BCS equations, except for the trivial one that
gives no configuration mixing at all. This aspect
of the BCS approach is clearly unphysical and,
again, may be traced to the dispersion in the num-
ber of the particles.

Some time ago, Unna and Weneser (UW) put
forward a method by which the spurious effects of
the dispersion in the number of particles are
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eliminated within the random-phase approximation
(RPA). In a more recent work, ' a variational ap-
proach to the nuclear many-body problem was sug-
gested. This approach takes into account (approxi-
mately) two-body correlations in the ground state.
In the present note we study these two methods by
their application to the exactly solvable two-level
pairing model (see e.g. , Refs. I, 2, and Brown' ).
The results of these methods are compared with
the exact ones, with second-order perturbation
theory, with the BCS method, and with (an approxi-
mate version of) the projected BCS method of Ker-
man, Lawson, and Macfarlane (KLM}." We find
that perturbation theory (which to the best of our
knowledge has not as yet been applied to this prob-
lem) yields surprisingly good results for not too
high values of the pairing-force strength. This
conclusion holds also for the variational approach
(E). These two approximations, which are rather
simple and by their nature number conserving,
may be especially useful in those cases where
there is no solution (except for the trivial one) to
the BCS equations. The method of projection be-
fore variation, "which gives nontrivial solutions
in those cases, is certainly more cumbersome
than the above-mentioned methods. For higher
values of the interaction we find that the UW meth-
od yields quite good results.

II. BRIEF SURVEY OF MODEL

AND APPROXIMATIONS

A. Model

The pairing-force Hamiltonian is given by

m&0

L, = ,'(N ———'g, ') .

(6a)

(6b)

It is also possible to introduce a total quasispin
operator J by defining

J=S+I . (8}

In terms of J, our Hamiltonian assumes the form

B= ~eg2 + 2eLz- GJ+J

which is convenient for studying the strong-
coupling limit.

We limit ourselves to a system with an even
number of particles and to the study of the ground
state and the first excited state 0+. The relevant
unperturbed states in that case are

ASS, , LL,)

with an obvious notation. Since the S and L opera-
tors do not change the quantum numbers S and L,
we shall omit ~ and L in the following, keeping in
mind for calculational purposes that the relevant
(S, L) multiplet is defined by

(i0)

The unperturbed ground state ~C'g of the N-parti-
cle system (& being an even integer) is

The S operators commute with the L operators,
and each set of operators by itself satisfies angu-
lar momentum commutation relations. In terms
of these operators, the two-level pairing Hamil-
tonian reads

H=-,'eg, '+2eL, G(L—„+S,)(L +S ).

Here

a,~ a,. ~ a,' ~.a,. l

We restrict ourselves to the numerically solv-
able case of just two levels, which we designate
by the indices 1 and 2. The degeneracy of the ith
level (i= I, 2) is g, i.e.,

The relevant states of the N-particle system are
obtained by the application of the operator L +~
to ~c',). It is rather easy to calculate the matrix
elements of H between these states and then diag-
onalize the resulting matrix.

B. BCS Approximation

The BCS theory is well known. For the present
model, the BCS ground-state energy is

The energy difference between the two levels is
We choose

1 0~ 62=6 ~ (4)

E, = fg,' v ' —K'/G —-'G(g 'v, ' +g 'v, '),
while the energy of the first excited state 0+ is
given by

(i2)

Now, introduce the two sets of quasispin operators
(see, e.g. , Refs. 2 and 6}:

E(0+) =E~+ 2 min(E» E,] .
Here,

S,= g( I)'1 t . t=S t,
m&0

Sg ——~(N1 —2g, ),

(6a)

(6b)

(i2 + g2) 1/2

[(e y)2+ ~2] 1I2

(i4)

(i6}
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C. Projected BCS Method (KLM)

According to this method, 7 matrix elements of
physical quantities should be calculated with wave
functions obtained by projecting out and normaliz-
ing the part of the BCS wave function corresponding
to the correct number of particles. Actually, in
the present case we have not carried out the exact
calculation in accordance with the above prescrip-
tion, but have carried out the calculation only up
to order g, as discussed in Ref. 4.

D. Elimination of Number Dispersion

in RPA (UW)

Within the framework of the RPA it is easy and
straightforward to separate out explicitly any
desired degree of freedom. "" In our case, this
is the number degree of freedom in the BCS treat-
ment of pairing correlations. The method ex-
pounded in Ref. 4 (see also Refs. 9-12) identifies
and removes the spurious effects of the BCS treat-
ment (within the RPA).

E. Second-Order Perturbation Theory (PERT.)

ag, —ag, +X —2&0

we have a "natural" boundary for the validity of
the present method, because f as a function of G

has then a pole at

G=lk(kg, '- 2g, '+& —2) j '. (22)

Obviously the assumption that f is small goes
wrong when one approaches the vicinity of the pole.

F = fL+S +f*SiL

The variation (up to second order in f) yields

f= =."Gll.e ——:(4.'- -.'g, '+~ - 2)Gl. (»)
The ground-state energy in the present approxima-
tion is given by

(20)

while the energy of the first excited state 0 is
given by

z(0')=&C, IS,L a L,S IC;&I&a.lS, L L„,S Ie.&.

(21)

It should be noted that for the case

There is nothing novel here about second-order
perturbation theory, except possibly for its appli-
cation to the present problem. Its calculation for
the two-level model is quite easy; the only states
which may contribute to the perturbation of a state
IS„L,& are IS„I,& itself (in first order) and
IS,+1,L, —1), IS, —1, L, +1) (in second order).

-1.33

F. Approach by Variationally Determined

Transformation (F) -6.42

This approach' starts with an approximate cal-
culation of two-body ground-state correlations,
which are introduced by means of a unitary opera-
tor e' . The approximate ground state is written
as

l@0& =e'"IC,&.

0.90

0.08 0.16 0.24
GA

0.32 0.40

Here leg is the unperturbed ground state, and E
is a one- and two-body Hermitian operator to be
determined by minimizing &4'o IH I +,&. Assuming
that higher powers of + than the second may be
neglected, the variation leads to a set of linear
nonhomogeneous equations for the matrix elements
of E. Then, we define H'by

+ -1.02
D
tLj

-2.95

0.08 0.16
G/&

0.24 0.32 0.4b

a'=e '~ae'~.

In lowest order, the diagonal matrix elements of
H' are taken as the eigenenergies of the system.
For reference purposes, we have dubbed this meth-
od the I" approximation.

For the present model, + assumes the form

FIG. 1. (a) The ground-state energy E~/E for N =10,
g2 =10, as a function of the pairing-interaction strength
G/e. Dots denote the exact solution. The critical inter-
action strength below which there is only a trivial so'lu-
tion to the BCS equation is G,/& =0.1. The results of the
P approximation are plotted up to the vicinity of the pole
(see text). (b) The same as in Fig. 1(a) for the energy of
the first excited state E(0+)/e.
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0.16 0.24
6/e

0..40

+o-o6
4J

0.03

0.08 0.16 0.24
6/e

0.16 GAG

FIG. 2. {a) The same as in Fig. 1{a)fox'%=6. Note
that in this case Pf &g~2) there is no critical interaction
strength. g)) As in Fig. 2{a) for E{0+)/~.

FIG. 4. {a) As in Fig. 1{a)for M=4, g2~=4. Note that
1n this case the E approxlInatlon has no pole, and no
critical interaction strength exists for the BCS approxi-
mation. (b) As in Fig. 4(a) &or E(o")/».

III. RESULTS AND DISCUSSION

~ 2AB
hJ

For a comparison of the various approximations
we have fixed the degeneracy of the lower level
to be

-4.10

1.22

0.16 0.32 0.40

l

(b)

and have varied values of g, ' and N as parameters.
Typical x'esults ax'e px"esented ln Pigs. I-4q whex'e

the exact values of the ground-state energy (E,)
and the energy of the first excited state [E(0')],
together with the approximate results, are plotted
as functions of the pairing interaction strength G.

The first conclusion to be drawn from the exact
and approximate results is that the BCS approxi-
mation pmpose yields relatively poor results both
for the ground state and for the first excited state
energies. For the cases in which

N& g1,
-lA5—

Gc/g

0.08 0.16 0.2A
6/e

OAO

FIG. 3. {a) As in Fig. 1{a)fox @22=6. The critical in-
teraction strength is G,/c =0.14. {b) As in Fig. 3{a) for
E (0+)/e.

there is always a nontrivial solution to the BCS
equations, but even in these cases the BCS xesults
for E, and &(0') are unsatisfactory. This is un-
doubtedly due to the spurious components con-
tained in the BCS wave functions, which are not
eigenfunctions of the particle-number operator.
The (approximate) projected BCS method (ELM)
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and the UW method aim to remedy this defect. In
all the cases considered the (approximate) KLM
and UW results are practically identical. In con-
trast to the BCS results, the KLM and UW re-
sults are very good for the ground-state energy
and fairly good for the energy of the first excited
state. Both energies improve with the increase of
the pairing strength G. This latter aspect may
also be verified directly in the symmetrical case
(g,m=g, 2=@) in which the BCS equations (and con-
sequently the KLM and UW approximations) are
solvable analytically, ' and the approximate results
may be compared with the exact ones in the strong-
coupling limit. The fact that E, is better repro-
duced in the (approximate) KLM and UW methods
than E(0') is not really surprising, since both
methods employ the BCS u's and e's which are de-
termined from the variational principle for the
ground state.

Being based on the BCS method, the KLM and
UW approximations still suffer from the other
drawback of the BCS method; namely, the exis-
tence of a critical value for the interaction
strength, G„below which the BCS equations have
only the trivial solution. Consequently, the KLM
and UW methods yield only trivial results in this
region. The existence of a G, does not imply any
real phase transition in the model (as is evidenced
by the exact results), but is merely a spurious
effect of the BCS treatment. Nonetheless, it was
pointed out in Ref. 1 that none of the approxima-

tions considered there were reliable in the neigh-
borhood of G,. The method of projection before
variation" is devised to cope with this situation.
However, it appears that much simpler methods
may be adequate. Both second-order perturbation
theory and the & approximation are seen, in all
the cases considered, to yield very good results
both for E, and for E(0') for not too high values
of G. When there is a critical value G second-
order perturbation theory and the E approximation
work well up to G, and above it, at least until the
KLM and UW approximations start to be reliable.
This holds also in the cases when there is no
critical value for the pairing-interaction strength.

In conclusion, it seems that whenever the BCS
approximation, and especially its number-conserv-
ing extensions (KLM and UW), do not work due
to the weakness of the interaction, perturbative
or semiperturbative (E) methods may be success-
fully applied. In this sense, second-order pertur-
bation theory and the I' approximation may be re-
garded as complementary to the KLM and UW ap-
proximations, the first pair of approximations
being valid in the very same region where the
second pair is invalid.
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