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A method for the evaluation of the average angular distribution, over a range of energy, of
particles evaporated in succession from a compound nucleus is presented. The method is ap-
plied to the analysis of the angular distribution in the reaction Fe’®(,p)Co®? and the reaction
cu®¥(ct?,p)se™. The analysis indicated that nuclei at high excitation have rigid moments of

inertia.
I. INTRODUCTION

In the present paper a new method for the calcu-
lation of the angular distribution of particles evap-
orated in reactions proceeding via a compound nu-
cleus is discussed. The method is particularly ap-
plicable to the study of angular distributions for re-
actions in which states in the continuum decay into
a wide energy range of final highly excited states.
The method suggested in this paper offers an alter-
native to the method developed by Douglas and
Macdonald.! Douglas and Macdonald generalize
the theory of angular distribution between discrete
levels to make it applicable to transitions to the
levels in the continuum. The method described in
this paper consists of a straightforward applica-
tion of ideas related to the concepts of the com-
pound nucleus and reciprocity to the study of angu-
lar distributions. The present method has the ad-
vantage of yielding simple forms for the angular
distribution which do not require the knowledge of
W and Z Racah coefficients. This simplicity stems

from the fact that one calculates the average angu-
lar distribution over a wide range of final states.
The present method has the additional advantage of
being applicable to the evaluation of the angular
distribution in reactions in which many particles
are evaporated in succession.

It is shown that the calculated angular distribu-
tion is very sensitive to the value of the spin cut-
off parameter. Therefore, a comparison between
the measured value and calculated value of the an-
gular distribution offers a very convenient tool for
the determination of the spin cutoff parameter. In
particular, the analysis of angular distribution
based on the present method suggests that nuclei
at high excitation have rigid moments of inertia.

One expects intuitively that the spin and polariza-
tion of the compound nucleus affects the angular
distribution of the emitted particles. Ericson and
Strutinsky® and Ericson*? derived expressions for
the angular distribution, in the classical limit, for
particles emitted from compound nuclei. In most
of their considerations the spin of the compound nu-
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cleus is polarized so that this spin is in a direction
perpendicular to the beam of the incident particles.

The spin of the compound nucleus affects not only
the angular distribution of the emitted particles but
also their spectra as shown, among others, by
Kammuri and Nakasima,® Pic-Pichak,® Broek,’
and Thomas.®

The effect of the spin and polarization of the com-
pound nucleus on the angular distribution of emitted
y rays has been studied both quantum mechanically
and in the classical limit.°"*® The angular distri-
bution in which a few y rays are emitted in succes-
sion has been discussed.!*

In Sec. II the theory is developed. The method
is applied to the analysis of experimental data in
Sec. III. The results are discussed in Sec. IV.

II. THEORY

First the angular distribution for one emitted
particle is evaluated. Later an expression for the
angular distribution for the second emitted particle
is derived. From this treatment it can be seen
how this method can be generalized to obtain the
angular distribution of any particle in a cascade.

Let ¥, &5, and U, be wave functions of the
compound nucleus, the residual nucleus, and the
outgoing particles, respectively, characterized by
the sets of quantum numbers «, 8, and y, respec-
tively. The wave function ¥, can be expanded as

\I/a=62a§‘,y<1>ﬁuy. (1)
WY

The angular distribution of the emitted particle
P(9, ) is given by'®

PO,0) = f oY o dr )

In Eq. (2) the volume element d7’ includes all co-
ordinates except the solid angle of the outgoing
particle dQ =sinf dfd¢. The coefficient ag‘7 can be
written as

ina
agy=lag,le ®7. (3)

The wave function of the emitted particle U y can
be written as a product of a radial function R, and
an angular function 4,

Uy=R,A,. (4)

In the present paper interest is focused on the av-
erage angular distribution (P(9,¢)),, over a range
of energy E such that

EytE/2
<P(e,¢)>av=fle Loy, PLO9)E. (5)

In Eq. (5), the averaging is over the states of the

compound nucleus. This yields
(P(@, ¢))av=z;la§‘,-,'2|Ayf2- (6)
B,y

The simplified expression in Eq. (6) stems from
normalization and from the relation

oo Lo
1 -17 . . in
Efe ¥ BYAE =0 40550y, - 1)

The above relation, Eq. (7), is due to the indepen-
dence and randomness of the phase factors ng‘,y(E)
for different channels. In particular, if a+a’,
B#B’, or y#y’, the integrand exp{: [ng‘,y(E)

-ng ,(E)]} oscillates very rapidly, and when in-
tegrated over a wide range of energy the value of
the integral is negligible in comparison with 1;
therefore the integral is approximated by zero. It
is easy to see that for a=a’, B=8’, and y =y’ the
integral is 1.

Now the discussion is generalized to a situation
in which two particles are emitted in succession.
The wave function ¥ , after the emission of two
particles emitted in succession can be expanded as

2 ag

Y1

= B

wawﬁl-ﬁyhﬁ’z aB;'yzq)BZUYlUyz' ®)
In Eq. (8), Uy, and U, are the wave function of the
first and second emitted particle, respectively,
and &g, is the wave function of the residual nu-
cleus after the emission of two particles. The an-
gular distribution P(8,¢) is given by

=01<P1(6’ ¢)>av +02<P2(0a ¢)>av .
0, +0,

(P(0,0))ay 9)
In Eq. (9), (Pl(er $)) v and <P2(9: $)) .y are the aver-
age angular distributions for the emission of the
first and second particle, and o, and o, are the
cross sections for the emission of the first and
second particle.’® The angular distributions are
given by

P, <1>)=fll/a*d/ad"r{, (102)

P,0,0)= [y ary . (10b)

In Egs. (10a) and (10b) the volume elements d7}
and d7} include all the coordinates except the an-
gular coordinates of the first emitted particle and
the second emitted particle, respectively. For
the angular distribution of the first particle one
obtains

<P1(93¢)>av= Z;

B11B2s¥1:72

) BZ> IagthzIAhlz ’
11

8
a5, Plagy , L4, 2

(11)
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The angular distribution of the second particle
becomes

(Py(0,9) = 25

'aa |2|a81 ’2|A |2.
8087y By, 19807, V2

(12)

The form for the angular distribution of the first
particle in Eq. (11) is equivalent to the form de-
rived in Eq. (6) when only one particle is emitted.
This is consistent with causality, since the angu-
lar distribution of the first particle does not af-
fect the angular distribution of the second particle.
Equation (12) can readily be generalized for reac-
tions in which more than two particles are emitted
in succession.

The square of the absolute value of the coeffi-
cient aé’iy represents the probability of the decay
of a state of the compound nucleus characterized
by quantum numbers a=(E, J, M) to a state in
which the residual nucleus is characterized by
quantum numbers B=(E’,J’,M’) and the emitted
particle is characterized by a set of quantum num-
bers y=(€,l,j,m). Here and in the following dis-
cussion E’'=E - B - €, where B is the binding en-
ergy. These quantum numbers do not describe the
states completely but are sufficient for the present
discussion of angular distributions. The coeffi-
cients |a§‘.y |2 are written as'®

lag: 3%yt e 1iml>=T(E,J,M; E", J",M'; €, 1, j, m)

_KS(E,J,M;E", J',M'; €, 1, j,m)
- L(E, J, M) ’

(13)

In Eq. (13), S(E,J,M;E’,d',M’;€,1, j,m) is the de-
cay rate (or transition probability per unit time
per unit energy) for a transition from a state char-
acterized by quantum numbers E,J, and M to a
state characterized by quantum numbers E’, J’,
and M’ and emitting a particle characterized by
quantum numbers €, I, j, and m.

The coefficients T(E,J,M;E’,J'M’;€,1,j,m) can
be reduced using the Wigner-Eckart theorem’

T(E,d,M;E',J',M; €, 1, j,m)

J j J’>2
T(E,J;E’, d’; €l])<MmM' .
(14

In Eq. (14) (-J 7 J7) is a 3-j symbol. Therefore,
the average angular distribution takes a particu-
larly simplified form

Ey+E/2

(P(6,9))av= Z J dE'T(E,J'E’, J'; €,1, )

Ey-E/2
I 0

X(—Ajjn _7;/][,') [A,;m(8,9)]2. (15)

In Eq. (15) the averaging is over the states of the
residual nucleus.

For particles with intrinsic spin zero the func-
tions A;,(6, ¢) become the spherical harmonics
Y, a(0,9). For particles with intrinsic spin these
functions are linear combinations of products of
spherical harmonics with spin eigenfunctions.
The structure of the terms T(E,J;E’, J’;€,1,j) is
discussed in detail in Ref. 16; in particular, the
decay rate S(E,J; E',J’; €,1,7) is given by

o(€, L, j; E!, 3B, J)L
87%R 2

-]

(16)

S(E,J;E',J';€,1,5) =

In Eq. (16), R is the nuclear radius, and the criti-
cal angular momentum [, is given by

I, =RV2me ki . (17)

The density of levels p(E, J) appearing in Eq. (17)
can be written as a product of a spin-dependent
part and an energy-dependent part?:#:18:1% g5 that

p(E, ) =p(E)(2J +1)e™7*/2% (18)

The spin cutoff parameter ¢ is related to the nu-
clear temperature T and the nuclear moment of
inertia g by

o2=9T /h?, (19)

The energy-dependent part of the density of levels
p(E) is taken from the work of Gilbert and Camer-
on.2° The cross section for the inverse reaction
o(e, l,j;E',J"; E, J) is written as'®

ole,l, j;E', I E, J) = (2 + 1)mx>T, (€) . (20)

The transmission coefficients T, ,(€) are obtained
from the optical-model potential.

So far, the angular distribution from a single
level to a continuum of levels has been considered.
However, in the reactions under consideration
many levels of the compound nucleus are populat-
ed, so that the angular distribution has to be
weighted by the probability of the formation of the
compound nucleus in a state with an energy E,
spin J, and spin projection M. This probability
is proportional to the cross section of the forma-
tion of the compound nucleus in a state character-
ized by these quantum numbers. Let the bombard-
ing particle have an energy €, orbital angular mo-
mentum /,, and total angular momentum j,.

0(€gs Loy Jos Ey I3 E, I, M) = (25 + l)nsz,o.jo(eo)N(M) .
(21)
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In Eq. (21), E,, J, is the spin and energy of the
target.

When either the target or the projectile have
zero spin, and either the projectile or the target
have a spin J,, the function N(M) takes the form

NM)=1/(2J,+1) for |M| <d,, (22a)
NM)=0 for |M]|>d, (22b)

(the direction of the beam is taken as the axis of
quantization). The spin of the compound nucleus
may be much higher than J, because of the orbital
motion of the projectile. This limited range of M/
values affects the angular distribution consider-
ably.

When both target and projectile have nonvanish-
ing spins, the function N(M) depends on the num-
ber of ways this M value can be obtained. The cal-
culation is a little more elaborate, but such cases
are not considered in the present paper.

III. COMPARISON WITH EXPERIMENT

For comparison with experiment, two reactions
were chosen, one an a-induced reaction in which
states with moderate spin of the compound nucleus
are populated. The other reaction chosen is a
heavy-ion-induced reaction in which high-spin
states are populated.

For the reaction Fe*%(a, p)Co®® the angular distri-
bution has recently been measured by Fluss et al.?*
A comparison between theory and experiment is
shown in Fig. 1. In Fig. 1 there are three curves
representing the calculated values of the angular
distribution assuming a quarter rigid moment of
inertia, half rigid moment of inertia, and rigid
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FIG. 1. The angular distribution in arbitrary units for
emitted protons for the reaction F5¢(a, p) Co®® in the cen-
ter-of-mass system. The solid curve, dashed curve,
and dotted curve represent calculated angular distribu-
tions using rigid-body, half-rigid-body, and quarter-

rigid-body values of the moments of inertia, respectively.

The curves are normalized so that the integral [P(Q)dQ
is the same for all three curves.
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FIG. 2. The angular. distribution in arbitrary units for
emitted protons for the reaction Co%%(C!?,p)Se™ in the
center-of-mass system of coordinates. The solid curve,
dashed curve, and dotted curve represent calculated
angular distributions using rigid-body, half-rigid-body,
and quarter-rigid-body values of the moments of inertia,
respectively. The curves are normalized so that the
integral [P(Q)dQ is the same for all three curves.

moment of inertia.

For the heavy-ion-induced reaction Cu'3(C*2, p)Se™
the angular distribution of the evaporated protons
has been measured by D’ Auria et al.?> Again the
angular distribution has been calculated for three
different values of the moment of inertia. The
results of a comparison between theory and ex-
periment can be seen in Fig. 2. It can be seen
that for both reactions the experimentally mea-
sured values of the angular distribution fall clos-
est to the calculated values of the angular distri-
bution assuming a rigid moment of inertia.

IV. DISCUSSION

Angular distributions of particles evaporated as
a function of the moment of inertia were calculated.
The angular distribution depends on the spin cut-
off parameter o, and this parameter is a function
of the nuclear moment of inertia. All calculated
results are based on an energy-dependent spin
cutoff parameter. The moment of inertia is ener-
gy independent. However, the spin cutoff param-
eter depends on the product of the moment of in-
ertia and the nuclear temperature. The variation
of the nuclear temperature with energy is included
in the present work.

The comparison between theory and experiment
shows that the calculated angular distribution is
very sensitive to the value of the spin cutoff pa-
rameter. Therefore, the angular distribution al-
lows, by comparison of theory and experiments,
an accurate determination of nuclear moments of
inertia.
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In recent years a comparison between measured
and calculated values of isomer ratios has been
used to extract the values of the spin cutoff pa-
rameters. However, the uncertainty in the mea-
sured value of the isomer ratio on one hand and
the lack of knowledge of quadrupole admixture on
the other does not allow an exact determination of
the spin cutoff parameter from isomer-ratio stud-

ies 2.2

A comparison between theory and experiment in-
dicates that the value of the moment of inertia of
nuclei at high excitations is very close to the val-
ue of the moment of inertia of a rigid body. This
result is consistent with the earliest studies of the
effect of the energy and spin on the value of the nu-
clear moments of inertia,?5~27
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