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The Jastrow method is extended to the treatment of tensor forces by the incorporation of
suitable state dependence into the two-body correlation operator, The one- and two-body
parts of the energy expectation value developed in a factor-cluster (Van Kampen) expansion,
are evaluated for nuclear matter. Numerical results are presented for three semireali. stic
hard-core potentials with differing mixtures of central and tensor components. These re-
sults point to the necessity for an examination of three-body cluster corrections to the en-
ere expectation value.

I. INTRODUCTION

The Jastrow approach' ' to the nuclear many-
body problem has a number of features which rec-
ommend it as an attractive alternative to the cur-
rently more highly developed Brueckner-Bethe-
GOMstone schenle. ' Axnong these Rl"6 its concep-
tual simpli. city and its variational character»
along with the possibility of its systematic im-
provexnent swithin the framevrork of the method of
correlated basis functions. ' Of considerable in-
terest at the present time is the practicality, in
this approach, of explicit and unencumbex'ed eval-
uation of thx'ee- and four-body contributions to the
energy expectation value. ~

To date, the Jastrow method has seen detailed
application in the nuclear-matter and other nucle-
ar many-body problems6' ' only for simple central
potentials. The conventional Jastrow trial wave
function, built vrith spherically symmetric two-
body correlation factors, is not adequate for the
treatment of realistic tvzo-nucleon potentials,
which contain tensor and spin-orbit components.
This inadequacy of the Jastrorv approach is devel-
opmental rather than intrinsic; its correction
mill be the aim of this and subsequent studies.
Contributions to the energy from tensor- and spin-
orbit (including "quadratic spin-orbit") compo-
nents may, of course, be estimated by a second-
order perturbation calculation in the correlated
basis generated from the Jastrow function accord-
ing to Ref. 5, and calculations of this nature, us-
ing realistic potentials, are in progress. However,
the essence of the method of correlated basis func-
tions 18 the pl ecept to lncolpol Rte tile Qlost 1Qlpol-
tant correlations at the outset, i.e., in construct-
ing the basis elements and especially that element
(trial wave function) corresponding to the ground
stRte. Thus» ln tx'eRtlng nucleRx' matter %pith l eRl-
istic potentials, correlations induced by the tensor
force should be incorporated directly into the cor-
relation factor E of the basis function E4, where

4 is the ground-state wave function of the Fermi
gas. This may be accomplished by building up E
from two-body functions not only of the magnitudes
of the r;,, but also of (o, r,,)~(o, ~ r;,), c;.o;, and

7, ' [As before, J' must be symmetric with
respect to interchange of the coordinates (space,
spin, and isospin) of any two nucleons. ] The pur-
pose of the pxesent article is to make the first
steps toward such a generalization of the Jastrow
method. As opposed to a perturbative estimate of
tensor effects, this generalization offers some
evident advRntages, especially in the face of R,

weighty tensor component (as occurs in the most
realistic potentials), for which convergence of the
aforexnentioned perturbation expansion may not be
SRtls fRCtory.

In Sec. II we cax'ry out a factor-cluster or Van
Kampen expansion' "of the expectation value of
the Hamiltonian vpith respect to a general corre-
lated wave function of the type E4, where 4 is 3n
independent-particle model function and E intro-
duces dynamical correlations. This expansion
establishes a separation of one-body, two-body»
three-body, . . . correlation effects. In 3ec, GI
the correlation operator E, ox' rather, its tvro-
body part, is specialized to deal eath the presence
of a tensor component in the two-nucleon potential.
%6 then proceed with the analysis of the two-body
contribution to the cluster expansion for the ener-
gy. An expression is given for an effective central
potential whose Haxtree-Pock expectation value
leads to the same result for the interaction energy
as does the bare potential, treated in the two-body
approximation within the present generalized Jas-
trovr scheme. In Sec. IV we outline a very simple
procedure for the determination of the generalized
two-body correlation factor and present numerical
results for three semi. realistic nucleon-nucleon
interactions containing different even-state central-
tensor mixtures. The implications of these re-
sults are discussed in Sec. V. In particular, em-
phasis is placed on the necessity fox' the inclusion
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of three-body (and possibly other higher-order)
contributions in the analysis, at least under the
guise of some associated restrictions on the var-
ation of the generalized two-body correlation fac-
tor. The enumeration and evaluation of three-
body contributions to the energy expectation value
with tensor correlations will be the concern of a
future paper of this series.

II. FACTOR-CLUSTER EXPANSION FOR THE ENERGY
EXPECTATION VALUE

We shall now derive a cluster expansion for the
expectation value E = (O', HC }/(4, 4) of the Hamil-
tonian

of the general type

(2)

where E is an appropriate correlation operator
and 4 is the normalized ground-state" wave func-
tion of A independent nucleons.

The central object of analysis is the generalized
normalization integral

I(P) (4 8(H Ep) 4 ) (3)

corresponding to the quantity H —E„where E, is
the ground-state energy of the chosen independent-
particle model. The desired energy expectation
value may be recovered via

II=T+V= Q t(i)+ Q v(ij),
j.» $&g «A

E =ED+—lnl(p)( 8 0.
9

(4)

with respect to a correlated A-body trial function

The analysis of 1(P) begins with the definition of
subnormalization integrals, analogs of (3) for sub-
systems of the A-nucleon system:

I;(p) =(i (F'(1}exp [p[t(1)—e( ])F(1)(i}

I &(p) =(i I (E (12)exp(p[t(1)+ t(2) +v(12) —e; —e, ])F(12)(ij —j i),

I(,, (p) = ( ijk ( F (123)exp (p [t(1) + t (2) + t(3) + v (12) + v (23) + v (31)—e, —e, -e,]]

x E(123)(ij k —ikj +jki jik+k—ij —kji),

Here i,j, k, . . . are elements of the set (t, . . .ij
of A orbitals occupied in 4. The c; are the single-
particle energies corresponding to these orbitals.
The operators E(1), F(12), F(123), . . . are "appro-
priate" correlation operators for one-, two-,
three-, . . . body subsystems. Clearly there is a
great deal of freedom in their definition. However
in order for the formalism under development to
have physical relevance, we do need to require
that these E's be symmetric in their particle la-
bels and that they possess the "cluster property";
i.e., E(l. . .n)-E(l. . .n —1) for x,„, . . . ,
n = 2, . . . , A. Further, if a hard core of radius c
is present in the two-particle interaction, we de-
mand E(1.. . n) =0 for any );„~c, i =1, . . . , n —1,
n = 2, . . . , A; analogous short-range behavior is to
be imposed for soft cores. It is also desirable
that E(1.. .n ), n = 1, . . .A, be positive definite in
the region of configuration space in which the po-
tential operator for the n-particle subsystem is
finite.

Next, a factor-cluster decomposition of the
above subnormalization integrals is executed

I; =F],
I&, =Yc Y, Yt, ,

I~,.~-—Y; Y, Y~F;,. F» Yas Yg»,

(6)

In the last equation the dummy indices range, sub-
ject to the indicated restrictions, over the set
(i, . . . i„j. Note that these relations merely serve
to define the Y's in terms of the I' s. Inserting
the last of the relations (6) into (4), we arrive at
a factor-cluster or Van Kampen-type expansion
for the energy expectation value:

E =E,+(~),+(~),+(~),+ ~ ~ ~ +(~)„, (7}



1506 RISTIG, TER LOUW, AND C LARK

(~),=Q —In Y(~8 0,

(AE), =Q —ln Y;, ~s 0,

(8)

This expansion may be rendered more explicit by
insertion of the solutions of (6) for the Y's in
terms of the I' s; we find

(~),=p—*

op

on r;, , o;, v, , r;, i,, and (possibly) the relative
momentum p;;, we still choose

F(l) =1,

F(12)= f(12) = f(r;, , o;, o„7;,r, , p;,. ), (11)

but the most judicious choice of E(123), E(1234),
. . . is rendered ambiguous by noncommutivity of
f(ij) and f(jk)." This uncertainty assuredly be-
sets the present attempt to extend the Jastrow
method to deal with realistic potentials. However,
we shall not be forced to confront it until the next
paper of this series, where three-body effects of
tensor potentials will be examined.

Henceforth we confine our discussion to a uni-
form extended system like nuclear matter. Thus
we take

t(1) (i) =e, ~i),

T4 =EO4, (12)

1 ai... 1 sl„lsI, , 1 . si„

8=0

E(123)=f'(r») f(r») f(r»),

E(I. . .A) =F= II f(r;, ) . —
i&j

(10)

If we seek to go beyond this treatment and buiM
subsystem wave functions from two-body functions
depending not only on r, , but also more generally

The general term of (9) is given in Ref. 9.
In the factor-cluster expansion (7) the sth order

term (~)„ involves (irreducibly) exactly n orbit-
als ("hole lines'*) and hence is properly called the
n-body contribution arising from the assumed dy-
namical correlations.

Obviously the factor-cluster formalism just
developed is very general (perhaps too general),
both with regard to the choice of wave function 4
(it can even be exact) and with regard to the choice
of correlation operators F(1), E(12), E(123), . . . .
The vast flexibility of cluster-expansion methods
has received thorough discussion in Ref. 9. Not
only the various Jastrow treatments but also the
unitary-operator method" may be obtained as
special cases of the above formalism. " For the
simplest Jastrow treatment, one sets

E(1)=1,
F(12) = f(r„),

(~).=& (tjl (lF'(»)ft(1)+t(2), E(»)1
i&j

+ g[E (12), t(I)+t(2)]F(12)

+Et(12)v(12)E(12)j ( ij —ji) . (13)

In our work the correlation operator E(12) is as-
sumed to be Hermitian (rather than unitary as in
Ref. 13), so that (13) reduces to

(~),= Z(tj I lklF(»), I t(I)+t(2), F(12)1l
i&j

E+(12)v(12)F(12))(ij -ji) . (14)

For a uniform extended system the differences
between the factor-cluster expansion just devel-
oped and the more familiar Iwamoto- Yamada ex-
pansion" are rather minor: The latter may be
obtained from the former by regrouping contribu-
tions according to the number of independent orbit-
als involved. There is no difference as far as the
two-body terms are concerned. For a finite sys-
tem the differences may be more important.
From an over-all formal standpoint the factor-
cluster formalism appears the more natural. "

III. TV(O-BODY EFFECTS OF TENSOR

CORRELATIONS

Let us proceed with the study of two-body effects
of tensor correlations in nuclear matter, based on

so that I, = Y; = 1 and, hence, BI;/sp =0, (~),=0.
Furthermore, the "normalizing denominators"
I,~~„ I;» ~». . . appearing in (nE)„(d&)„.. . differ
from unity by terms at most O(1/A). Dropping
contributions to E which are of order unity or less
compared with A, the two-body portion of the en-
ergy expectation value is then given simply by (see
the remarks in Ref. 11 on this sort of reduction)
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the formalism just developed. We consider a hard-
core potential with spin- and parity-dependent cen-
tral and tensor components:

v(12) =+~, &c» t

((r, r) (o, r)
12 2 Crl 02r (15)

may be equivalently expressed as

= 'Vc(r)P,P'+ 'Vc(r)P,P
+ s V;(r)Pp'+ s V; (r)Pp
+V'(r)P'S, +V (r)P S„, r&c. (15)

The operators P„P, are, respectively, projectors
on singlet and triplet states of the two interacting
nucleons; P', P are projectors on even and odd
states. The tensor operator

+~00 ~ (21)

Ansatz (19)-(20) is in accord with all the relevant
invariance properties and reduces to the simple
Jastrow choice F(12) f(r») if the functions f',. are
all equal. It should be emphasized that (19)-(20)
allows for different correlations in different spin-
parity states even in the absence of tensor effects,
in which case (20) reduces to

with

F'(12) =f', (r)P, +fs(r)PsQ +fs(r)Ps(1 —Q) . (20)

The six independent functions f ';(r) are required
to fulfill the usual conditions for a Jastrow two-
body correlation factor,

f(r)=0, r &c,

~n 6@ 4P3 ~

F'(12) =f,'(r)P, +fs(r)P, . (22)

where Q = (S r)'/r', with S =-,'(o, +os), is a projec-
tion operator in spin-angle space. " The mode of
action of Q is given by

8 JOJ

Af — j]I@ JlJ ~J1J &

( + )Q'Sz+xy z
= Jr+i z+[ ( + )] &z-i s & &

(2J'+ 1)Q'JJ+~ ~ ~ ~
= [J(J+1)]' 'g~„~ ~+ (J'+ I)'g~

(18)
The 'g~~J are the usual spin-angle functions.

It is mell known that for the simple Jastrow
choice E(12)=f(r») the tensor component of (15)
gives no contribution to the interaction energy
(14). (Any contribution linear in the tensor opera-
tor S» is canceled in the spin average. ) But ten-
sor effects can easily be included by choosing in-
stead the more general two-body correlation opera-
tor

The double commutator in (14) may be evaluated
in a straightforward manner with the help of the
following relations,

Piq =P,Ps = Q(1 —Q)Ps = 0,

[f, [V',f]]= -2(Vf)',

[f, [V', Q]] = 0,

[q, [q, l.')]=2Q-4P, -2L 5, (»)
where 8 is the total spin operator and L the rela-
tive orbital angular momentum operator of the two
interacting nucleons. Further reduction of the two-
body contribution to the interaction energy is ef-
fected upon carrying out the spin sums —all terms
proportional to the tensor operator S» or spin-
orbit operator L ~ S are eliminated. The final re-
sult may be conveniently expressed in terms of an
effective central potential v, ff,

E(12)=E+(12)P'+F (12)P (19)
(bE)s = Q (ij lv, rs lij j i), — (24)

with

v, &f
= P'[('V~, +sV~ ) (f;)s+ (8'/m)(Vf;)s]

+P"Ps{s(sVc+ 2 Vr)[(f;)s —(f,')s]+ s (hs/m)[(Vf;)s —(Vf;)']

+ s (4Vr —'V,')[(f,')'- (fs )']+ s (@'/m)[(Vfs )' —(Vfx )']

+ a(l'/m)(1/r')(f' -f )']

+same expression for odd states (+--). (25)

Equation (25) should provide the best possible
separation of different correlation effects. Con-
sider the even- or odd-state part of (25): The
first Iine represents the "over-alj. " correIation

effect for the parity in question in that this is the
only surviving contribution for f, =f, =f,. The
choice fs=fsof, produces a difference in correla-
tions in singlet and tripIet states of the given par-
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IV. NUMERICAL RESULTS FOR SEMIREALISTIC
POTENTIALS

For numerical study we have selected three
semirealistic potentials of the type (15), the Gam-
mel-Christian-Thaler potential" (GCT) used in the
early nuclear-matter calculation of Brueckner and
Gammel" and two other potentials studied by Gam-
mel and Thaler" which differ from GCT in the
triplet-even state only. The functions 'V~, 3V~,
V~ are all of Yukawa shape,

v(r) =Ae ""/pr. . (25)

The state-independent hard-core radius is c = 0.5
F for all three potentials. Table I lists the com-
mon singlet-even-, triplet-odd-, and singlet-odd-
state (extracore) parameters. Table II displays
the triplet-even-state parameters of GCT and the
other two potentials, code named 5100 and 5200
after the notation of Table 19.3 of Ref. 19. (Note
that the GCT triplet-even parameters are close to
those labeled 5400 in Ref 19.).

One of our aims is to see how the energy per
particle (given by the method proposed herein)
changes as the mixture of central and tensor com-
ponents is altered, consistent (insofar as is prac-
tical) with the two-nucleon data. Thus the three
potentials to be studied were chosen with the idea
of spanning the physical range of the "central-to-

ity without relaxing spherical symmetry of E(12);
in this case the second and third lines of the rele-
vant portion of v, &f are also nonvanishing. Tensor
effects (in particular, terms involving Vr) appear
only if we relax spherical symmetry of E(12) by
allowing f,4f„ in this case the second and third
lines are modified and the fourth line comes into
play.

It need hardly be Mentioned that analogous exten-
sions of the Jastrow scheme to treat interactions
which contain spin-orbit and quadratic spin-orbit
components, as well as interactions which differ
in each JLST partial wave, are possible. Further-
more, the techniques devised in this paper are not
restricted in any essential way to the infinite me-
dium; modifications required to treat finite nuclei
should be fairly evident.

with

f=1—e '" ", r&c, A&0,

g'=I —a'(r —c)'e ~ '" " n', x')0.

(27)

(28)

Our supporting arguments will be based on the ex-

tensor ratio" in the triplet-even state. The ratio
of central-to-tensor strength of GCT in the triplet-
even state is large; that of 5200, moderate; and
that of 5100, small. Notice, however, that a large
triplet-even tensor (central) strength is accompan-
ied by a small tensor (central) range, and vice
versa.

The potentials GCT, 5200, and 5100 yield satis-
factory fits of the low-energy properties of the
two-nucleon system: the singlet and triplet scat-
tering lengths and effective ranges and the deuter-
on binding energy, quadrupole moment, and D-
state percentage. They do not yield satisfactory
fits of the high-energy data. To obtain acceptable
fits to all the known phase shifts, as well as the
low-energy data, the form (15) must be supple-
mented by spin-orbit and quadratic spin-orbit
components (as in the Hamada-Johnston poten-
tial"); indeed, it appears that one may even have
to allow for a different potential of the form (15)
plus spin-orbit component, in each JLST wave (as
in the Reid potentials" ). We do not use such real
istic potentials as the Hamada-Johnston and Reid
potentials, because their additional complexity
would obviously obscure the interpretation of re-
sults obtained using the correlation factor (19)-(20)
(particularly in regard to dependence on the "cen-
tral-to-tensor ratio"), not to mention the fact that
their proper treatment would require a generaliza-
tion of the ansatz (19)-(20).

At this stage we shall not exploit the full six-
dimensional freedom of (19)-(20). A detailed ex-
amination of (25) indicates that the most important
features of the correlations induced by the as-
sumed potentials should be adequately represented
by the following restricted set of f functions:

TABLE I. Common parameters of the three potentials
denoted GCT, 5200, and 5100. (The indices C and T re-
fer to central and tensor components, respectively. )

TABLE II. Triplet-even-state parameters of the
three potentials studied. (The indices C and T refer to
central and tensor components, respectively. )

State
&c

(MeV)
p, g

(F-i)
A~

(MeV)
pg

(F-') Potential
c

(MeV)
p, g

(F-i) (MeV)
pz

(F-')

Singlet even
Triplet odd
Singlet odd

-905.6
-150

113

1.7
1.5
1.0

57.5 1.12
OCT
5200
5100

-6895 2.936 -45
-1587.7 2.8576 -288.88
-121.94 1.4112 -498.78

0.7S4 21
1.1788
1.4112
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present in the effective potential in triplet-even
states, Since both 'VC and V~ are negative, we
need to take (f;)' & (f;)' in order to make the cor-
responding contribution to the energy as negative
as possible; i.e., f2 should be of short range com-
pared to f;. But f;, being determined mainly by
the spin-averaged central potential, must in itself
be of quite short range. An appreciable difference
in f; and f,' then implies a large difference in the
slopes (Vf;)' and (Vf,')' and, hence, a large (and
effectively compensating, or over-compensating)
positive contribution to the energy from the kinetic
term

—,'(k /m)[(vf") —(Vf,')']. (30)

Thus it would seem that little is to be gained by al-
lowing f2 of,'. A parallel argument motivates the
choice f, =f, . Turning to the term

(31)

also present in the effective interaction in triplet-
even states, we find that 4V~ —'V~ is negative ex-
cept possibly at short range (as for GCT). Thus
the contribution to the energy from (31) can be low-
ered by choosing (f,')2 & (f,')2 at longer range. Here
it is important to note that a long-range suppres-
sion of f,' relative to f,', as accomplished by the
choice (27)-(28), need not imply a large contribu-
tion from the kinetic term

(32)

A similar argument motivates the choice of form
for f, .

In brief, our choice (27)-(28) is well tailored (at
least) to the long-range correlation effects of the
tensor component. The modifications in short-
range correlation produced by the tensor compo-
nent are relatively unimportant, to the degree that
(in even- and odd-parity states) this component is
of long range compared to the spin-averaged cen-
tral component. It is to be stressed that the pres-
ent calculation is exploratory in nature, the inten-

tremum property of the energy expectation value,
supposed to apply for our approximation to it, Con-
sider, for example, the term

(29)

tion being to expose the prominent features of the
suggested approach and especially the difficulties
which must be overcome to make it work.

The five parameters A, A. ', and n' in (28) are
determined for a given potential and density by the
following procedure:
(a) The energy per particle in the two-body approx-
imation,

is minimized with respect to X, with g' and g set
equal to unity. Thus the "over-all" correlation
factor f is determined by the spin-, isospin-aver-
aged central potential alone.
(b) Using the value of X found in step (a), 8@' is
minimized with respect to the parameters ~' and
e' ing', withg still set equal to unity.
(c) Using the values of A., X', and n' found in
steps (a) and (b), S'2' is minimized with respect
to the parameters ~ and e in@ .

For all three potentials, the parameters so de-
termined are nearly independent of density within
the range of Fermi wave numbers k~ = 1.4-1.8 F '.
The sets of values adopted for the five parameters
(ignoring any slight density dependence) are given
in Table III (the actual values shown are appropri-
ate to k„= 1.4 F '). The corresponding correla-
tion functions f, f,', and f, are plotted for poten-
tials GCT, 5200, and 5100, respectively, in Figs.
1-3. As expected, the "over-all" correlation func-
tion f is of very short range, this range increa, s-
ing as we go from GCT to 5200 to 5100, while the
triplet-even and triplet-odd correlation functions
fs and f, are (typically) of rather long range, the
triplet-even range decreasing as we go from GCT

1.0

0.5—

TABLE III. Correlation-function parameters deter-
mined by a simple minimization procedure.

A+ 0+ A, o,

Potential (F ) (F ) (F ) (F ) (F )
0.5

I

1.0
I

1.5
r(F)

I

2.0
I

2.5 3.0

GCT
5200
5100

5.8
4.8
4.1

1.1
2.1
2.4

0.7
4.1
6.4

1.6
1.6
1.6

0.4
0.4
0.4

FIG. 1. Correlation functions for the potential denoted
GCT, determined at hz=1.4 F by the simple minimi-
zation procedure, plotted against radial coordinate r.
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to 5200 to 5100.
Figures 4-6 display the energy per particle 8'"

versus Fermi wave number k~ for the three poten-
tials, calculated with the correlation functions
specified by Table III. For the OCT potential, re-
sults of a reaction-matrix calculation of Brueck-
ner and Gammel" (tensor effects present) and a
unitary-model-operator calculation of Ristig and
Kistler" (tensor effects absent) are available for
comparison. The assumed correlation functions
yield reasonable energies per particle in the phys-
ical-density region (the empirical binding energy
is some 16 MeV per nucleon at a saturation den-
sity corresponding to h~= 1.36 F '). However,
they fail to produce saturation of the two-body ap-
proximation 8@' to the expectation value 8 =E/A
of the energy per pax'ticle. It is interesting to
note that (at the physical density, for example,
where our results are sensible) the binding ener-
gy decreases as the even-state central-to-tensor
ratio is reduced. This behavior is in accord with
the usual assertion that the tensor force is sup-
pressed in nuclear matter relative to an "equiva-
lent" central force. It should also be noted that
the odd-state tensor component produces only a
minor contribution to S~'~.

V. DISCUSSION

The absence of saturation in the two-body calcu-
lation just described implies that for the particu-
latcorxelafio'n functions used in that calculation
the three-body (and/or other higher-order) clus-
ter contributions to 8 =E/A become large com-
pared to S itself as the density increases beyond
the physical value. If we forget fox the moment

about cluster contributions beyond (bE)» then for
the GCT potential at h„= 1.8 F ', a value of (hE),/
A =+24 MeV would be required to bring 8 into
agreement with the Brueckner-Gammel x'esult.
This situation indicates a rather poor (though not
hopeless) convergence of the cluster expansion,
since one would have ~(~E),/(~E), ~

= —,'. At any
rate, the presumption that 8"' supplies an upper
bound to the exact enex'gy per particle clearly
breaks down under unrestricted variation of the
parameters A., A, ', a', at least at high density.

Similar difficulties encountered in ordinary
Zastrow calculations for central potentials are
dealt with by lxnposlng appx'opl late x'estl lctlons
on the variation of f, with the idea of suppressing
three-body and higher-order cluster contributions
to 8 so as to ensure an upper-bound character for

Two subsidlal y condltlons which have re-
ceived considerable attention (see especially Ref.
6) are:

(a) Normalization condition On 'the perturbed
two-body wave function fQ, „.:

where P,, is the unit-normalized two-body wave
function for the noninteracting pair in Fermi-sea
orbitals i,j. This condition may be imposed for
an "average" pair, or it may be averaged over
states of the Fermi sea. One motivation behind
its adoption is the desire for as close a correspon-
dence as possible with the unitary-model-operator
method. '3 Also, this constraint may be shown to
have the effect of stimulating rapid convergence
of a certain class of higher-order cluster contri-
butions (called direct ring contributions because

1.0 1.0

Qi

0 0.5 1.5
r(F}

1.5
r(F}

FIG. 2. Correlation functions for the potential denoted
5200, determined at A&=1.4 F ~ by the simple minimi-
zation procedure, plotted against radial coordinate r.

FIG. 3. Correlation functions for the potential denoted
5100, determined at A&=1.4 F by the simple minimi-
zation procedure, plotted against radial coordinate r.
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of their kinship to the direct ring contributions of
the Brueckner-Goldstone expansion). '4

(b) Pauli condition on the two-body wave function

f4;,:

with i, j, k, l all Fermi-sea orbitals. In other
words, the defect function g, , —f/0 should have
no components in the Fermi sea. This condition,
with ~j =kl, again may be imposed for an "average"
pair, or it may be averaged over the Fermi sea.

-5—

It is motivated by the desire for as close a corre-
spondence as possible with the Brueckner method. '
Correspondingly, this constraint may be shown to
have the effect of suppressing certain higher-order
cluster contributions (called Pauli corrections be-
cause of their kinship to the Pauli corrections of
the Moszkowski-Scott approach"). "

It is interesting that simultaneous imposition of
constraints (a) and (b) leads [because of the fact
that f' —1=(f—1)'+2(f—1)] to the vanishing of the
Jastrow analog of the "smallness parameter" ~ of
Brueckner-Bethe-Goldstone or compact-cluster-
expansion theory. ' '
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FIG. 4. Calculated energy per particle of nuclear mat-
ter for the potential denoted GCT, plotted against the
Fermi wave number kz. Curve A: Minimum value of
g&2& from step (a) of the simple minimization procedure
(ordinary Jastrow result, for the "over-all, " state-inde-
pendent correlation factor). Curve B: Minimum value
of g& ~ from step (b) of the simple minimization proce-
dure (result of the Jastrow method generalized to treat
even-state correlation effects due to the tensor compo-
nent and spin dependence of central component) . Curve
C: Minimum value of S~~~ from step (c) of the simple
minimization procedure (result of the Jastrow method
generalized to treat both even- and odd-state correlation
effects due to the tensor component and spin dependence
of central component) . Curve BG: Energy per particle
calculated with the Brueckner method (tensor and spin-
dependent correlations present; compare with curve C).
Curve RK: Energy per particle calculated with the uni-
tary-model-operator method (tensor and spin-dependent
correlations absent; compare with curve A). (In cases
A-C, correlation parameters appropriate to k&=1.4 F ~

were used. Only slight modifications would be produced
by minimization at each k&.)
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FIG. 5. Calculated energy per particle of nuclear mat-
ter for the potential denoted 5200, plotted against the
Fermi wave number kz. Curve A: Minimum value of
S(2& from step (a) of the simple minimization procedure
(ordinary Jastrow result, for the "over-all, " state-inde-
pendent correlation factor) . Curve B: Minimum value
of @ ~ from step (b) of the simple minimization proce-
dure (result of the Jastrow method generalized to treat
even-state correlation effects due to the tensor compo-
nent and spin dependence of central component). Curve
C: Minimum value of 8~2& from step (c) of the simple
minimization procedure (result of the Jastrow method
generalized to treat both even- and odd-state correlation
effects due to the tensor component and spin dependence
of central component). (In cases A-C, correlation pa-
rameters appropriate to @+=1.4 F ~ were used. Only
slight modifications would be produced by minimization
at each kz. )
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One or more restrictions of this kind may well
provide a remedy to the poor high-density behav-
ior of the generalized Jastrow treatment revealed
in the results of Sec. IV. Such conditions will, in-
deed, force a density dependence on the parame-
ters A. , A. ', n'which aids saturation. However, it
is our conviction that one must always test the ef-
ficacy of subsidiary conditions with respect to im-
provement of cluster convergence by detailed ex-
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FIG. 6. Calculated energy per particle of nuclear mat-
ter for the potential denoted 5100, plotted against the
Fermi wave number kz. Curve A: Minimum value of
$(2& from step (a) of the simple minimization procedure
(ordinary Jastrow result, for the "over-all, " state-inde-
pendent correlation factor). Curve 8: Minimum value
of S~ ~ from step (b) of the simple minimization proce-
dure (result of the Jastrow method generalized to treat
even-state correlation effects due to the tensor compo-
nent and spin dependence of central component). Curve
C: Minimum value of $&~& from step (c) of the simple
minimization procedure (result of the Jastrow method
generalized to treat both even- and odd-state correlation
effects due to the tensor component and spin dependence
of central component). (In cases A-C, correlation pa-
rameters appropriate to k+=1.4 F were used. Only

slight modifications would be produced by minimization
at each kz. )

amination of the assessible higher-order correc-
tions, especially the three-body contribution —as
was done for the ordinary Jastrow method by Chak-
kalakal' [for restriction (b), and to some extent,
restriction (a)]. (It is not enough just to impose
some intuitively motivated subsidiary condition,
calculate 8"', and trust to luck. ) Work in this di-
rection is in progress; the results will be the sub-
3ect of the next paper in this series. Underlying
our work on the three-body correction is the fol-
lowing important question: In view of the fact that
the optimally determined tensor correlations will
typically be of rather long range, will one be faced
with intrinsically poor convergence of the cluster
expansion in any attempt at an accurate evaluation
of the energy per particle by the extended Jastrow
method? (By optimally determined, we mean de-
termined by a hypotheticaI variation of 8 as a
whole with respect to the f functions. ) The impli-
cations of a positive answer would be ominous, not
only for our approach, but for other cluster-ex-
pansion approaches as well, including the Brueck-
ner- Bethe-Goldstone method.

A number of fairly obvious improvements can be
made in the choice of f functions of Sec. IV and
(more immediately) in the procedure used there
for determining correlation-function parameters.
In particular, the treatment of short-range corre-
lations can surely be improved: For example, one
may allow f,' to deviate from f. Or one may aug-
ment steps (a)-(c) of Sec. IV with:

(d) Using the values of A', o.' found in steps (b)
and (c), X is redetermined by minimization of 8"'
with respect to this parameter.
Thereby, the tensor component and the spin and
parity dependence of the central component of the
potential are permitted to influence the "over-all"
correlation function. Such improvements may be
of special importance for potential 5100, which
has a strong even-state tensor component of the
same range as the triplet-even central component
and a strongly spin-dependent even-state central
component, and could be of some importance for
GCT as well, since this potential also has a
strongly spin-dependent even-state central com-
ponent. Thus our results for the dependence of
S' ' on the "central-to-tensor ratio" may be sub-
ject to alteration (even near the physical density,
where the higher cluster corrections to the re-
sults of Sec. IV are probably not yet large), In-
deed, it may turn out that the appreciable tensor-
suppression effect indicated by the present calcu-
lation is attributable in significant measure to
greater suitability of our choice of correlation
functions for potentials with weak, long-range ten-
sor components than for potentials with strong,
short-range tensor components. However, we
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shall defer any refinement of our recipe for the
short-range correlations until a proper treatment
of the more dangerous long-range correlations,
i.e., a treatment of these correlations derived
from an understanding of the higher-order cluster

corrections, is at hand. Nn the framework of the
present calculation, such refinements would only
make matters a bit worse with regard to satura-
tion. )
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