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Results of self-consistent calculations with Hartree-Fock {HF), Hartree-Fock-Bogoliubov
{BFB),and spherical BCS approximations obtained with the central Yukawa (CY) interaction
and with renormalized Kuo and Brown matrix elements for the Hamada-Johnston {HJ) inter-
action are reported for even Ti, Cr, and Fe isotopes. The calculated ground-state energies,
corrected for Coulomb interaction amongst the extracore protons, are compared with the ex-
perimental values, and a better agreement for the HJ interaction is obtained than for the CY
although they do not differ much with respect to each other. It is found that in the HFB ap-
proximation, the HJ interaction favors prolate solutions over oblate or spherical ories. Un-

like the CY, the HFB approximation for S &N =28 nuclei with the HJ interaction does not con-
verge to spherical minima with lowest energy. It is also seen that the pairing contribution to
the spherical BCS energy minimum is considerably larger for the HJ interaction as com-
pared to the CY. The desirability of spherical solutions for Z &N =28 nuclei for the HJ inter-
action is discussed, and it is argued that it cannot be obtained by including n-P pairing in
the T =1 state. Modification of the Kuo and Brown renormalized matrix elements is sug-
gested. Results for the oblate and prolate HFB solutions for Fe with HJ interaction are
discussed, as these solutions have very close energy minima.

I. INTRODUCTION

One of the most engrossing problems in nuclear
many-body theory is to formulate a program, both
fundamental as well as practical, in which the
properties of finite nuclei can be derived from the
free nucleon-nucleon interaction. Since the publi-
cation of the pioneering work by Brueckner and

collaborators in this field, a number of papers
have appeared. The most straightforward way to
carry out such a program is to use the Hartree-
Fock theory, which may be regarded as a first
approximation to the general scheme of Brueckner
and which leads immediately to a shell-model de-
scription of nuclei. A recent improvement over
the Hartree-Fock (HF) theory of nuclei has been
given by Baranger, ' who has incorporated into it
the pairing aspect of the two-body interaction, em-

ploying the generalized Bogoliubov-Valatin trans-
formation. This modified procedure, which goes
by the name of Hartree-Fock-Bogoliubov (HFB)
theory, has met with considerable success in the
s-d shell for nuclei.

Results of a self-consistent calculation for the
even Ti, Cr, and Fe isotopes for the HF, HFB,
and spherical BCS approximations had been re-
ported in a recent publication by one of the au-
thors. ' These calculations were carried out with

a central potential having a Yukawa shape with its
exchange mixture suitably adjusted to reproduce
the energy levels of 0"and F". In that paper the
main emphasis was put on the comparison of the
prolate solutions obtained from HF and HFB ap-
proximations. The effect of pairing on such prop-
erties as the ground-state energies and intrinsic

quadrupole moments was also studied. It was
found that compared with HFB solutions, the spher-
ical BCS solutions, in general, had higher ground-
state energies and more pairing contributions to
them; but for nuclei with Z &N = 28, the BCS and
HFB results were identical, both converging to
spherical minima.

A serious drawback of this calculation was that
the neutron and proton single-particle energies
were taken to be the same; the effect of Coulomb
repulsion amongst protons inside the Ca" core as
well as of the extracore protons was completely
ignored. Consequently the ground-state energies
obtained from the self-consistent calculations
could not be compared with the experimental
values.

In the present calculations, both the realistic
Hamada- Johnson (HJ) and the same central Yuka-
wa (CY) interactions are used and the effect of
Coulomb interaction amongst the intracore pro-
tons is taken into account by taking different sin-
gle-particle energies for protons and neutrons as
obtained from the experimental data. For the
extracore protons we make the Coulomb correc-
tion to the energy minima.

The choice for using the renormalized Kuo and
Brown matrix elements' (KBRME) for the self-con-
sistent calculations has been made primarily be-
cause they are the matrix elements of the realis-
tic HJ interaction. Kuo and Brown have already
demonstrated that the renormalized matrix ele-
ments give improved agreement, as compared
with the bare ones, with the observed spectra and
binding energy for the extracore nucleons of Ca4~

and Sc". Their suitability in other nuclear-struc-
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ture calculations has also been tested. 4 However,
it may be mentioned here that both of these calcu-
lations include the 1g», orbit, which is completely
ignored in our self-consistent calculation. A cal-
culation for the Sc" spectrum, ignoring the 1g»,
orbital, represents the trend of the spectrum as
well as that obtained by Kuo and Brown; however,
the binding energy of the extracore nucleons is
decreased by about 0.5 MeV. The CY interaction
also reproduces the Sc" spectrum quite well. As
the present work is limited to only the restricted-
type of self-consistent calculations, bringing in

1g», state along with the active p- f orbits will not
cause any change in the properties associated with

the intrinsic structure as it will enter as an un-

occupied orbital in HF calculations. Since the

1&9g2 orbital has parity opposite to thos e of the

P forbitals, -it cannot mix with them because of

parity conservation. It can affect the result only
when other orbits of the same parity inside the
core are also considered active in the calculation.
Thus, even though inclusion of 1g», improves the
shell-model results, it cannot do so in the re-
stricted type of self-consistent HF calculations.
One might, in principle, expect an effect in a self-
consistent HFB calculation because the 1g», orbital
might acquire an occupation probability greater
than zero, which could renormalize the HF field in

the HFB approximation. However, a little reflec-
tion shows that the renormalization of single-par-
ticle energies due to the addition of extracore nu-

cleons lowers the single-particle energies of the
p-f orbits but does not affect the 1g„, single-par-
ticle energy. Consequently its occupation probabil-
ity will not be enough to affect the HFB results
significantly.

The calculation with the HJ matrix elements will
also enable us to make a direct comparison with

the HF results obtained by Parikh and Svenne' for
the P-f shell nuclei employing the matrix ele-
ments of Shakin, Waghmare, and Hull' for the
Yale potential. '

As has been mentioned, the earlier' self-con-
sistent HFB calculations were made only for the
prolate shape, as their HF counterpart favored a
prolate shape over oblate ones. But as the energy
differences between prolate and oblate solutions
were not very pronounced, one cannot be very
sure that switching on the pairing force will not
bring the oblate HFB solution down below the cor-
responding prolate HFB solution. Also, it is not
very certain that all interactions favor a HF mini-
mum of a specific shape. This has prompted us
to report prolate as well as oblate solutions along
with their characteristic properties derived from
their intrinsic wave functions. Spherical BCS cal-
culations for both the interactions (HJ and CY) are

performed for the same reason.
The single-particle energies in MeV for neutrons

are taken to be -8.35, -2.85, -6.28, and -4.22 and
those for protons -1.07, 4.83, 0.72, and 2.43 cor-
responding to 1f„„lf»„2p,», and 2p», states,
respectively.

As in Ref. 2, the strengths corresponding to dif-
ferent two-nucleon states, of the CY interaction

are given below:

Vsi = -46.9 Me V, V» = -34.4 Me V,

H3Q 19.4 MeV, Vxi = 4 ~ 9 Me V

The range of the interaction is taken to be equal to
the Compton wavelength of the pion.

The harmonic-oscillator wave functions used to
evaluate the matrix elements for the CY interac-
tion correspond to the oscillator range parameter
5 = 2.0 X 10 "cm, in agreement with the value used
by Kuo and Brown. However, this value is slightly
different from the one used earlier' (b = 2.05 X 10 "
cm).

In order to make the paper self-contained, we
give a brief description of the self-consistent for-
malism in Sec. II. The results of the calculation
are described in Sec. III. Section IV contains the
summary and discussion.

II. SELF-CONSISTENT FORMALISM

The self-consistent equations for HF and HFB
calculations are obtained by invoking certain as-
sumptions about the nuclear shapes and symme-
tries. These assumptions have been given in Ref.
2. However, it has been pointed out in the paper
of Banerjee, Levinson, and Stephenson, Jr.' that
the existence of symmetries under time reversal,
reflection in the x-s plane, and rotation through
& about the x or z axis in the HF density matrix
follows directly from the general exchange charac-
ter and finite range of the effective shell-model
interaction. As a consequence of this one would
not expect parity maxing in the single-particle
wave functions. In an earlier paper Bassichis,
Kerman, and Svenne' have shown that parity mix-
ing is energetically unfavorable unless the tensor
force is increased to nearly twice the normal
strength. Systematic alteration of the HF shapes
of the &-d-shell N =Z nuclei as obtained in the cal-
culation of Bar- Touv and Kelson' follows from the
above mentioned features of the interaction.

There seems to be at present no reason to think
that these conclusions should be restricted only
to the intrinsic structure of the &-d-shell nuclei.
A natural extension of these results would be their
application to the study of the p-f shell nuclei.
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However, in the present calculation the shape of
the nuclei is restricted to axially symmetric only,
and thus the test for the possible alteration of the
shape for N =Z, as well as other cases, is out of
the question. This will, however, be considered in
a future work.

We would also like to mention the fact that the
natural symmetries of the density matrix proper-
ties of the nuclear interaction are tested by Baner-
jee, Levison, and Stephenson, Jr.' only for the HF
case; however, the same could be extended for the
HFB density matrix without any contradiction.

One of the main conclusions in Ref. 2 was that
the HFB formalism, as developed in the most gen-
eral way by Baranger, when applied to specific
cases yielded results identical to the use of the HF,
implying an absence of pairing. In some other
cases it yielded solutions identical to spherical
BCS results. As HF equations, worked out by many
authors, are available in the literature, we do not
find it essential to provide those derivations here.
The same is true in some sense for BCS equations
derived for potentials with finite range (i.e., dif-
ferent from schematic potentials such as Q Q and
the pairing force), and for rigorous details one is
referred to another paper of Baranger. " Also,
the explicit results for the BCS equations incor-
porating pairing between n-n and p-p pairs outside
a doubly closed core can be found in the Appendix
of Ref. 2. We shall avoid repeating these equations
as well. In order to make the paper brief but self-
contained, we shall simply outline those steps of
the HFB procedure which are essential and rele-
vant for this paper.

A. HFB Procedure

The starting point will be the many-body Ham-
iltonian written below in the second-quantized
form as

(4)

where ~ and 4 are given by

+ Q &jmr„j,m,~,l v„lj mr„j,m,r.»-i '
~1~2~1 ~1~2

&,, '= p Q &jmr„j 'mr, lV~lj,my„j,my, )x",. &,
". I,

~I&2~1

(8)

and all the symbols are defined in Ref. 2. It is
obvious that in the absence of pairing, the matrix
g, and consequently &, is identically zero. This
will make the HFB density matrix identical to that
of the HF approximation. The matrix W can be
diagonalized by a real orthogonal matrix' given by
0=(„" „"); p and X in terms of the u and v matrices
are given as

p=vvy g= —vQ,

It is trivial to show that p and g commute with
each other. This implies that these matrices can
be simultaneously diagonalized by a real orthogonal
matrix R. As RvvR and R~R are diagonal, one
can choose another orthogonal matrix Q such that

RvQQVR = VP= VV (8a)

3C=H —A.„n„-Apnea.

Here n„and n~ are the neutron and proton number
operators. The ground state of the system in the
HFB approximation is defined by the vacuum for
the quasiparticle operator. The HFB equations
can then be derived following either of the proce-
dures given in work of Chandra' and Satpathy,
Goss, and Banerjee. '

The HFB matrix that one obtains has the form

fI=E&o'lelP) a„ta8+ —,
' Z &nPIV&ly5) a„taataza&,

a5 n6y6
(2)

and

RvQQuR = VU= VU (8b)

where & in the present calculation corresponds to
the single-particle energies for the neutron and
proton outside the Ca~ core. The two-particle
matrix elements are evaluated, as usual, between
the antisymmetric two-particle states.

As usual, the pairing correlation in the HFB
wave function is introduced by introducing the
Bogoliubov transformation as given in Eqs. (7) and
(8) of Ref. 2. Since this transformation does not
conserve the number of particles, one introduces
the parameters A,„and A~, referred to as chemical
potentials, and the Hamiltonian takes the modified
form

ol

V =RvQ; U =RuQ, (8c)

where V and U are diagonal matrices. These re-
sults imply that the quasiparticle transformation
is carried out in three successive operations as
shown by the following matrix relation:

The series of transformations as shown in pre-
ceding equation were also obtained in a general
form by Bloch and Messiah. " As a result of these
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Fluctuation in the number of pairs of neutrons
and protons results from the fact that ~C sss& does
not conserve the number of particles and can be
easily evaluated in terms of U and V by using Eq.
(10) in the following equation:

o~,
' = &4' HFs I& ~,

'
l@Hss& —&@HFs In r, i@usa&' ~ (12)

This gives
2 Q (@TED VTg)s

g (is)

ot,' is the dispersion in the probability distribution
of number of pairs around its mean value.

In order to start the HFB calculation an initial
choice of the matrices u and v is essential. The
appropriate choice of these matrices is not trivial.
We first diagonalize the single-particle Hamiltoni-
an H'

&mlles'Ij

'm& = e, &,, +r1&jm lgssIj 'm& (i4)

for a suitable deformation parameter g with a nega-
tive or positive value for it according to whether
an oblate- or prolate-shape calculation is needed.
We then multiply each element of the first N',
eigenvectors of the orthogonal matrix by a factor

transformations the HFB wave function written in
the following BCS form also satisfies Eq. (9) of
Ref. 2.

lc „,& =Q(v',. —v',. f „'f,')(v",. —v",. f,„'b,.„-')~o&,
S

(io)

where the generalized particle operator b ~ is re-
lated to particle operator a ~ through the matrix R
in the following way:

t
b,, t =&R,;g„'..

&, and the remaining eigenvectors by a factor a'.
This will yield the starting matrix v. Similarly,
a multiplication of the first Nt eigenvectors Qy b

and the remaining ones by b' will give us the ma-
trix u. The multiplicative factors satisfy the fol-
lowing conditions:

g2~ b2= 1~ b2&&g2& 1 ~ (i5a.)

III. DISCUSSION OF SELF-CONSISTENT RESULTS

A. Energy Minima for Self-Consistent Shapes

The computational results of the self-consistent
calculations with the CY interaction and with the
KBRME for the 2P if shell are giv-en in Tables 1

and II, respectively. In calculating these we have
used Eqs. (27)-(29}of Ref. 2.

As has been mentioned earlier, we have used
different single-particle energies for the neutrons
and protons and a different oscillator range param-
eter, so the numbers in Table I are bound to be dif-
ferent from those that appeared in Ref. 2. It is

gis+y's = 1 ~ g's =(1 gs}/s /(/ lS's) (15b)

In the above, a, b, a', and b' are taken to be posi-
tive; N, is the number of nuclear pairs of isotopic
spin &, . N is the order of the orthogonal matrix.

From this set of u and s, initial p and X matrices
are set up and then iteration is continued until the
self-consistent solution with desired accuracy is
achieved.

The HFB matrix can also yield results identical
to spherical BCS provided the initial values of u
and & are chosen with the orthogonal matrix ob-
tained for q=0, and equal occupation probability
is assigned to the states which have the same j
value but differ in the projection quantum number.

TABLE I. Comparison of energy minima for Ti, Cr, and Fe isotopes obtained from the HF, HFB, and BCS solu-
tions for the central Yukawa interaction. Pairing contributions to the solutions are compared. The energies are given
in MeV.

Isotope Prolate Oblate
EHFB

Prolate Oblate EBcs

Pairing energy for
HFB

Prolate Oblate

Pairing
energy

for
BCS

T 44

Ti46

Ti
Ti"
Cr48
Cr"
Cr52
Cr54
Fe52
Fe'4
Fe58
Fe58

-28.14
-48.55
-67.94
-87.11
-59.58
-81.80

-102.98
-124.13
-94.62

-118.83
-141.28
-161.47

-25.74
-46.52
-66.60
-86.78
-56,77
-79.96

-102.73
-120.86
-92.40

-118.54
-188.75
-161.19

-28.14
-48.75
-68.42
-87.48
-59.58
-82.17

-108.88
-124.12
-94.62

-119.66
-141.55
-162.29

-25.92
-47.24
-67.74
-87.48
-57.26
-80.93

-103.88
-122.52
-93.87

-119.66
-140.58
-161.62

-25.90
-47.14
-67.74
-87.48
-57.02
-80.86

-103.88
-122.52
-98.88

-119.66
-140.52
-160.55

-0.00
-1.42
-2.19
-2.05
-0.02
-1,70
-2.84
-0.11
-0.02
-2.36
-1.82
-3.28

-2.65
-3.58
-4.27
-2.05
-3.90
-4.51
-2.84
-5.41
-4.54
-2.36
-5.30
-3.76

-4.29
-5.21
-4.81
-2.04
-6.03
-5.51
-2.85
-5.82
-4.95
-2.86
-5.54
-6.90
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clear from Table I that the HFB energy minima
for the CY potential favor prolate shapes for the
nuclei under consideration. The HFB solutions
for N =Z nuclei converge to the HF solutions for
prolate shapes; but the oblate solutions for these
cases converge to lower energy minima as com-
pared to their corresponding HF minima. They
have a considerable pairing effect, as is evident
from the pairing energy for oblate shapes. Fox'
Z &N = 28 nuclei, the oblate as well as the prolate
HFB solutions converge to the energy minima for
a spherical shape. In fact, the pairing energies
for these nuclei are identical for both the prolate
and oblate cases.

The results appearing in Table II for the KBRME
have gross features which are quite similar to
those of Table I. Kith the exception of Fe", for
which the prolate and oblate HFB solutions are
quite close to each other, the HFB solutions cor-
responding to prolate shapes have lower energy
minima. For Fe", the oblate solution is only 0.01
MeV above the prolate solution. The HFB solu-
tions for ~ =Z nuclei are also similar to those of
the CY interaction. There is some pairing for
Cr4', and the HFB solution is lower than the HF
solution by 0.02 MeV. Unlike those for the CY,
the HFB results for Z &N=28 nuclei with the HJ
potential do not converge to spherical solutions,
The spherical BCS minima lie considerably above
the corresponding HFB minima. More specifical-
ly, EHF~-Sacs for Ti", Cr", and Fe" is -2.26,
-6.92, and -9.15 MeV, respectively. In fact, the
HFB solutions for these nuclei, with the exception
of Ti'0, are similar to their corresponding HF so-
lutions because in these cases the pairing is not
very large. For Ti", the pairing enexgy is not
very large. For Ti', the pairing energy is —, the

amount of pairing energy corresponding to the BCS
solution, whexeas for Cr" and Fe'4 it is less than

@ of its value for the BCS solution.
As for the CY, an over-all gain in binding ener-

gy due to pairing is not large for prolate shapes
and the HJ potential. This conclusion is also true
for the oblate HF and HFB solutions.

An oblate HF solution for Fe" corresponding to
the HJ potential is not obtained. However, if con-
vergence is attempted, the solution should have
an energy minimum higher that the corresponding
oblate HFB solution, which, as one can see from
Table II, is higher thai the prolate HF and HFB
solutions.

It would be interesting to coxnpare the ground-
state energies for the KBRME with the HF results
of Parikh and Svenne' for the Yale potential. A
comparison of these numbers shows that the HF
ground-state energies for the HJ interaction are
consistently lower than their corresponding values
for the Yale potential. It is also seen that whereas
for the HJ potential the HFB oblate solution for
Fe" lies above the prolate solution, the HF solu-
tion for an oblate shape favors a lower minimum
for the Yale interaction. For Fe", convergence
for the prolate HF solution for the Yale potential
was not achieved, ' but as mentioned earlier, for
the HJ potential the oblate and prolate HFB solu-
tions are quite close to each other.

In Table III we compare the calculated ground-
state energies corresponding to solutions favoring
minimum energies with the experimental values
obtained with respect to the Ca ' core. The theo-
retical energies are corrected for Coulomb inter-
action amongst the extracore protons by using the
work of Seegex'.

It is found that the theoretical binding energies

TABLE II. Comparison of energy minima for Ti, Cr, and Fe isotopes obtained from the HF, HFB, and BCS solu-
tions for the Kuo and Brown renormalized matrix elements. Pairing contributions to the solutions are also compared.
The energies are given in MeV.

@HFH

Prolate Oblate

Pairing energy for
HFB

Prolate Oblate

Pairing
energy

for
BCS

44

Ti46
Ti4'
Ti50
Cr48
Cr50
Cr52

( r54

Pe52

Pe54
Pe58
Pe"

-28.59
-50.75
-69.54
-89.02
-63.23
-86.8V

-109.06
-128.39
-100.32
-125.50
-148.06
-167.68

-26.41
-47.72
-67.86
-87.92
-57.97
-81.23

-105.86
-124.70
-95.25

-124.67

-167.11

-28.60
-50.77
-70.63
-89.46
-63.25
-86.97

-109.10
-128.78
-100,31
-125.53
-148.25
-168.74

-26.Vl
M8.37
-68.91
-88.33
-58.80
-82.95

-106.73
-126.79
-96.97

-125.26
-147.25
-168.73

-26.39
-47.56
-67.90
-87.20
-57.00
-80.19

-102.18
-123.07
-91.65

-116,38
-139.88
-162.98

-0.00
-0.58
-2.85
-3.64
-0.17
-1.12
-0.88
-2.67
-0.04
-0.97
-1.48
-4.41

-2.97
-3.58
-4.29
-4.36
-4.86
-5.04

2 y2 2
-5.24
-4.48
-1.88

4 49
-4.90

-5.81
-7.55
-8.16
-8.33
-9.31
-9,83
-9.85

-10.86
-10.38
-10.18
-12.14
-11.88
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TABLE III. Comparison of ground-state energy minima (cox rected for Coulomb energy) with the experimental binding
energies for Ti, Cr, and Fe isotopes. The symbols P, 0, and Sp in the parentheses stand for prolate, oblate, and
spherical shapes, respectively. The energies are given in MeV.

Isotope

Central Yukawa
Nature of the Energy minimum with

solution Coulomb correction

Kuo and Brown renormalized
matrix elements

Nature of the Energy minimum with
solution Coulomb correction

Experimental binding
energy

with respect to
Ca core

Ti44

Ti 8

Cr48

Cr"
( r52

( r54

Fe 52

Fe54
Fe"
Fe

HF(P)
HFB(P)
HFB(P)
BCS(Sp)
HF(I )
HFB(P)
BCS(Sp)
HF(P)
HFO)
BCS(sp)
HFB(I)
IIFB(P)

-27.48
-48.09
-67.77
-86.80
-56.94
-79.57

-101.31
-121.59
-88.74

-113.86
-135.82
-156.62

HF(I }
HFB(P)
HFB(P)
HFB(P)
HFB(P)
HFB(P)
HFB(P)
HFB(P)
HF(P)
HFB(P)
HFB(P)
HFB(I =-0)

-27.94
-50.11
-69,98
-88.82
-60.61
-84.37

-106.53
-126.24
-94.44

-119.73
-142.89
-168.07

-33.53
-56.13
-76.64
-95.73
-69.66
-92.99

-114.29
-131.95
-105.63
-129.69
-150.20
-167.89

are quite close to the experimental numbers. It
is also seen that the numbers for the HJ interac-
tion show better agreement. This is not surpris-
ing, since the T = I force in the CY is somewhat
weaker than in the HJ interaction. It is also in-
teresting to note that the theoretical binding ener-

gy per nucleon improves and comes closer to the
experimental value with the increase in neutron
number.

8. Fluctuation in the Number of Pair&

Fluctuation in the number of pairs as calculated
by using Eq. (13) is presented in Table IV along
with the chemical potentials. The pairing energy
shown in Tables I and II shows the over-all effect
of pairing on the binding energy, but it does not
tell us anything about its origin. A calculation on

fluctuation is able to provide us with this informa-
tlong

From Table IV it is clear that there is no pairing
in Ti44 and Fe" for either of the two interactions.
This conclusion is arrived at by examining the
pairing energy for the prolate HFB solution. For
the CY potential, pairing between neutron pairs
is effective only for Ti ', Ti", Cr"„and Fe" and

between protons for all nuclei with Z & N = 28 and
Fe". In the solitary ease of Pe", pairing be-
tween neutron as well as proton pairs is found to
be effective. This is due to the fact that the HP
'gap for protons (G~} and neutrons (G„) is quite
small (less than 1.0 MeV). In fact, for neutrons

it is only 0.48 MeV. The HF gap is defined as the

energy difference between the last occupied and

first unoccupied state.

TABLE IV. Comparison of neutron and proton chemical potentials (in MeV), fluctuation in the number of neutron and

proton pairs corresponding to prolate HFB solutions with Yukawa potential (CY) and EBRME. The values are also

given for the oblate HFB solution with the HJ interaction for Fe

Isotope

No. of
neutron

pall s

No. of
px'oton
paix's

Fluctuation in number of pairs
CY KBHME

2 2 2 2
&n ~P 0~ Gp

Chemical potential
CY KBHME

Ti44
Ti48
Ti48
Ti50
Cr48

( r50

Cr52
Cr54
Fe52
Fe54
Fe56
Fe58
Fe58 {0)

1
2
3

2
3

5
3

5
6
6

0.00 0.00 0.00 0.00
0.52 0.00 0.16 0.00
0.72 0,00 0.81 0.00
0.00 0.77 0.80 0.09
0 00 Q 00 0 04 0 04
0.68 0.00 0,86 0.00
0 00 1 04 0 82 0 00
0 00 0 00 0 75 Q 00
0 00 0 00 0 00 0 00
0,00 0.81 0.16 0.27
0.00 0.63 0.25 0.36
0.72 0.54 0.72 0.54

0.72 0.72

-11.759
-10.077
-9.614
-9.018

-12.130
-11.060
-10,365
-9.480

-12.868
-11.789
-10.944
-10.188

-4,498
-6.098
-7.344
-8.836
-4.888
-6.499
-8.051
-9.469
-5.595

7 ~ 722
-8.474

-10.101

-12.218
-10,465
-9.661
-9.112

-12.692
-11.498
-10.423
-9.493

-13.317
-11.984
-10.759
-10.128
-10.617

-4,951
-7.096
-8.450
-9.760
-5.426
-7.530
-9.138

-10.357
-6.062
-7.874
-9.456

-10.571
-11.881
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With the HJ potential, pairing is found to be ef-
fective only in neutron pairs in Ti", Ti", Cr",
Cr', and Cr' . There are no cases where pairing
correlation between proton pairs exists. In almost
all other cases pairing is effective between both
types of pairs. For Cr" there is practically no
pairing correlation for either of the two interac-
tions, and examination of the Hf gap shows that
G„and G~ are quite large (-2.5 MeV) for both cases.

It is quite interesting to note that for Z & N = 28
nuclei, pairing exists between proton pairs for the
CY and is very strong between neutron pairs and
weak between proton pairs for the HJ interaction.
We offer the following explanation for understand-
ing this.

With the CY potential, the occupied single-parti-
cle neutron states have wave functions with max-
imum components corresponding to j= ~. When

pairing is switched on, it tries to increase the
occupation probability in the neutron j= ~7 state.
This is possible only when the HF field for neu-
trons is modified, which has the effect of mod-
ifying the proton density matrix. This induces
occupation probabilities in proton states which
were unoccupied in the HF approximation. When
the HFB minimum is approached for these cases,
the j= ~7 state is completely occupied with neutrons,
thus giving no pairing contribution. On the other
hand, the protons in such a situation only partially
occupy the j= ~ state and extend a little over other
single-particle states, giving rise to pairing,
which is shown by the fluctuation in the number of
proton pairs.

The HJ interaction is quite different from the
simple CY in structure and has quite different HF
spectra for these nuclei. The wave functions for
the four occupied neutron states in this case do

not have the largest component corresponding to
j= ~7. This makes one of the HF states having a
)= ~ component unity in the family of unoccupied
HF states. When pairing is introduced, it tries to
occupy this state as well, and since other states
exist between m = ~7 and the upper-most occupied
state, they also become partially populated. As a
consequence the j= ~7 spherical state does not be-
come fully occupied by eight neutrons but instead
shares the neutrons with other single-particle
states because of the partial occupation probabili-
ty of the deformed HF states.

C. Chemical Potential

When the pairing force is identically zero, the
chemical potential denotes the Fermi energy level.
In HFB calculations it indicates the approximate
position of the Fermi level. As a result of this,
one could study the changes in the approximate
position of the Fermi levels for neutrons and pro-
tons as a pair of neutrons or protons is added to
the system in the presence of pairing. In Table IV
we list the chemical potential for protons and neu-
trons for both interactions corresponding to HFB
shapes with minimum energies.

A comparison of neutron and proton chemical
potentials (X„and A~) shows that except for Fe"
and Fe" these quaritities are usually higher (less
negative) for the CY interaction. It is also noted
that, for both interactions, the addition of neutron
pairs for a fixed number of protons increases the
neutron chemical potential A.„somewhat linearly,
but the value of A,~ decreases much faster than the
increase in A.„. Such a trend in the shift of chemi-
cal potential is not surprising and can be easily
understood by closely examining the behavior of

TABLE V. Comparison of quadrupole moment (in units of b =4.0&& 10 6 cm ) and hexadecapole moments (in units of
b ) for Ti, Cr, and Fe isotopes for shapes corresponding to minimum energies and obtained from the central Yukawa

potential (CY) and KBRME. The values for Fes for the oblate shape with the HJ interaction are also given. P, 0, and

Sp stand for prolate, oblate, and spherical shapes.

Isotope Solution
CY
Q

2 Solution
KBBME

Qp g 4

T.44

Ti46
Ti48
Ti50
Cr48
Cr50

52

Cr54

F 52

Fe'4
Fe56
Fe58
Fess

HF(P)
HFB(P)
HFB(P)
BCS(sp)
HF (P)
HFB(P)
BCS(sp)
HF(P)
HF(P)
BCS(sp)
HFB(P)
HFB(P)

10.20
12.07
10.04
0.00

14.52
16.64
0.00

13.79
10.66
0.00

13.93
14.78

10.33
10.12
9.36
0.00

14.67
14.95
0.00

14.06
10.76
0.00

14.24
14.88

33.39
25.70
18.35
0.00

22.78
13.53
0.00

15.94
-12.27

0.00
12.09
-8.85

33.50
32+22
30.24
0.00

22.64
21.22
0.00

20.80
-12.30

0.00
9.37

-1.61

HF(P)
HFB(P)
HFB(P)
HFB(P)
HFB(I)
HFB(I)
HFB(P)
HFB(P)
HF(P)
HFB{P)
HFB(P)
HFB(P)
HFB(O)

10.15
14.81
15.68
16.10
15.70
20.59
21.61
19.95
22.33
22.12
22.61
17.78

-19.49

10.29
10.48
10.59
10.47
15.82
16.16
16.11
15.98
22.16
21.29
19.83
18.48

-15.85

32.78
25.97
13.64
3.59

24.61
16.47
-0.87
-9.23
14.91
-6.26

-19.62
-17.64

4.63

32.90
32.17
31.50
28.85
24.23
22.12
20.35
19.23
12.72
9.09
4.59
0.93

22.72
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the HF field. The HF field depends on the T= 1
and T=O force, as well as on the density matrix
for protons and neutrons. This matrix changes as
the number of protons or neutrons changes. An
increase in the number of neutrons changes the
density matrix, which directly affects the HF field
for protons. For a fixed number of protons, even
if we assume that the proton density matrix re-
mains unchanged in the ~ jm) representation, as
the number of neutrons increase, the HF field for
the protons in the upper-most occupied orbit is
modified by T = 1 and T = 0 neutron-proton forces.
Since the T = 1 and T = 0 force has an over-all in-
teraction, the upper-most occupied orbit is
lowered with an increase in neutron number.
Hence the value of the chemical potential for pro-
tons is lowered. The neutron chemical potential,
on the other hand, is mostly affected by the added
neutrons and very little by protons. Therefore,
only the T = 1 force modifies the HF field for neu-
trons. This lowers to some extent the state which
is now occupied by the added neutrons but was pre-

viously unoccupied. A similar argument will hold
for the behavior of A.~ as the proton number is
changed.

D. Intrinsic Multipole Moments

The values of neutron and proton intrinsic quad-
rupole and hexadecapole moments are displayed
in Table V. These quantities are evaluated by
using the following expressions:

Z(~l~'&:(~, e) I j)p', ;,

where [i) stands for
~ jm). Since these quantities

involve density matrices for neutrons and protons
separately, a study of these numbers gives an in-
sight into the structure of the single-particle wave
functions.

An inspection of the above-mentioned table shows
that the respective values of multipole moments

TABLE VI. Comparison of neutron and proton pickup strengths calculated from the intrinsic wave functions corre-
sponding to solutions with minimum energies and obtained for the central Yukawa potential (CY) and KBRME. P, 0,
and Sp stand for prolate, oblate, and spherical shapes.

Isotope

Yi44

Yi4'

T.48

T 50

Cr

Cr50

Cr52

( r54

Fe52

F 54

Fe"

Fe58

Interaction

CY
KBRME

CY
KBRME

CY
KBRME

CY
KBRME

CY
KBBME

CY
KBRME

CY
KBBME

CY
KBRME

CY
KBRME

CY
KBBME

CY
KBBME

CY
KBRME

KBBME

Solution

HF(P)
HF(P)

HFB(P)
HFB(P)

HFB(P)
HFB(P)

BCS(Sp)
HFB(P)

HF(P)
HFB(P)

HFB(I )
HFB(P)

BCS(sp)
HFB(P)

HF(I)
HFB(P)

HF (P)
HF(I)

BCS(Sp)
HFB(P)

HFB(P)
HFB(P)

HFB(P)
HFB(P)

HFB(O)

Neutron pickup strength
j=Y 2=2 j=- j=2

0.1089
0.1030

0.1164
0.1256

0.1080
0.2930

0.0009
0.4656

0.0763
0.1134

0.2792
0.4932

0.0002
0.5924

0.4365
0.6808

0.0003
0.6554

0.0001
0.6686

0.3987
0.4040

0.4584
0.5640

0.4592
0.9900

0.0068
1.4940

0.5216
0,6644

0.7792
0.9824

0.0016
1.1312

0.9719
1.9044

0.2074
1.1686

0.0006
1.2296

0.1837
0.1581

0.2244
0.2598

0.2622
0.4482

0.0033
0.6012

0.1290
0.2580

0.5298
0.8820

0.0014
1.0926

0.9128
1.6134

0.0477
0.9111

0.0009
0.9828

1.3087
1.3349

3.1984
3.0496

5.1696
4.2656

7.9888
5.4392

3.2731
2.9640

4.4136
3.6408

7.9967
5.1808

7.6789
5.8016

5.7445
3.2649

7.9984
5.1168

0.4838 1.0592 0.7998 7.6552
0.7432 1.9168 1.8384 5.5016

0.6700 2.0240 1.7100 7.5968
0.8592 2.7276 2.0490 6.3640

1.0844 2.6912 1.9326 6.2912

Proton pickup strength

j
0.1227 0.4216 0.1694
0.1167 0.4286 0.1452

0.1062 0.4096 0.1278
0.1188 0.4964 0.1098

1.2862
1.3096

1.3560
1.2744

0.0868
0.1264

0.0900
0.1290

0.0076
0.1130

0.0773
0.0974

0.0004
0.7244

0.0071
0.6764

0.2080
0.6778

0.2094
0.5650

0.5533
0.6996

0.6364
0.8328

0.0234
0.8780

0.5130
0.8780

0.2241
1.1991

0.0227
1.2088

0.7100
1.3488

0.8316
1.3572

0.1187
0.2346

0.1038
0.2130

0.0866
0.1806

0.0781
0,1608

0.0431
0.7874

0.0885
0.6894

0.2712
0.3816

0.1632
0.2994

3.2412
2.9384

3.1696
2.8256

3.8825
2.8288

3.3316
2.8640

5.7324
3.2891

5.8818
3.4256

4.8080
3.5928

4.7944
3.7792

0.3940 1.7000 0.4200 3.4864

0.0722 0.3048 0.1086 1.5136
0.1206 0.5488 0.0882 1.2392

0.0049 0.0146 0.0518 1.9287
0.1222 0.5948 0.0720 1.2112
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E. Spectroscopic Factor

We present here the pickup strengths for neu-
trons and protons separately in Table VI. The
following expressions have been used to evaluate
these strengths:

S,"=(2j+ 1)v,.„'
OCC

= Q(C ')'
(for BCS)

(for HF)
(18a)

= gV„'(C „"'*)' (for HFB), (18b)

where V„ is given by Eq. (8) and the C,"'I's are
the components of the orthogonal matrix (R) which
diagonalizes the HFB density matrix. It is to be
noted that in the absence of pairing Eq. (18b) re-
duces to the HF value, and for no deformation it
reduces to the BCS result.

The values of the pickup strengths for neutrons
and protons corresponding to Ti~~ calculated for
both the interaction are almost equal. This fol-

for Ti~4 for both types of interactions are quite
close to each other, which signifies that for Ti44

the occupied single-particle HF wave functions are
not very different when their components are com-
pared. This argument is true to some extent for
the structure of the occupied states corresponding
to Cr", since the quadrupole moment and hexa-
decapole moment for both types of interactions do
not differ much. However, in the case of Fe'2,
another X =Z nucleus, the structure is expected
to be quite different. This is because a compari-
son of the wave functions obtained from diagonaliz-
ing the I'q;„,~ matrix of the HFB approximation for
both cases shows that the equivalent occupied
states for the CY interaction are m = —,', m = ~, and
m = 2 in increasing order of energy eigenvalue,
whereas for the HJ interaction the upper-most
occupied state is not m = 2 but m = ~, with the max-
imum component corresponding to thej =

& state.
This change in the last occupied state causes a
change in sign for the value of hexadecapole
moment.

For nuclei with Z & N = 28 the values for the multi-
pole moments for the CY interaction are identically
zero, but it is not so for the HJ potential. In fact
their values for the HJ interaction are quite la.rge.
This is because for a given j value, the contribu-
tion to multipole moments with positive sign comes
from the lower projection quantum numbers. Thus,
when other states with lower projection quantum
numbers come down and become occupied and the
states with higher projection quantum numbers
are pushed up, the contribution to the multipole
moment becomes additive and thus more pro-
nounced.

lows from the fact that the overlaps of occupied
states corresponding to both interactions are
nearly 100%. The pickup strengths for Ti" are
also not very different for these interactions. The
neutron pickup strength for Ti" corresponding to
the CY is somewhat different from its counterpart
for the HJ interaction but the values for the pro-
ton pickup strength are not much different. For
Ti' the CY interaction gives a spherical HFB so-
lution with a neutron pickup strength slightly
smaller than 8 for this j=~7 state. This is the
value for complete occupation. Similarly, the
proton pickup strength for the j= ~7 state is slightly
smaller than the number of protons (i.e., two).
For the HJ interaction the pickup strength for
neutrons is distributed over all the single-particle
states with j =~7 and has the value 5.44. A similar
thing happens for the proton case. The Cr iso-
topes also follow a somewhat identical trend. For
Fe isotopes the differences in the individual val-
ues for the pickup strengths corresponding to
these interactions are quite pronounced. This is
so because as the number of neutrons and protons
increases, the structure of the HF field in the HFB
approximation for different states for these inter-
actions becomes more dissimilar and this shows
up in the calculation of pickup strengths through
their wave functions.

F. Results for Fe'

It has been pointed out that prolate and oblate
HFB solutions for the HJ interaction for this iso-
tope have energy minima which are very close to
each other, In fact the prolate solution is lower
than the oblate only by 0.01 MeV. This is some-
what interesting because of the fact that the cor-
responding solutions for the CY interaction ar e
not so close to each other. However, even for the
CY potential the prolate-oblate differences for
this isotope are comparably much smaller than
the differences in the prolate and oblate HFB mini-
ma for other nuclei under consideration, with the
exception of Z & X=28 nuclei. For Z &X=28 nuclei
the HFB solutions are spherical. We give here in
Table VII results of the diagonalization of the ~
self-consistent matrices for prolate as well as ob-
late shapes for the HJ interaction. From Table
IV it is seen that for this nucleus, fluctuation in
the number of neutron and proton pairs for an ob-
late sha, pe is equal to 0.72. The chemical poten-
tials for this solution corresponding to neutrons
and protons lie lower than their respective values
in the prolate HFB solution. Obviously, intrinsic
neutron and proton quadrupole moments will have
negative values, which is seen from the Table V.
The neutron pickup strengths for oblate solutions
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do not differ much from the prolate values. How-

ever, they are somewhat different for protons.

IV. SUMMARY AND DISCUSSION

The main motivation of this work has been to
make a comparative study of the properties of
even Ti, Cr, and Fe isotopes with the CY poten-
tial and with the KBRME for the HJ potential. It
is found that for the CY interaction, HFB calcula-
tions for prolate shapes have lower minima than
their respective oblate solutions. The only excep-
tions to these are nuclei with Z &N = 28, for which
the oblate and prolate HFB solutions converge to
spherical ones with the same minima. For CY in-
teractions, the oblate HFB solutions correspond-
ing to N = Z nuclei have considerable pairing cor-
relation, a feature completely absent in the pro-
late solutions for these nuclei.

The HFB calculations with the HJ interaction al-

so usually favor prolate minima over the oblate
ones; the only exception being Fe" for which both
the prolate and oblate shapes have very close en-
ergy minima. However, in detail, the results for
the HJ differ much from the results for the CY in-
teraction. The prolate solutions for X = Z nuclei
with the HJ interaction do not favor pairing corre-
lations except for Cr", where there is some cor-
relation. All other nuclei, including Z &N = 28
have pairing correlations for prolate HFB shapes.
With the HJ interaction, the spherical BCS solu-
tions for all the nuclei under consideration have
energy minima higher than their prolate and ob-
late counterparts. The BCS solutions with this in-
teraction usually have pairing energies much lar-
ger than the BCS solutions for the CY. In some
cases they are even slightly more than four times
the value for the CY (see example Fe'4 in Tables
I and II).

TABLE VII. Single-particle energy eigenvalues and eigenfunctions for neutrons and protons for Fe . The eigen-
functions are obtained by diagonalizing the self-consistent prolate and oblate HF terms of the HFB matrices for the HJ
interaction. In columns labeled pi/2 k, p3/2 k, . . . , etc. , the components corresponding to the projection quantum number
are given.

Neutron wave functions

~1/2, k ' P3/2, k ~5/2, k f7/2, k k

Proton wave functions

~i/2, k P3/2, k f5/2, k f7/2, k

Fe (prolate)

W.9540

-7.8605

-8.7346

-9.7660

-10.1913

-11.8404

-13.6384

-14.6511

-17.0845

-19.1985

5
Y
1
2

3
2

7
3

3
Y

Y
5
2

1
2

3
2

Y

0.9803 0.1977

0.7814 0.3738 0.4778 0.1460

-0.4676 0.8834 0.0310

1.0000

0.8073 0.4125 0.4220

-0.1759 -0.5265 0.7842 -0.2772

-0.1977 0.9803

-0.5582 0.4500 0.3828 0.5825

-0.3600 -0.2224 0.9061

0.2164 -0.6169 -0.1005 0.7500

-0.6618

-4.2000

-4.8356

-5.9160

-6.3933

-8.0335

-10.1748

-10.9298

-13.2862

-14.9887

1
2

3
2

3
T
1
2

5
Y
1
2

0.9770 0.2134

0.7339 0.3853 0.5330 0.1698

-0.4735 0.8808 0.0073

1.0000

0.7942 0.4233 0.4359

-0.2734 -0.4899 0.7993 -0.2153

-0.2134 0.9770

-0.5870 0.4998 0.2620 0.5805

-0.3808 -0.2122 0.9000

0.2051 -0.6014 -0.0919 0.7667

Fe 5 (oblate)

-5.0725

-6.8782

-8.1631

-10.7398

-10.9643

-11.2890

-15.1066

-15.2564

-16.0887

-18.3067

1
2

1
2

5
2

3
2

I
2

5
Y
3
2

7
Y'

-0.4093 0.2072 0.8837 -0.0928

0.2358 0.9310 -0.2787

0.3474 -0.7219 0.3789 0.4633

-0.6428 0.0382 -0.2301 0.7297

0.8486 -0.5291

-0.4359 0.3577 0.8259

0.5464 0.6591 0.1505 0.4943

0.5291 0.8486

0.8686 -0.0732 0.4901

1.0000

-0.6625

-2.8668

-4.0282

-6.9549

-7.2658

-7.5310

-11.5074

-11.7140

-12.3364

-14.5216

1
2

3
2

2

5
2

1
T
3
2

2

5
2

3
T

-0.3872 0.2533 0.8777 -0.1244

0.2239 0.9236 -0.3111

-0.2944 0.6974 -0.4039 -0.5136

0.8684 -0.4959

-0.6585 0.1152 -0.2232 0.7094

-0.4217 0.3796 0.8235

—0.5743 0.6604 0.1289 0.4663

0.4959 0.8684

0.8787 -0.0532 0.4745

1.0000
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It is interesting to see that the ground-state en-
ergies, corresponding to the solutions with mini-
mum energies and corrected for Coulomb interac-
tion due to extracore protons, are quite close to
the experimental values for both the interactions.
The agreement is somewhat better with the HJ
than with the CY interaction.

With the addition of neutrons and protons to the
Ca~' core, the self-consistent calculations for
these isotopes show differences in the intrinsic
structure obtained for these interactions. As a re-
sult, the multipole moments and pickup strengths
for these isotopes evaluated from the self-consis-
tent wave functions differ considerably, in general,
as the atomic mass numbers of the isotopes
change.

From the results with the CY interaction and the
calculations of Rustgi et al."for V" and Cr" and
of Lips and McEllistrem" for P fshell n-uclei, it
is desirable to obtain self-consistent spherical
minima for Z &N = 28 nuclei, which the Kuo and
Brown matrix elements used in this work fail to
generate. This might suggest some modifications
of the matrix elements which generate the desired
HFB spherical solutions for these cases but pre-
serve the ground-state energies around the exper-
imental values. Of course, one might also consider
the approximations used in our work. The most
prominent looking might be n-P pairing in T = 1
states. However, it has been concluded in the work
of Chen and Goswami" that the contribution from
this pairing decreases rapidly as the difference in
the number of neutrons and protons increases. Ac-
cording to this, the n-p pairing in T = 1 state should
not be important for Ti' where, if only extracore
particles are compared, the number of neutrons
is considerably larger than protons. Thus the
absence of a spherical solution with the HJ inter-
action for Fe'4, and to a lesser extent for Cr",
could be attributed to the absence of n-P pairing
if this interaction had yielded a spherical HFB
minimum with just the pairing between identical
particles for Ti". One might advance one other
concrete reason for considering n-P pairing. This

could be that the matrix elements for n-P correla-
tion exist just as do the matrix elements giving
rise to n-n and P-P pairing. But the self-consis-
tent minima are not determined just by the exis-
tence of these terms. As an example, for N= Z
nuclei the effect of pairing matrix elements cor-
responding to n-n and P-P, which are always there,
is completely absent for the prolate solutions in
the CY case and partially absent in HJ case. The
effect, however, exists in spherical solutions, but
they are not the solutions with minimum energies
and there is no guarantee that using n-P pairing
will bring them down below the axially symmetric
solutions. In fact, it may happen that the inclu-
sion of n-p pairing term might not at all affect
the spherical solution and may be identical to the
one obtained by just including n-n andP-P pairing.
This is somewhat similar to HFB yielding HF so-
lutions. Also, for writing HFB equations, one
does not have to explicitly make such assumptions
as

(oP ~V„(yP) =0 unless o.'-=y,

( o.'P~V„(yy) = 0 unless n = P,
which are essential for the derivation of the BCS
equations for finite-range interactions. However,
these matrix elements are ineffective in HFB so-
lutions for Z &N = g8 nuclei with the CY interac-
tion, where the solutions converge to BCS results.
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The energy per particle of neutron matter in the density range 10 to 10 5 g/cm was calcu-
lated self-consistently using recent nuclear potentials: the Bressel-Kerman-Rouben poten-
tial and the boundary-condition model of Feshbach and Lomon. At low densities the results
are in good agreement with other calculations of the energy density of neutron matter. At

higher densities, the predicted energy density depends more strongly on the specific poten-
tial used. More recent potentials yield somewhat lower pressures for neutron matter (hence
a smaller mass range for neutron stars) than those predicted with the Levinger-Simmons po-
tential which has been used as the basis for calculations of neutron-star structure.

I. INTRODUCTION

The matter of which real neutron stars are com-
posed is a complicated substance. Near nuclear
densities it will contain mostly a Fermi sea of
neutrons, but at lower densities the neutrons will
cluster with the remaining protons into nuclei,
and at higher densities mesons and baryon isobars
will be formed in such great numbers that the neu-
trons will no longer dominate. Even near nuclear
density the effects of protons, electrons, and
muons will be nonnegligible, and idealized neutron
matter will only approximate the real situation.
However, a good knowledge of the properties of
idealized neutron matter is basic to understanding
the behavior of neutron stars, since it does pro-
vide a starting point for perturbation calculations
and extrapolations which take into consideration
the more complex effects. A study of neutron mat-
ter can also serve to point out just what degree of
uncertainty arises in the energy per particle due
to the lack of knowledge of the nuclear potential.

This paper presents calculations of the energy
per particle in neutron matter for two recent nu-
clear potentials with the matrix-inversion method
of solving the Bethe-Goldstone equation" in
Brueckner' theory. The potentials used are the
Bressel-Kerman-Rouben potential' and the bound-
ary-condition model of Feshbach and Lomon. ' The
calculations were made using existing nuclear-

matter programs developed by Wang and Spencer, '
with modifications introduced to make them appli-
cable to neutron matter. These modifications con-
sist of dropping T =0 nucleon pair contributions
and replacing statistical factors of 2(2T+1) =2 by
unity, recognizing that neutron pairs are in T = 1,
T, =1 states only. In addition, one need only note
that the density of nuclear matter is twice that of
neutron matter for a given Fermi momentum.

II. CALCULATIONS

The energy per particle in neutron matter is
found using the Brueckner reaction matrix G

which acts on free. two-particle states and is de-
fined by the Bethe-Goldstone equation:

6=&+v —G,e
where v is the internucleon potential, Q is an ex-
clusion operator which limits the intermediate
states to those above the Fermi sea, and e is an
energy denominator involving the single-particle
potentials. This formalism includes all the ef-
fects of two-body clusters of particles interacting
via two-body forces, and has been described ex-
tensively elsewhere in the literature.

In order to introduce a partial-wave separation
of the Bethe-Goldstone equation, it is necessary
to remove the angular dependence of the operators
Q and e. For this work, Q was replaced by its an-


