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which belong to the approaches of Refs. 2 and I, respectively.
Since the operator identity holds in a finite matrix space, these same derivations can be written for

particles with spin.

Mc =m &.(pl, p2lf1+ «(&')G.(E')Ni', e" "~~I1~&.(@f(&)lips, p &I;=. + 0(&)

for the generalization of Ref. 1. For the total internal scattering amplitude M, =M„M~, we conclude:

M, = m, v, (f~f(e) [i& (, -+ 0(Ic)
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An explicit proof is given of the effective orthogonality among the channel wave functions
obtained from a set of coupled equations by showing that the nonorthogonal parts of the wave
functions are physically redundant, thus providing a rigorous basis for the treatment of nu-
clear stripping and pickup reactions. An orthogonality-preserving procedure of the coupled-
channel method is outlined.

The nonorthogonality among the rearrangement
channel wave functions has been the subject of.

much discussion, specifically in connection with
the nonuniqueness of solutions of the scattering
integral equations' and subsequent formulation of
the Faddeev equations, ' the resonating-group-
structure approach' (RGSA), the coupled-channel
method' (CCM) with additional distortion potentials,
and the evaluation of projection operators in Fesh-
bach's reaction theory. '

Recently, however, a simple mathematical pro-
cedure has been developed" by which rearrange-
ment channels can be projected out of the original
scattering equations step by step. As an immedi-
ate consequence of the more general result ob-
tained earlier' using this formalism, it is now
possible to answer rigorously the nonorthogonality
question of the stripping and pickup reactions.
Partly to clarify some of the appal ent confusions
we explicitly spell out the meaning of the effective

+ =PP +PP ++(Q) =@(P)++(Q), (2)

where P. and Q are the orthoprojectors with I'+Q
= I. The operator P, for example, is in general
not a simple linear combination of the P;. In the
discussion to follow, an explicit knowledge of P
and Q is not required, although their effects are
retained implicitly. Therefore, the appearance of
these operators in (2) is purely notational.

The nonorthogonality between the two channels

orthogonality and its proof; the main result is (4).
Following the notation of Ref. 6, we consider the

simple two-channel reactions

1+(c+2),—(1+c),+2

and denote the wave functions of the bound ground
states of (c+i)„i = 1, 2, by Pio'l, and the channel
projections by P; = t/i,

'
&(foe with P =P; =P,t and

Q;= I;-P;. We can in general write the total wave
function for the process (1) in the form'
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(PP„P,4,) -0

and similarly

(P;~;,~(Q))-0.

(4a)

(4b)

The effective orthogonality (4) does not necessari-
ly imply that the P; If, are mutually orthogonal, as
will be discussed more fully later. We will con-
sider here the orthogonality property of the wave
functions only in the sense of (4).
(1) We first consider the case with 4(Q) =0; i.e.,

e-e~-=P e~+P e~

Writing Mo ~H —E, and substituting (5) into the
original scattering equation, we obtain a set of
coupled equations

p, M~, 4e=-p, M, pp~, i~j,

(5)

where i and j assume the values I and 2. If we
further define the homogeneous solutions and the
Green' s functions of (6) by

then we can rewrite (6} in the form

P,.M,.P,.C~=-a, P,N, ,

M, = Mo+MOG, ~ Mo,

N. =MOP 4' 0.

In (8), the a, are constants specifying the initial
conditions and we have used throughout the stand-
ing-wave boundary conditions. The r emarkable
properties of M,. and N,- are that, ' as follows im-
mediately from (7) and (9),

P, M, =M, P,. =O, M, = Q, M, Q, ,

involved is conveniently expressed in a slightly
weakened form

[P„P,]~0.
In formulating the theory for the process (1), Gold-
berger and Watson' have shown that the asymptotic
orthogonality P,P, -O as either of the two asymp-
totic channel regions is approached should be suf-
ficient. However, in practice, the @(Q) part in (2)
is often difficult to handle because of (8). We pre-
sent below a stronger result for the channel wave
functions which satisfy a set of coupled equations
derived with (2}. That is, we show that only the
component of P;4'; which is orthogonal to P,, jti,
is physically relevant, so that P,4, and P,+, are
effectively orfhogona/. We denote this property by

That is, both M, and N& are in the Q, subspaees,
which are orthogonal to P,, so that the solutions
PP; of (8) should also be in the Q; space. There-
fore, the component of P;4; which is proportional
to P, will automatically be eliminated in (8) be-
cause of the property of M,. Independent of
whether or not the actual PP; obtained from (8)
satisfy P,P,4; = 0, only the Q, part of P&+"; is
physically relevant. Thus, we have the effective
orthogonality

P;MoPP; = -P;M+P, , (12)

Mq=Mo+MoG Mo

G'=-(QM. Q)-'.

Thus, by replacing Mo with M and repeating the
steps leading up to (11'), we have the desired
orthogonality

(PP„P,4,) -0,
which follows from P;P,@ -0, as in (11).

In practice, the operator MoG~MO is usually im-
possible to evaluate accurately and (12) is useless.
However, it is important to note that the exact
form of M+ is not necessary for the orthogonality
(4a) to be valid. Any physically reasonable approx-
imation for Mz would be sufficient to maintain (4a).
On the other hand, once a specific form for M is
chosen, the resulting equations of the form (12)
should be solved exactly Mithout further approxi-
mations. This is not often the ease in the CCM
analysis of nuclear reactions. The above discus-
sion shows that, if the analysis is carried out cor-
rectly as indicated, the CCM should have an ad-
ditional advantage over the distorted-wave Born

P,P,.4, -0,
or, simply, in a weaker form

(P @ P @")-0

(2) The orthogonality (11') is not quite the same as
(4a) yet, although it is in itself a useful result, for
example, in the RGSA which uses wave functions
of the form (5). For convenience of discussion,
we distinguish here between the RGSA and CCM
by including in the latter effects of +(Q) in some
approximations, such as the introduction of optical
potentials.

In order to obtain (4a), we note that the steps in-
volved in the proof of (11') starting from (5) are
independent of the specific form of Mo used. In
fact, if we take the exact wave function + in the
form (2) and formally eliminate +(Q), we obtain
another, exact set of coupled equations for P;+;,
analogous to (6),
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approximation in that (4a) is automatically satis-
fied. Furthermore, approximations are allowed
only in the construction of M, and thus further
limits the number of parameters one can introduce
in the usual CCM. '
(2) By reversing the procedure in the derivation
of (12), we can first solve for the P components
of + formally and obtain an uncoupled equation
for +(Q). We can then show, by exactly the same
argument, that

(PP, e(Q))-0, (4b)

which follows from PP(Q) = 0; l.e., +(Q) =Q+.
This result should also follow directly from the

very definition of the operators P and Q, with the

properties PP;=P;P=P; and P;Q=O. It is a nontrivi-
al problem to evaluate the operators P and Q ex-
plicitly. In fact, we have shown in Ref. 6 that the
actual forms for these operators are not needed
in formulating the theory which incorporates the
orthogonality property (4). When the operator
M~=M, +M, G M, analogous to Mo of (13) is con-
structed, it can be shown that P;M~ = M J,P; = 0, so
that Mz ——QMzQ. The function 4'(Q) can therefore
be written without Q as 4'(Q) = -Mz 'NI, where NI,
-=M,4~. This completes the proof of (4).

We have thus shown that if a set -of coupled equa-
tions of the form (12), with Mo replaced, perhaps,
by its approximation is solved exactly, then the
orthogonality relations (4) should automatically be
satisfied. The orthogonality property is incorpo-

rated here into the operators M, and the functions
N, , rather than orthogonalizing the wave functions
P;4'; "; thus an explicit construction of the opera-
tors P and Q is not necessary. We further note
that a separate adjustment of P;MoP; and PMoP, in

(12) will destroy (4a), for example, but an adjust-
ment of Mo before putting it into (12) will preserve
the orthogonality. Obviously, the goodness of the
solution @'(P) depends directly on the proper choice
of Me, but this ha, s no effect on the property (4).
Generalizations of the above considerations to
cases with more than two coupled channels are
straightforward. The present discussion also
clarifies precisely the basis of the matrix formula-
tion of the reaction theory given earlier. "

The recent result of an application" of the for-
malism of Ref. 6 to the positron-hydrogen scatter-
ing above the pickup threshold and positronium
formation fully supports the properties (10) and,
consequently, (4) as well. In this model (p, d) re-
actions, the +(Q) part was approximated variation-
ally, taking into account the coupling of all the
closed channels including those of breakup. A
procedure along a similar line to the above has
been discussed also by Ohmura et al. '4
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