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A new, simple, and exact method is given for calculating the reaction matrix G in a two-
particle harmonic-oscillator basis. The method makes use of an expansion of the Bethe-
Goldstone wave function in terms of solutions of the Schrddinger equation for two interacting
particles in a harmonic-oscillator well. Since a two-particle basis is used, the Pauli opera-
tor @ is diagonal and can be treated exactly. Reaction matrix elements based .on the Hamada-
Johnston potential are used in a shell-model calculation of A=18 nuclei. The results are
compared with those of earlier calculations using approximate Pauli operators. The depen-
dence of the reaction matrix on the starting energy is studied, and the relationship of this
energy to the intermediate-state spectrum and to the Pauli operator @ is discussed. In this
same context the difference between using a Brueckner @ and a shell-model @ is also dis-

cussed.

I. INTRODUCTION

We present a simple formalism for calculating
reaction matrix elements in a harmonic-oscillator
(HO) basis with an exact treatment of the Pauli
operator @, Our approach is based on an earlier
suggestion® that the Bethe-Goldstone (BG) equation
be solved by expanding the BG wave function in
terms of eigenfunctions of two interacting nucleons
bound in the HO well. This suggestion was used
previously by Truelove and Nicholls? (TN), who
developed an interaction scheme for calculating re-
action matrix elements based on the integral form
of the BG equation. The present method is based
on the differential form of the BG equation and the
resulting expressions are simpler in form and
easier to evaluate numerically.

Our method is related to the reference-spectrum
method® in that we first calculate a reference ma-
trix GF and then obtain the reaction matrix G by
matrix inversion. The new expression for G* is,
however, quite different from the usual one and
allows G to be calculated directly in the two-parti-
cle representation, where the Pauli operator @ is
diagonal.

For the purpose of comparison with earlier cal-
culations, which treated @ only approximately,*
we perform a simple shell-model calculation for
A =18 nuclei using G matrix elements calculated
with the Hamada-Johnston nucleon-nucleon poten-
tial® for a wide range of starting energies. We
find that an exact treatment of the Pauli operator
in the determination of the G matrix can produce
sizeable differences in the results obtained for G
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and for excitation spectra.

In Sec. II we derive our equations for G and G,
and show that the final expressions are the same
for both soft-core and hard-core nucleon-nucleon
potentials. Arbitrary shifts in the intermediate-
state energies can be made in precisely the same
manner as in the usual reference-spectrum method.

In Sec. III we consider separately the calculation-
al procedures for evaluating G¥ and G and discuss
questions of convergence. We then present the re-
sults of an A =18 shell-model calculation and com-
pare our results with earlier ones based on an ap-
proximate treatment of Q.

Finally, in Sec. IV we discuss the relationship of
the starting energy to the intermediate-state spec-
trum and to the Pauli operator. In this same dis-
cussion we point out the difference between using
a Brueckner @ and a shell-model @ and show prob-
lems which arise in using a shell-model Q.

II. BASIC THEORY

The integral form of the BG equation in a HO
basis may be written as

¥2T0) = g+ 3 Lebul2ul V¥ (1
m

’
w=€,

where the reaction matrix element G,q(w) is de-
fined by

Guo(@) ={o V] ¥EYw)) . (2)

Here ¢, and €, are the eigenstates and eigenvalues
of the two-particle HO Hamiltonian H; i.e.,

Hopp=€,9,. (3)
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[Arbitrary shifts in the two-particle energies of
Eq. (1) will be considered later in this section. ]
The Pauli operator @, with eigenvalues @, pro-
jects outside the two-particle model space; V is
the free nucleon-nucleon potential; and w is an
energy parameter to be determined by the particu-~
lar application of G.

Our starting point is the differential form of the
BG equation. This can be obtained from Eq. (1)
by operating on both sides of the equation with
(Hy =~ w):

(Ho - w)‘l’gG(w) =(€q=w)Po- Zu) Qp(pucpa(w) .
(4)

We then use Eq. (2) and the fact that the ¢, form
a complete set to rewrite Eq. (4) as

(Ho +V- w)‘I’ELG(w) =(€q~w)Pq +E(1 - Qp)¢pcpa(w) .
u
(5)
For simplicity we first treat the case where the

potential V has no infinite hard core. The form
of the left-hand side of Eq. (5) suggests an expan-
sion! of ¥2%w) in terms of the complete set of
eigenfunctions ¥; of the Schrddinger equation,

Ho+VYi=E 9, (6)

for two interacting particles bound in the HO well,
i.e.,

W5w) =Y su@)yy (7)
with
30(w) = (Y[ ¥ 3(w)) . (8)

J

BARRETT, HEWITT, AND McCARTHY

[eo

Since the functions ¥; contain the effects of the
strong short-range repulsive part of V, the expan-
sion (7) would be expected to be much more rapid-
ly convergent than the corresponding HO expansion
[Eq. (1)]. A simple relation connecting @;q(w) with
the reaction matrix elements G,(w) and the over-
laps

bia':(wilq)a) (9)

can be derived by substituting Eq. (7) into Eq.
(5) and making use of Eq. (6) to give

Z;aia(w)(E,' - W)¢i =(€q - w)9q +Zp)(1 - Qp)(f)pcpa(w) .
(10)

Since the functions ¥; form an orthonormal set,
multiplication of both sides of this equation by §;*
and integration over all space yields the desired
result:

Gl ) <FE 00t D I by, (1D
whenever w is not equal to E;.

The reaction matrix elements can also be ex-
pressed in terms of the above quantities.®® If we
substitute Eq. (7) into Eq. (2) and then use Egs. (6),
(8), and (9), we find that

Cpal(@) = 23;a(@)b6(E = €5) . (12)

We may now eliminate a;,(w) between Egs. (11)
and (12) to obtain

(13)

for any w which is not equal to an eigenvalue of
Eq. (6).

If we interchange the order of the infinite sums
in the second term on the right-hand side of Eq.
(13), the equation can be written in the more trans-
parent form

hd 1 -
Goalw) = GBalw) = 3 GB0) ST Gyolw),
i
(14)
where

Glﬁea(w)=(€a" w)ii =<

BbiabiB- (15)

i
i—w

It is possible, but tedious, to prove the validity
of this interchange by examining the energy de-
pendence of .the overlap coefficients b;,. However,

~E;-¢ 2 & E,—€ 1-
Gﬂa(w)=(€a—w)z E:_: biabi—ZZ(eu"w)E:_wﬂbiﬁbw<w _2:‘1>G#0¢(‘“)
i i

’since interchanging the summation order leads to
the standard relationship® between the G matrix
and the reference matrix Gz, we do not feel that

a detailed argument is necessary. It is obvious,
however, that the single sum over 7 in Eq. (15) is
absolutely convergent, since the energy-difference
ratio is bounded and

2ilbiabisl<223(0,0® +0,67 =1, (16)
i

which follows from the Schwarz inequality. It is

also possible to obtain Eq. (15) directly from the

reference-spectrum equation

(H0+V—w)‘1/§(w)=(€a—w)¢a (17)
and the definition
GEalw) =(¢p sl VI¥E(w)) . (18)
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The derivation is identical to that given above
[Egs. (6)-(13)], since Egs.(17) and (18) are the
analogs of (5) and (2), respectively.

It is convenient to rewrite our new expression
for the reference-spectrum matrix elements in a
more elegant form using the orthogonality rela-
tion for the HO wave function ¢,

Zbidbiﬂ=6aﬁ- (19)
K

Since the sums over Z in both Egs. (15) and (19)
are absolutely convergent, we can rearrange
terms to give

“\[E.—¢€

GBalw) = (€a - w)[aaa+2( - 1) bmbia]
: 1
1

- (€qn w)[ﬁag ~(eg- w)i%a—f—ﬂ (20

i

This last equation displays explicitly the poles and
some of the zeros of GB,(w). It is also obvious
that G®(w) is Hermitian. Equation (20) is a much
more useful form for computational purposes than
Eq. (15), since the numerical convergence of the
sum over ¢ is significantly improved.

The above treatment can easily be generalized
to the case where V contains an infinite repulsive
hard core. Here the eigenfunctions ¥; vanish in-
side the core and form a complete orthonormal
set only for the region outside the core. However,
since the BG wave function also vanishes within
the core, it may still be expanded in terms of the
terms of the ¢;. It then follows that Eq. (11) for
@;o(w) remains unchanged. On the other hand, it
is necessary to replace Eq. (12) for Ggq(w) by
[see Sec. III of Ref. (6)]

Gpal®) =23 5(E = €5) + (€= @)Opa
+Zp)(1—Qp)Oﬂ‘,G,,a(w). (21)

where
oeff, d?fdﬁ%*%, (22)
I" |<c

¥ and R are the relative and center-of-mass coor-
dinates of the two particles, and c is the radius of
the hard core. Substitution of Eq. (11) into Eq. (21)
again yields Eq. (14), provided we change our def-
inition of GE4(w) to

E.—-¢€
GE () =(€y - w)[03a+; E‘i———fb‘“ biﬂ] .
(23)
By using the orthogonality relation

Oﬁa'*‘?biabw:éaﬁ (24)

for the HO wave functions ¢,, we again obtain Eq.
(20) as our final expression for G¥ (w).

We also note that it is possible in this formalism
to make arbitrary shifts in the intermediate-state
energies in the BG equation, while retaining HO
basis functions. The BG equation then becomes

2w = g+ 3 LuCuel), (25)
" p

where we have shifted €, to ¢,. If the above de-
rivations are carried through exactly as before,
the effect is equivalent to making the simple sub-
stitution @, — @} throughout, where

Qix'—'Qy(w—ep)/(w—ep)- (26)

Thus our final expression for HO G matrix ele-
ments derived from any realistic nucleon-nucleon
potential is

G Ba(w) = Gga(w)

1 Q
-Zoh(gg - 5 o,

(27
where
Glo(w) =(€a = w)[aaa_ (ep— w)z QE_L:LE)%].
(20)

III. CALCULATIONS AND RESULTS
A. Calculation of G® Matrix Elements

The calculation of G® matrix elements can be
conveniently separated into three independent
steps. First the eigenvalue equation [Eq. (6)] is
solved in the relative coordinate system to obtain
a set of relative eigenfunctions |mSdT) and ener-
gies E, sg7. Here S, g, and T are the total spin,
angular momentum, and isospin of the eigenfunc-
tions, respectively, while the index m labels
eigenfunctions of the same SJT in order of increas-~
ing energy. Some of these eigenfunctions can also
be labeled by the orbital angular momentum /. The
rest are composed of two wave functions with 7 =¢
+1, coupled by the tensor interaction in the nu-
cleon-nucleon potential. In either case we can
write

[mSIT) = 3 Im(15)97), (28)
1

where the summation has two terms for coupled
waves and only one term for uncoupled waves.
Once these eigenfunctions have been obtained, we
evaluate the radial overlaps (m(IS)dT|nl), where
|nl) represents a relative HO wave function.

The second step consists of evaluating the two-
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The two-body eigenfunction ¢; is the product of a
relative eigenfunction and a HO center-of-mass
wave function, again coupled to a total angular
momentum J; i.e.,

¥;= 2, lm(IS)IT,NL; J) . (30)
(29) !

body overlap coefficients b;,. To do this we must
discuss the angular momentum coupling of the
states ¢, and y;. The wave function ¢ is the
product of two single-particle (SP) HO wave func-
tions coupled to a specific JT"

Pa= I”1lzj1; Nylsdp; IT) .

We now express ¢, in terms of HO states in the relative-center-of-mass system. Thus
$a= 2 Coln'l'S'g'N'L"; JT] |n'(1'S)§'T, N'L"; J) (31)

where the primed summation runs over all primed indices, and the transformation coefficients are

given by
[1- (1)5*4+7] T
Ca[nlSQNL;JT]:E—[z(—l:b—)]l/—z—[(Zjl+1)(2j2+1)(2/\+1)(2S+1)]1’2 3 3 SH>(nl,NL;x|n 1, nyl,; 1)
x 12 9y Gy J
X(-D)$ 143 (2g i B
- +1)(2x +1)] JLale (32)

In the above equation the symbols enclosed in curly brackets are the usual 9-j and 6-j symbols,” respective-
ly; {nl,NL;x|n,1,n,1,;)) is the Brody-Moshinsky transformation bracket,® and 6,, is equal to unity if the

two SP states are identical, and is equal to zero otherwise.
Once the C coefficients have been evaluated, the two-body overlap b;, can be expressed very simply as

b=l 0o) =27 Coln'U'SINL; IT A mU'S)IT|n'l"). (33)
n'l

The summation over I’ is restricted to the orbital angular momenta contained in ¢;, and n’ is given by the

energy-conservation relation
'=3(2n, 40, +2n,+1,- 2N~ L =1"),

(34)

We are now in a position to carry out the final step, the summation over ¢ in Eq. (20). The energy E; is

given by
E=E,sgr+€yL,
where
exr=(2N +L +3)rQ
and 7Q is the HO spacing. Hence,

- b'ab'B nyn
,- m:%& z; ; CalnV'SINL; JTIC o(n"1"SINL; JT) Y
n n n m

All sums, except the one over m, are finite be-
cause of the angular momentum and energy-con-
servation conditions built into the C coefficients.
The infinite sum over m must be truncated. As
can be seen from the behavior of the radial over-
laps shown in Table I, the quantities b;, peak
sharply when the energy E; is approximately equal
to the oscillator energy €,. It is, therefore, ob-
vious from the form of Eq. (37) that the truncation
point should be chosen such that E; is much larger
than the three energies €,, €5, and w. In practice
we find that matrix elements of G¥ are accurate to

(35)

(36)

(m@SITIn I m(1"S)gT |01y 37

E,sgr+€y—w

within 0.02 MeV when E; is chosen approximately
47Q greater than the largest of these three ener-
gies. The magnitude of this error is comparable
with the numerical uncertainties in evaluating
wave functions and radial integrals, which appear
in all G-matrix calculations.

One further approximation has been made in
carrying out the sum in Eq. (37). Only those eigen-
states with relative d less than or equal to 3 are
treated exactly. For all higher partial waves the
eigenfunctions are replaced by their correspond-
ing HO wave functions, which means that the eigen-
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energies E, sgr become oscillator energies and the
overlaps {m(IS)JT| nl) are Kronecker 0 functions.
This is equivalent to setting the potential V equal
to zero for partial waves with §>3.

The above approximation is introduced only be-
cause the nucleon-nucleon potential is not proper-
ly defined in the higher partial waves. Clearly it
would be easy to carry out this finite sum exactly
if the potential were known. Fortunately, our re-
sults do not depend on the truncation point pro-
vided we include all partial waves with § <2. For
heavier nuclei, however, it has been shown® that
f waves are important, and the truncation point
should probably be chosen as § =3 or higher.

B. Calculation of G Matrix Elements

Matrix elements of G can now be obtained from
those of G¥ using Eq. (27). This equation can be
written in matrix form as

(31)(&)-(c) 52

where we have ordered the two-particle states «,
so that states for which

1/(w_€a)"Qa/(w_ea)¢0 (39)
appear first. The matrices A and B are defined by
1 Q
_ R (__*  _ o
ABot—bBa*‘GBa(w_ea w__ea> (40)
and
1 Q
B [ _RXa
BBa—Gﬂa<w_€a w_ea> . (41)

Equation (38) then has the solution

TABLE I. The relative-coordinate S-state overlaps
of §; and ¢ for the 35,-*D; state and the 1S, state. The
symbols E; and E , here refer to the relative energy
eigenvalues for the state ¢; and ¢ o, respectively. Cen-
ter-of-mass energies are not included. In the 3S1=3Dy
state we have included overlaps only for those states ¥;
which are predominantly Swave. All energies are in
MeV.

E;/Eq 21.0 49.0 77.0 105.0
384-°Dy
5.37 0.8862 0.2643 0.1162  0.0518
41,27 —0.3745 0.8876 0.1464  0.0535
71.94 —-0.1281  —0.2624 0.9280  0.0972
101.73 —-0.0750  —0.1069  —0.1829  0.9479
1s0

13.03 0.9728 0.1756 0.0676  0.0251
44.65 -0.1977 0.9687 0.0931  0.0265
74.69 -0.0632  —0.1224 0.9827  0.0400
104.24 ~0.0305 —0.0421  —0.0621  0.9887

GI=A-IGf, (42)
G =Gl - BG;. (43)

Thus, Giand GF contain all matrix elements Gg,
and G§,, respectively, for which the state 8 satis-
fies the inequality [Eq. (39)]; Gy and Gf; contain
the remaining matrix elements.

In the present paper we report the results of an
A =18 shell-model calculation with no independent
shifts in the two-particle energies. Thus, in Egs.
(40) and (42) e, is equal to €4, and the inequality
(39) is satisfied only by those states for which @,
is equal to zero. These states, which are repre-
sented by the shaded area of Fig. 1, consist of all
two-particle states for which at least one of the
particles is in the Os or 0p shells or for which
both particles are in the 1s-0d shell. The infinite
set of two-particle states with one particle in the
0s or 0p shells must be truncated to give a matrix
A of finite dimensions.

The effect of this truncation on matrix elements
within the s-d shell depends strongly on the ener-
gy difference w - €, where €, the maximum two-
particle energy retained in the @, =0 space, is
determined by the cutoff value of p along the wings
of Fig. 1. Here p=2n+! is the energy quantum
number for each major shell within the HO well.
In Fig. 2 we show how the lowest 1* states of *F
behave as a function of py ., for two different val-
ues of w. We find that satisfactory convergence is
obtained in all states and for all w values for a cut-
off value of Py, .x =10. This cutoff value, which

10

9

P, 5

Sy

L&\
o
L

Py

FIG. 1. The shaded area indicates the Q“ =0 region in-
cluded in our calculation of the G matrix for A=18 nuclei.
The symbol p; =2n; +1;. All appropriate combinations of
p4 and p, within the shaded area determine two-particle
configurations used in solving Eq. (42).
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leads to dimensions of A varying from 19 by 19 for
J=0, T=1, to 41 by 41 for J=2, T=1, is used in
all our subsequent calculations.

It is, of course, possible to carry out exact cal-
culations of G using Gp matrix elements evaluated
by earlier methods. Since the numerical results
obtained for Ggi here and in Ref. 4 are identical,
we should ask which method of calculation is
easier and faster. The answer to this question
depends somewhat on the size and nature of the
calculation but usually the new method is both fas-
ter and easier. This is true even though the eigen-
value equation is somewhat more difficult to solve
than the relative BG equation.

In the calculations presented here we evaluated
8 relative eigenfunctions for each uncoupled par-
tial wave and 16 for each coupled partial wave up
to and including  =3. The total time needed for
this calculation - once the codes were working
correctly and we could guess good starting values
for the eigenvalues ~ was about four minutes on
the Carnegie-Mellon Univac 1108 computer. This
calculation never has to be repeated, regardless
of the number or range of starting energies used
in the BG equation. Moreover, we do not have to
worry about calculating Gy for an w value too
close to a pole, since we know the locations of the
poles before calculating Gg.

It is faster and easier to calculate individual Gy
matrix elements in the relative coordinate system
using the older method. However, a large number

w (MeV)

A e m e e — em - 4 e - 47

i R ittt Tl 47

97

97

]
H
1

Energy (MeV)
1
N
T T

o emm A e m et e e — e~ =% 4T

-4

FIG. 2. Convergence of the excitation energies for the
three lowest-lying J7=17%, T =0 states in ¥F, shown as
a function of increasing number of major shells (denoted
by p, see Fig. 1) included in the calculation. Results
are given for two values of the energy parameter w,
(Note break in scale for lowest state at w=97 MeV.)

| o

of these relative matrix elements are needed to
obtain each Gy matrix element in the two-body
representation. Moreover, we must solve the rel-
ative BG equation for a large number of relative
starting energies and it is hard to choose these
relative starting energies to avoid all singularities
in the relative Gy matrix elements. Thus the cal-
culations often have to repeated for new values of
the starting energies. As the size of the problem
and the range of starting energies increase, the
new method presented here becomes more and
more advantageous. Of course, a point is reached
where time requirements and machine capabilities
prevent treating @ exactly, and it becomes best

to work entirely in the relative-center-of-mass
representation. In this case the new method loses
some -~ but not all - of its advantages.

C. Results

The purpose of this section is to compare our
exact treatment of the Pauli operator @ with pre-
vious approximate treatments. We therefore
study the very simple case of an A =18 shell-mod-
el calculation without core polarization using the
Hamada-Johnston nucleon-nucleon potential® and
compare our results with those obtained earlier
by Mercier, Baranger, and McCarthy,* whose re-
sults should differ from ours only in the treatment
of @. It would not be meaningful to compare our
results directly with those of other investiga-
tors’~1® gsince the effect of using an exact @ would
be masked by other differences in the calculations;
e.g., use of different potentials or different inter-
mediate-~state spectra.

In Figs. 3 and 4 we plot the excitation energies
of 0 and '®F, respectively, as a function of the
starting energy w, and in Fig. 5 we compare our
results with those of Mercier et al. for the low-
lying states of ®F, where the discrepancies are
largest. For the purpose of comparison we use
the same parameters as Mercier ef al. [i.e., i
=14 MeV and experimental SP energies for 'O
(€0a5/2=0.0 MeV, €,,,,,=0.87 MeV, €,4,,,=5.08
MeV)] and present our results for the same range
of w values.

Some of the effects produced by an exact treat-
ment of @ are quite striking. For example, the
lowest 2* state is strongly depressed by the exact
Q at large w values, causing it to cross below the
5* state, an effect not obtained my Mercier et al.
Although the 1% ground state has roughly the same
shape in both cases, the exact @ produces an ex-
citation energy which is 1.54 MeV below the ap-
proximate @ at w =97 MeV. In general, the exact
€ produces larger differences between the low-
lying states than between the higher-lying states.
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FIG. 3. The low-lying spectra of 80 (I'=1) as a func-
tion of the starting energy w. The dashed line indicates
the self-consistent results for two s-d shell particles
in a HO well (w=98 MeV+AEy for ZQ =14 MeV).

The differences at w =-3 MeV are small in all
cases, never being greater than about 0.15 MeV.
Both in our results and in those of Mercier et al.,
all the levels are depressed as the energy param-
eter w is increased, since we are approaching the
first singularity in the positive-parity G matrix
which appears at w~110 MeV. The differences

for the T'=1 states, which do not contain the strong
tensor component of the nucleon-nucleon force,

are not as dramatic and range from 0.04 MeV at
w==3 MeV to 0.28 MeV at w =97 MeV for the
lowest 0* state. In general, the differences at
both w=-3 and 97 MeV are small, being only a few
hundredths of an MeV. The first singularity in this
case lies higher at w~118 MeV. It should be noted
that all of the discrepancies come entirely from
the approximation on @ made by Mercier et al.,
since their GF matrix elements are essentially
equivalent to ours.

The method of TN ? also treats the Pauli operator
@ exactly and should lead to results identical to
ours. Their calculations include a self-consistent
determination of the energy parameter w, and
their results should be compared with the points
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6 > N
2
af 3"
- |§
2’
2F 4q* 3t
= 2'0

Energy (MeV)

A T T SO TR NN TR RO TR N
-0 0 10 30 50 70 90

w (MeV)

FIG. 4. The low-lying spectra of ¥F (I'=0) as a func-
tion of the starting energy w. The dashed line has the
same meaning as in Fig, 3.

of intersection of the dashed straight lines with
the curves in Figs. 3 and 4. We find even larger
discrepancies between their results and ours than
between those of Mercier ef al. and ours. Recent
studies® 5 of the TN calculation indicate that they
did not include enough terms in their truncated
infinite summations.

Finally, it would not be at all meaningful to com-
pare our results with experiment, since second-
order'®!! and higher-order’® terms in the effective
shell-model interaction are known to be important.
Consequently, since the effective shell-model in-
teraction is a function of the excitation energy,
one must sum the entire perturbation expansion
for the effective interaction in order to determine
the correct starting value of w. Thus, even though
our G matrices are exact for a given starting en-
ergy w, the precise value of w to use in evaluating
the G matrix elements for performing an effective-
interaction shell-model calculation remains un-
certain,

In the next section we discuss the physical
meaning of the energy parameter w and its rela-
tionship to shifts in the intermediate-state spec-
trum and to the Pauli operator Q.
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Energy (MeV)

w (MeV)

FIG. 5. Comparison of our results for BF (solid lines)
with those of Mercier et al. (Ref. 4) (dashed lines) to
show the difference produced by an exact and an approxi-
mate treatment of the Pauli operator.

IV. DISCUSSION OF TECHNIQUE AND RESULTS

The starting energy w has been treated so far as
a variable parameter which enters the BG equa-
tion. In this section we discuss the definition of
w, show how it is related to the choice of the in-
termediate-state spectrum, and point out some
problems which arise when a shell-model @ is
used rather than a Brueckner Q.

The starting point for any Brueckner-type cal-
culation - both shell-model and binding energy - is
the choice of a SP Hamiltonian to define a set of
basis wave functions and energies. The total bind-
ing energy or effective interaction is then defined
in terms of a perturbation expansion based on
these SP wave functions and energies.'” Obviously,
these basis states should be chosen such that the
perturbation expansion coverges as rapidly as
possible.

Once these basis states are chosen, the value of
w is defined in the Bloch-Horowitz-Brandow the-
ory!™ ¥ to be the sum of the unperturbed two-par-
ticle energy and the self-consistent interaction
energy AE,. Two problems arise here. First,

the interaction energy AE is not known until the
entire calculation is completed. Thus, we are
forced to do the calculation for a range of values
of AE , and pick the self-consistent values at the
end. A more serious problem is the fact that in
calculating only G we are not including enough
terms in the Bloch-Horowitz expansion’® and our
results therefore depend upon our original choice
of basis states and energies.

In this paper we have chosen the basis states to
be defined by HO wave functions. However, it is
possible in our formalism to assign independent
shifts to each oscillator level and study the re-
sulting spectra as a function of these shifts. The
simplest possible type of shift is to introduce a
variable energy gap between the occupied and un-
occupied SP levels, and it is this type of shift
which we wish to discuss.

A gap between occupied and unoccupied SP
states can be introduced most simply in binding-
energy calculations. Here the G matrix is defined
by

B
Garp(®) = Ve + ZVWJ&L“ Gusl@), (44)
U

where @5, the Brueckner-Pauli operator, projects
only into those two-particle states where neither
SP state is occupied. Consequently, if we shift
the energies of all unoccupied SP states by an
amount C, all the €, are shifted by an amount 2C.
But this is equivalent to redefining w as w - 2C,

so it is clear that we can vary the gap between oc-
cupied and unoccupied states simply by varying w.

This simple procedure is not correct in shell-
model calculations using a shell-model . The
shell-model @ projects not only into totally un-
occupied two-particle states, but also into those
two-particle states in which we have one unoccu-
pied SP state and one valence state. Hence, the
use of the nonsymmetrical shell-model @ does
not permit the exact separation of valence and
unoccupied states simply by varying w, as in the
case of the Brueckner Q.

There are two ways around this difficulty. The
first is to continue using a shell-model @ but to
extend the matrix-inversion space of Eq. (42) to
include those @, =1 states which contain one val-
ence SP state. Then we can simulate a gap C be-
tween occupied and unoccupied SP states by de-
creasing w by 2C while simultaneously decreasing
the energies of the @, =1 states in the matrix in-
version by C. The other method, which also in-
volves increasing the size of the matrix-inversion
space, it to use a Brueckner € in evaluating G.
The contribution of SP excitation diagrams to the
effective interaction would then have to be evaluat-
ed explicitly - again as a function of w.



3 SIMPLE AND EXACT METHOD... 1145

In the results presented in Sec. III, the variation
with w cannot be interpreted exactly in terms of
a gap between occupied and unoccupied states. We
presented our results in that form, however, in
order to be able to compare with Mercier et al.,
who did not treat the shifts exactly. Since a nega-
tive shift in w can always be interpreted as cre-
ating a positive gap between the @ ,=0and @,=1
states, a shell-model @ will introduce too large
a gap between the @, =0 states and the singly oc-
cupied @, =1 states. Thus, for a given shift in w,
our results lie higher than those for a correct
treatment of a gap between occupied and unoccu-
pied SP states.

Investigations are presently being carried out

by our method to determine the exact effects on
the G matrix and on the excitation spectra of nu-
clei of using a shell-model @ and at the same time
properly shifting the intermediate-state spectrum
so as to produce a gap between the occupied and
unoccupied SP levels. The results of these inves-
tigations will be reported in a future publication.
In conclusion we have found that it is important
to treat the Pauli operator correctly in shell-mod-
el calculations and that further investigations need
to be carried out to study the relationship between
varying the energy parameter and changing the
intermediate-state spectrum. The relationship of
these effects to using a shell-model or a Brueck-
ner-Pauli operator also deserves further study.
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