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The general theory of multiple scattering of pions from nuclei is expressed in a way which
does not require the use of a series expansion. In an on-shell approximation this theory may
be reduced to the solution of a set of A coupled integral equations. As a demonstration of the
method the equations are specialized to the case of the deuteron and solved to give compari-
son with the experimental data. The deuteron tensor T20 is shown to be sensitive to the per-
centage of D state for deuterons scattered at 0'.

I. INTRODUCTION

In the energy region of 0-500-MeV pion kinetic
energy there exists no completely acceptable the-
ory of pion-nucleus scattering. The high-energy
eikonal approximation due to Glauber" has been
successful in explaining high-energy scattering
data at small angles. In spite of a number of at-
tempts to increase its range of validity, ' it is
doubtful if this basic approach would be of value
for large angles in this energy range.

The Watson multiple-scattering series has been
used with some success for pion-deuteron scatter-
ing by evaluating the double-scattering term in
various approximations. ' However, it is difficult
to go beyond the second term and, furthermore,
for large nuclei and near a resonance it is not cer-
tain that the series even converges.

Optical-model calculations' have been the most
successful in this region, but their application is
limited to large-& nuclei. Their use near a reso-
nance also has questionable validity.

For these reasons the present paper attempts to
develop a theory with the following aims:
(i) There should be no small-angle or forward-
scattering approximations, as these are not appro-
priate for this energy regime.
(ii) There should be no truncation of the multiple-
scattering series to avoid questions of conver-
gence near a resonance.

(iii) There should be only on-shell information re-
quired (at least in the first-order theory) to make
the calculation as simple as possible.

In order to develop such a theory we shall use
the form of multiple-scattering theory used some
years ago by Foldy and Brueckner' and more re-
cently by Seki. ' This method expresses the multi-
ple-scattering amplitude from one of the nucleons
as the simple-scattering amplitude plus a term
which looks very much like a double-scattering
amplitude. The difference between this second
term and an actual double-scattering term is that
one of the simple amplitudes has been replaced by
the multiple-scattering amplitude. Thus, one has
implicit equations for the multiple-scattering am-
plitudes. With the aid of some approximations
these equations can be brought into a solvable form.

These general equations are developed in Sec. II
and it will be seen that they may be written as cou-
pled integral equations over angular variables. In
Sec. III the equations are specialized to the case of
the deuteron and solved in double scattering at high
energies to compare with Glauber theory. Here
also in Sec. III the case of n-deuteron scattering
just below the (3, 3) resonance is calculated and
compared with experiment.

H. THEORY

Let us consider the scattering from 4 fixed nu-
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cleons with position coordinates F;(i = I, 2, . . . , A).
The scattered part of the wave function can be rep-
resented as a superposition of scattered waves
from each particle.

4(k, r) =Q y;(k, F- F;)e'~'~ .

Each y; is the result of many scatterings, and the
label i denotes the East particle scattering. Note
also that each g; depends on all of the coordinates
of all of the nucleons. The translation of argu-
ment and phase factor come about because the func-
tional form of the y; is expressed in terms of the
relative pion-nucleon coordinate.

Now define an operator t; such that

t,e'"' =y(k, F —F,)e+'~, (2)

where y(k, r) is the scattered part of the v-nucleon
wave function. One could construct an explicit rep-
resentation of such an operator as follows: Let us
suppose that we have an analytic form for the m-

nucleon scattering wave function. A simple multi-
plicative form for the operator would then be

f = y(k, r)e '"' . (~)

This operator contains k as a parameter and thus
ls not acceptable. Since t ls to operate on a plane
wave, we need only replace k by an operator with
k as its eigenvalue. Thus an explicit form for the
operator t is

f= lim y( iV, r')e-v-
I ~1

%e may note also that since the operator may be
constructed from the scattered wave function, we
may define a similar operator for the y;:

T;e' "=@ (k, r —r;)e'"' ~.

Since any wave may be written as a linear super-
position of plane waves, these operators give the
scattering from an arbitrary incoming wave.

We are now in a position to write down the self-
consisteney equations for multiple scattering. The
scattering of the wave from the particle at posi-
tion i will be due to the incoming plane wave plus
the incoming waves scattered from all of the other
particles.

g;(k, r —r, )e'"'*= t, [e'"' + Q )(,(k, r -F)e@'~ ].
jWf (6)

In terms of operators assumed to be operating on
plane waves,

&i =fs+f~ Z ~s ~

Since the function 4'(k, r) is given by the sum of
the T;, it is interesting to solve the above equa-
tion to obtain

(6)

The expansion of the above expression has the
same form as the Watson multiple-scattering se-
ries and may be identified with it.

If we express y, as a Fourier transform we
may write Eq. (6) as

)f,.(k, F-F,)e' '~=y;(k, F-F)e'"'~+, '~ dpi', (p, F —r;)e' '~ '~'y, (k, p),
2w

where

y~(k, p)=-, dre '~''
)f, (k, r) .

4

We can rewrite Etl. (9) as

g;(k, F —F)e@'~=p;(k, r —F;)e+''~+, Q dQ~ p'dprp, (p, F-F,)e'~ "~ '&')f, (k, p) .
jy& j % 4

We may do the integral on P by contour integra-
tion. If cos(p, F, —r, ) is positive (negative) the
contour C, (C~), shown in Fig. 1, is to be used.
This prevents the exponential factor from causing
the integrand to diverge for Im(P) large It is.
clear that the only contributions which remain in
the limit of large v are those coming from singu-
larities in the complex plane located at Re(P) =k,
since otherwise the asymptotic form will be wrong.
Since y~(k, p) is the only function in the integrand
that has reference to k, we may evaluate the inte-
gral by examining the analytic structure of y, as

I

a function of P.
I et us first make a partial-wave expansion of

y(k, r) (by which we mean any one of the y;):

y(k, F) =2wg i' F, (k)F, *(r)@,(k, r)f, ,

(12)

since y(k, r) has only outgoing waves. Now we de-
fine an auxiliary function

y' (k, r) —= 2w g i ' F, (k)F", "(r)k I
'~ (kr)f, ,
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Im p
c,

where

&(&, 0) = —,.„g& ()()" '(())f,(z (17)

~P=K+ie
X

Re p

FIG. 1. Contours used in the integration in Eq. (10).

and rewrite Eq. (9) as

}f(k,p) = dr y'(k, r)e'

+ dr [}t(k,r) —X'(k, r) je'(" (I4)

= X'(k, p)+X"(k,0), (15)

where g is the contribution from the near-zone
part of the wave function.

Evaluating }("(k,p) we find

For ~p~ =k we see that F(k, p) =F(k, p), the scatter-
ing amplitude of X(k, r).

From the form of Eq. (16) it is easily seen that
y' gives the contribution of one pole at P =k+i&
when Cl is used and zero when C2 is used. The
evaluation of the contribution of this pole requires
only knowledge of the on-shell w-nucleon scatter-
ing amplitude.

We must now consider the contributions from the
singularities of y . The relevant singularities
are found along the line through the points P =k
+i p, , P =k+2i p, , . . . , etc. , where p. is the inverse
range of the basic force involved. The nature of
the singularities depends on the form of the pion-
nucleon interaction. In general this contribution
can be represented by a branch cut from p =k+ip,
to P =k+i~ with proper modification of the contour.
This cut is actually the "left-hand cut. "

While the study of the contribution of this cut to
the integral is bound to be of interest, it is beyond
the scope of this paper, since the aim is to use
only on-shell information. For this reason the
existence of this cut will be neglected and only the
contribution of the pole of g' will be retained.

We may simplify the equations by writing

F, (k, k') =F; (k, k) ' ~" k ' '(.

(p +k +i&)(p —k —ie)X'kp = . . I(kp), (16) Combining Eqs. (16) and (10) with the above ap-
proximation we obtain

E;(k, k') = f, (k, k')e'" ' '" " +—e '" ' "g dQ~ f;(p, k')e'(' '( 8(p. (r; —r,))F,(k, p),
j

E(k, k') =QE, (k, k') . (19)

After these equations are solved for the E;(k, k')
(which are functions of all of the nuclear coordi-
nates) the expectation value on the ground state of
the nucleus must be taken to get the elastic scat-
tering amplitude.

Note that the first term on the right side gives
the impulse (single scattering) approximation. If
we replace F; by f; in the integrand we would get

a double-scattering approximation, and in princi-
ple one can continue to iterate this equation. How-
ever, this process may not converge for large A.

in a resonance region. For the few-nucleon prob-
lem it is possible to solve Eqs. (19) as they stand.
For a large number of nucleons statistical approx-
imations may be made to make the equations more
tractable.

III. THE DEUTERON

A. General Formulation

For this case there are two equations only and they may be reduced to one (three-dimensional) co-
ordinate by removing the center of mass.

r, =R+ &r, r, =R —m2, E;(k, k ') =H, (k, k')e'
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Thus, we have

H (k k') = f (k k')e" '+—e '" ' ' d& f (p k')H (k p)e" ~ '8(p ~ r),

H, (k, k') =f (k k')e ' '" ""+ —e'" '"'t dQ f (p k')H, (k, p) e "('"8(-p ~ r) .
7t'

(2o)

Note that one can always obtain the equation for H, from the one for H, by the substitution

1

B. High-Energy p-d Scattering

For this case Glauber's high-energy approximation has been found to give a good account of the data.
Thus, in this region it is only necessary to compare the present work with the Glauber theory. For the
extremely forward-peaked nucleon-nucleon amplitudes used in the Glauber calculations only double scat-
tering is important, and for this case Eqs. (20) give

H(k, k') =H, (k, k')+H, (k, k') = f, (k, k')e"' "'+f (k, k')e

+—'

d&~[f, (p, k')f, (k, p)e" "' 'e"('8(p r)+f~2(p, k')f, (k, p)e" '" ~'e "('8(-p r)].

Defining v = (k+k')/2 and setting f, = f2 the expectation value of the scattering amplitude becomes

(21)

F (k, k') =f.(k, k')+—
J

d& f(p, k')f(k, p)Q(P &)

where

Q(p, (Y)=—(e" ('" "8(r p)+e """"8(-r~ p))=(e" P "
) —2i (s'n[F. (p —x)]8( rp)),-

(22)

and fi(k, k') is the impulse-approximation amplitude.
With the inclusion of forward-scattering and small-angle approximations (see appendix A) this expres-

sion can be trans form ed to

(22)

which is the 613uber expression. In order to com-
pare the two theories at larger angles, a compari-
son of Eqs. (22) and (23) has been made with

N e-a2q212 S( )
e-q2/88

4m

which were used in some of the comparisons with
data. The two curves are shown in Fig. 2. As can
be seen the two are essentially identical for -t
&0.6 (GeV/c) . Fits to the data have been made
out to t- 1.5 (GeV/c) -at which the curves are al-
most the same.

We conclude that, in the region where Glauber
theory is valid, there is essentially no difference
between that theory and the present equations.
Further, since we have made no small-angle ap-
proximations the present equations should be valid
at larger angles as well.

C. Low-Energy m-d Scattering

For low-energy pions we may represent the m-

nucleon scattering amplitude in terms of the phase
shifts. In the actual calculations done in this sec-

G2 (k, k') = H2 (k, k') e "" i2

Thus we have

G~(k, k') =f, (k, k') e"
+—dQ~f, (p, k')G, (k, p) e "('8(p ~ r),

G, (k, k') = fa(k, k') e (24)

+Z, Jtd"~ f.(p, k')G, (k, p)e "P8(-p r) .

tion, only s and P waves will be used, although it
is a simple matter to extend the calculations
through a few more waves.

Since we wish to consider energies in the reso-
nance region it will be necessary to solve Eqs.
(20) without further approximation (i.e. , we may
not restrict to double scattering). To this end it
would be useful to expand the H; (k, p) in spherical
harmonics in the direction P. If we first make a
simple transformation this expansion will be great-
ly simplified:

G, (k, k') =H, (k, k') e" " i'
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Note that the only dependence on k' comes from

f, and f„so one needs only as many partial waves
in the expansion of G; as there are in the w-nucle-
on amplitude.

As an example of the method let us consider the
simple case of only s-wave scattering the the ~-
nucleon interaction. In this case both f, and f, are
independent of k' and thus so are G, and G2.

G, =f,e" "+—f,G~JI dQ~e" r'8(p ~ r),

and

e-ir k'/2g + i r. k'/2 G1 2

f e"'~~'+f e ""~2+2ikf f,g(r)(e'" "+e "")
I —(2ik) f~fQ(r)

For a spherical deuteron wave function the ex-
pectation of H is given by

,+, j„&qx +4ik, ~ x j„n
I —(2ik)'f fQ(r)

g(r) —=
4 1

dQ~e"'pe(p ~ r)

~ 3 kr/2

Thus

I —(2 ik)'f,f+(r)

10
l

Glauber theory--—double scattering

IO:

10

b
IO

G, =f,e """+—f,G, dQ~e "~8(-p ~ r),
4

(25)

The first term in the numerator alone is just the
single-scattering impulse approximation, the sec-
ond term is double scattering, and the denomina-
tor gives a renormalization of both due to multiple
scattering. This exercise has little physical rele-
vance for the n-d problem and was only included
to give the reader a feeling for the calculation.

A realistic calculation has been performed by
including both s and P waves in the n-nucleon am-
plitudes in Eq. (24). We should expect this calcu-
lation to be reasonable for the kinetic energy of
the m greater than about 50 MeV (below this Fermi
momentum, which has been ignored throughout,
becomes very important) and less than about 200
MeV (above which d waves become important).
Since the theory outlined above is essentially a
spin-independent theory and spin is important, the
effects of spin must be included in an approximate
way. The D state of the deuteron was included in
the calculation but not always in an exact way. A
list of the approximations made follows:

(i) The deuteron nonspin-flip amplitudes (T»,
T, „To,) were computed by the method given
above including the D state and assuming fixed nu-
cleon spin (no spin flip).

(ii) Two contributions were considered to the
spin-flip amplitudes. The first was due to the D
state with fixed nucleon spins. The second contri-
bution was due to the n-nucleon spin flip. Both of

IO

1 00„ i
r & & i s a s

61 MeV—multiple scattering--- single scattering——double scattering

10=

85 MeV 142 MeV

10 0
l,

Io

0.234

20
8 (deg)

0,931

-&(—,)GeV

30

2.07

b

FIG. 2. Comparison of the present method with the
Glauber theory for P-d scattering at 2.0 GeV. The deep
dip around 12' is present because the D state of the deu-
teron was not included in these calculations.

20 100 180 20 100 180 20 100 180

8 (deg)

FIG. 3. Comparison of single, double, and multiple
scattering with low-energy x-d data.
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100
61 MeV

6/o D-state--- 0'/0 D-state

10=

85 MeV 142 MeV

I
I I

i
I I I

i
I I I —I.O

ful I calculation
siogle scotterin

I » i I i i i I & I » &~& i t I & i & & i I

20 100 180 20 100 180 20 100 180

FIG. 4. The curves shown demonstrate the sensi-
tivity to the amount of D state included in the deuteron.

these contributions mere estimated by single-scat-
tering impulse approximation.

The error due to these approximations is be-
lieved to be very small. Of course, this includes
only the approximations just mentioned. The er-
ror due to the neglect of Fermi momentum and off-
shell effects is a separate matter. Appendix B
gives the details of the calculation.

Figure 3 shows the results of calculations made
at 61, 85, and 142 MeV compared with data. ' "
The dotted curve represents the single scattering,
the dash-dot curve the double-scattering appxoxi-

O.OO

/o D—stote

260—

I i i I
) I l I

rgI
I

I
I

FIG. 6. The tensor &T2p& as a function of the per-
cent D state in the deuteron.

0.4- I I I i
I

i i i i I
I

I I l i i

-0.4—

0.4

-0.4—
!00—

08 7~=I42 MeV

0 to 0-state
3'/ D-state
6% D-state
9% D-state

60—
multiple scattering--- single scattering

l i I I I I I i i I i I I I i i l

60 l 20

9 (deg}

I 80 I

0 l 00
l l I I I I I

200 500

FIG. 5. The tensor polarization of the recoil deuteron.
The tensor -i&T&t& is nonzero but its magnitude was
vexed small and hence was not plotted.

FIG. 7. Comparison of the present calculation with
total cross-section data.
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mation, and the full curve the complete calcula-
tion. One may see that multiple scattering must
be included near the resonance if a meaningful
comparison to data is to be made. These curves
were computed assuming 6% D state in the deuter-
on.

Figure 4 shows the effect of variation of the
amount of D state. It may be seen that the effect is
not large but measurable.

The polarization tensors of the recoiling deuter-
ons were calculated and are shown in Fig. 5. The
tensor -iT» is not shown, because it has a very
small magnitude. These curves suggest immedi-
ately that the most sensitive measure of the D-
state probability is T„at the pion angle of 180'
or deuterons at O'. Since all of the other tensors
are zero at this point, the measurement should
not suffer from having to unravel the effects of the
various tensors. Figure 6 shows T»(180') plotted
vs the D-state percentage. Unfortunately the
curve has flattened by the time 6% has been reached.

Although all of the calculations shown were done
with Moravcsik's" best fit to the Gartenhouse
wave function, calculations were also done with

the Humberston and Wallace" deuteron calculated
from the Hamada- Johnston potential. As long as
the percentage of D state was the same, the com-
parable calculations were the same to within -2%.

Calculations of the total cross section are shown
in Fig. 7 compared with data. " It is seen that
agreement is very good from the lowest energy to
the peak of the (3, 3) resonance. The inclusion of
Fermi motion' would lower the peak values some-
what more.

IV. CONCLUSIONS

We may conclude from the calculations in Secs.
B and C that the Eqs. (20) provide a.n adequate de-
scription of w-deuteron scattering and in fact seem
to do as well or better than any of the theories"
previous ly proposed.
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APPENDIX A

We wish to examine how Eq. (22) may be simplified at forward angles. We first note that, for forward-
peaking amplitudes, since the vector p is restricted to point along the direction of v the second term in Q
may be expected to be small. (It is interesting to note that, with usual P-nucleon amplitudes and deuteron
wave functions this second term is purely imaginary and hence gives no contribution to the total cross sec-
tion. ) The first term in Q is just S(p —~) so we have [taking f(k, k') = f(k —k')],

E(k, k') = f~+ —
J dQp f(p —k'}f(k —p)S(p —K) = f~+ Jt dp 6(P —k)f(p —k') f(k —p)S(p —K) .

Now change variables to q' =p —K. Take the direction of z to be the z axis and note that K =k' costs&, where
8 is the scattering angle. For small angles the magnitude of q' will be small for the important region of
integration. Hence we may write

P =(q" +(('+2q' )()'~'=(k'cos'~8+2q'k cos-,'8 cos8')"',

cos6=icos —,0 1+
k cos~0

=k cos—,'0+q' cos0'

=k +q' cos0'.
Thus

6()t) —k}- 6(q' cos8') .
Our expression for the amplitude becomes

E(k, k') —fz+ ]tq"dq'dip'sin8'd8'6(q'cos8') f(q'+ —,'q) f(~q- q')S(q'),

where as usual q=-k -k . Carrying out the 6-function integration we obtain

which is the Glauber expression for the amplitude.
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Proceeding from Eqs. (24) we simplify as follows:

G„(k, k') —= —. Z„(krk'), (al)

Z„(k, k') =-QP„(k)&;(k'), (a2)

f„(k,k') = . Q(2l+1)f,"P,(cos8)

Q fn lrm rr (k) pm(k r) (a3)

1/2
fn + Kgm

yf l 4 tl

With these definitions Eqs. (24) become

Kgm( ) 8 e ilr ' /2r+ e\ kr/2+f 2 +mo(~) + Q 2/ mm'fg f g 'm'(r)

(a4)

K gm(r) O
&-ik' r /2

&
ik ~ r/2gf g +mo( q + g ghmm'f 2

/
g m (P}

where

2)I + y
l/2

gg g
r (r) -=d028(p ' ~)8 ~ F) r (p) Fg (p), (a6)

/2 ggr Q fgrr gggn ( ~)gg ngl (r) r)It~tt

rn
/ggg' = 2 fi "Egg" (r)%"i' ( r) ~

We may now see that the dependence of K on p is trivial if we take k~~z. First we may use ggg". (-r)
= (-1)'"ggg. (r) to eliminate all -r arguments in the equations, then note

mmr(q g(m'-m)q mm'( 8

and

n/ mm'( ) e i(m'-m)gr nhmm'( 8 ~ 0)

Since we have taken kill, k r is independent of g/r, so the equation for K becomes

(aa)

Kin!(r) 8 8 gk~ r/2+erk /2+rfg e-imrr+mo(2. 8 + 0)( 1)g+gr 2/ mm (+ 8 + 0)el( -m)rKmgrrrnrg (a9}

U we define

(alo)K gm(r) Kgme-imgr

the equations become independent of g/g and may be solved for g/r =0 to get K„' (r, 8). The scattering ampli-
tude is then the expectation on the deuteron wave function of the following function:

2~~ 2E+ I
$C(g 8 y) = —.

7 Q ~ m(kr)e-gmgr[fkeik r/2Kgm(+ 8) +f ge-gk 'r/2Kgm(gr 8)]l 2 y l

Q(2f+1—).2"C',„;,C', „".„f„(,'f ~) (y)-ek-'"'1 (*(r)[y,K,"(~,8)+(-1)'f,'Kg (~, 8) j

(a11)

1 2
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then

f: =-&v.'I56lv."&

where

™
kj(o '- o)y~

(2l + 1}(2A + 1)i"C,g~oC+~~P2(8k) J,"0'sfo ~

(o '- a= m+ p)

(&-IMI)'(&-lul)'( -I I)i( '-I 'l)i "
(I + IMI) i(&+ li I) i(s+ I~l) i(s'+ I~'I) i

and

(
Il-ff" 'f M 0,

1 if M&0,

J'„'... =-' I sin8d8P„I(8)P o(8)Pb'(8)J' P(
0

where

J,",'f (8}= r'dr y, cp, f[ff K,' (r, 8)+(-1)"f,'K,' (r, 8}].
0

Now define

A. —i p i i 0~2I„'..., =[(2s+1)(2sf+1)]'~'$(o')$(a')$(o'-e) ' ' ' " (21+1)(2g+1)i" ' ' $(g}g~'~(s+ l~l) i(s'+ l~'I) i (&+ lvl) i

and

so that

f(o '- o) q'
~~L0 ~La'-a "ja'-o) r)imJ ss' ~~ J Xgp~ i&ma'-a-m+L ~sas'a' ~

XI
gm

(B14)

Since only nonspin-flip terms are considered in multiple scattering,

lm

The deuteron amplitudes are given by

foo f02 f20 f22

(B15}

(B16}
Expressing the spherical tensors describing the polarization of the recoil deuterons" in terms of these
amplitudes we find

i&T„&= 0 6 Im(E„E0,*+F,0F00*+E»E0,*),
&T„&=~2(IE„I'+IE„I'- IF.,I'- IF..I'),
&Tsx&=~6 Re(Fax of*+FxoF00*+F2-iF0-f*}

&Tss& = 22 3 (2 ReE» E»*—IFII') ~

The &-nucleon parameter used for the nonspin-flip case were for the proton

fo=As A='As+~f„,
and for the neutron

1 2 1fo= Yffz+sAsf fs= of»+Yfss+ sfsx+ 2 fss

The r-nucleon phase shifts were taken from the work of McKinley" with all data included.

(B17)
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