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The boundary-condition model of the two-nucleon interaction due to Feshbach and Lomon is
used without an external potential tail to determine the ground-state properties of the three-
nucleon system for the purpose of studying the off-energy-shell properties of the two-body
T matrix. Calculations are performed using an average singlet-triplet s-wave interaction
giving a completely symmetric triton wave function. The T matrix is separable and depends
on three energy-independent parameters ~—the boundary radius 7, and the boundary condition
f at 7+ € which are determined from the two-nucleon phase shifts, and the boundary condi-
tion b at 7 —€ which is specifically an off-shell parameter that does not appear in the on-
shell T matrix. Withf=0.11 and 7;=0.95 F, the Faddeev equations are solved for the triton
energy eigenvalues and spectator functions for several values of b, It is found that the bind-
ing energy varies from 3.9 to 19.4 MeV for b between 0.5 and 0.6, with a value of 8.5 MeV at
r=0,537. The average kinetic energy and charge form factor are determined as a function of
b, and qualitative agreement of the charge radius with experiment is obtained for 5=0.5-0.6.
The charge form factor, compared with experiment, does not drop off rapidly enough with
g%, indicating the presence of relatively too much large ¢ component in the spectator func-
tions. The changes to be expected from the inclusion of tensor coupling in the boundary

parameters are discussed.

I. INTRODUCTION

A. Boundary Condition Model

The off-energy-shell behavior of the two-nucleon
T matrix is important in the determination of the
properties of systems of more than two nucleons.
In recent years calculations for nuclear matter?
and the three-body problem? have become testing
grounds for the comparison of two-nucleon poten-
tials that give essentially the same on-shell 7 ma-
trix (the scattering phase shifts) but have differ-
ent off-shell properties. This difference is exhib-
ited in the behavior of the off-shell two-nucleon
wave function at short distances and comes mainly
from the differing properties of the potentials at
short distances.

One way of describing the interaction at very
short distances is by a boundary condition (BC).
The BC model of Feshbach and Lomon?® gives a
high-precision fit to the two-nucleon scattering
data. The effect of the two-nucleon interaction in
the region of two-particle separation » <¥,, where
7, is about one half the Compton wavelength of a
pion, is represented by an energy-independent log-
arithmic-derivative BC at 7, on each partial wave
of the two-nucleon wave function. The potential in
the exterior region » >7, consists of a combination
of local potentials that account for one- and two-
pion exchange and for the exchange of p, w, and 7
mesons. Even with the exterior potential set equal
to zero the BC alone gives an approximate fit to
the two-nucleon data, provided that the radius 7,
is set equal to about one pion Compton wavelength
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so that the BC can substitute for some of the poten-
tial tail.*

For determining the two-nucleon wave function
off the energy shell the BC model must be augment-
ed by some additional assumptions about the poten-
tial in the core region » <7,. On the energy shell
the solutions to the Lippmann-Schwinger equation
have the property of vanishing in » <7, regardless
of what assumptions are made about the potential
in this interior region. These are solutions of the
Schrddinger equation confined to the interior re-
gion but they never couple to the exterior solu-
tions and so do not affect the description of two-
body scattering. Off the energy shell, however,
the solution of the Lippmann-Schwinger equation
does not vanish in 7 <7, but depends on the poten-
tial there. The on-shell description in terms of a
BC f, on the Ith partial wave at 7,+¢€ (€ ~0) must
be supplemented by a second energy-independent
BC b, at »,— €.5 In terms of the wave function
u,()/r the off-shell BC’s are

To[du,('r)/dr] =fu,r), v=r,te;

voldu,(r)/dr]=bu,r), r=vr,—c. (1)
The BC’s for the triplet states coupled by the ten-
sor force are expressed in terms of 2X2 symmet-
ric matrices f and b for each value of total angular
momentum. A potential could be added in » <7,
but it is assumed that for the energy range impor-
tant in nuclei b alone is sufficient to describe the
off-shell effects of the interior region.
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B. Description of Problem

In this paper we apply the BC interaction with-
out an external potential to the three-nucleon
bound state considering just an /=0 two-body in-
teraction that is an average of the singlet and trip-
let forces. The boundary parameters are 7,, f,
and b. The parameters f and 7, are obtained from
two-body data, but b must be obtained through a
several- or many-body calculation. Thus we ex-
amine the triton binding energy and charge form
factor as a function of the boundary parameter b
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in order to determine the range of b that best fits
experiment. We consider the Faddeev equation®
in terms of the two-body 7 matrices and follow
methods that have been developed for separable
potentials.™® This study is preliminary. A more
complete description, without the potential tail,
requires the use of four interior boundary param-
eters for the singlet s state and the coupled s and
d states, and ultimately an external potential must
be included in order to get a true picture of the
sensitivity of the three-body system to the interi-
or boundary parameters.

II. TWO-BODY T MATRIX

The two-nucleon interaction is introduced into the Faddeev equations through the off-energy-shell two-
nucleon scattering matrix 7(E). The BC T matrix may be obtained in a variety of ways, either by direct
application of the boundary conditions b, and £, of (1) at »,— € and 7, + € to the off-shell Schrddinger wave
function or by solution of the integral equation 7=V + VG,(E)T using an effective potential V.5 In configura-
tion space the effective potential for a single partial wave, neglecting tensor coupling in triplet states, is

+7/0_ (r =)0, (r' = 7o) +rr'b, T r =)0 (v = 7,)]

1 , o
V(’V‘,’r’):———M ——-—4nro,rr,[f15+(y.—ro)6+(y _yo)+7f§+(y_,ro)5— % __,ro)
Fe— 1 - _ ’ - f;
M 4771’01’1"(6"(7 7,), =78 (r yo))(

5,(r -7, is a 6 function peaked at 7, =7, +¢,
whereas 6_(» —7,) is peaked at »,—€ and 6_'(r —7,)
is its derivative., The momentum-space matrix
element of this potential for the /th partial wave is

(p’lle)=fd3rd”'r''g—-l——(l,j 7) V(r,’r’)g—-L——(pT )
p'r pr
_® _an
M p'pr,
where g, is the Riccati-Bessel function of order [
and ¢,’ is its derivative. The matrices J; and ¢
are given by

s ) (). e

M is the nucleon mass.
The solution of the integral equation for T with
the potential (2.2) yields the result

I, N (pr)ed (7o), 2.2)

' TE)|p) =§ p;z;o J; T(P '70)[0_1 "gt(E)]-lJl (p76)
2

- M‘f’,’,oJ,*(p'mc[l-g,(E)c]-‘J,u(wo))

2.4

for the Ilth partial wave. The second form of
(p'|T|p) in (2.4) is more general because c~* does
not exist if b, =f,. Iis the unit matrix and g; is a
matrix derived from the free two-particle Green’s

-1 b,

)(-Sgg’:;r_’toio)) : (2.1)

function G,(E),

£ <E>=ﬂ—27—0 f " dp 7, (pro)GoE), T (p7s)

= gl gl,> 2.5
(91/ 8"’ (2.5)

where Gy(E)=(E -p?)~%.

The dependence of T on the energy variable E is
contained in g, (E), which is an analytic function of
E in the complex E plane cut along the real axis
from zero to infinity., We concentrate on values of
E along the negative real axis, since this is the
range of importance in the three-body bound-state
problem. Thus we consider g, under the condi-
tions

E<0, y=ry/-E. (2.6)
Then, in terms of the parameter vy,
G ==y 15,(N%, (),
S,/ =-9,'(MN%, (),
G == (M%), (2.7)

The function 4,(y)/y is the modified spherical Bes-
sel function of the first kind and 7%,(y)/2y is the
modified spherical Bessel function of the third
kind.® For =0, 4,(y)=sinhy and X,(y)=e"".

The evaluation of T'(E) in (2.4) using (2.5) and
(2.7) results in the following expression for the
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Ith partial wave:

_ 1 12 "fz>
@rlr@le)= _]V—IPPVJ'T(I)TO)[ fz+r1<’fz 1

1 1 =b,"!
bl—l—zl <_bl—l b'-z )]Jt(pyo)

= (12/M) (&1 /p'pr o), T (p 7 ) DO, (p7,),
(2.8)

where D(y) is the expression in square brackets

and
F1=_')’M;I('}’)/ac1(?’), Exz')’—l’z(?’)/gxl(')’), (2-9)

In particular, I';=v and Z,=tanhy/y.

It is apparent from (2.8) that the two-body ma-
trix T(E), for E real and negative, is the sum of
a Born term, (47/p'pr,)J,%cJ, and two pole terms.
The first pole term has a pole at f,=-T’, and cor-
responds to a two-particle bound state of the ex-
terior wave function for the /th partial wave—the
deuteron for /=0, Neither the position nor the
residue of this pole depends on &, so that the prop-
erties of the deuteron are indeed independent of
b;,. The second pole term (the b-pole) is the con-
tribution coming from the off-energy-shell cou-
pling of the exterior state to the complete set of
solutions of the Schrddinger equation in the inte-
rior 7 <7, with logarithmic derivative b at »,. The
pole in y, given by the solution of b,”!-%,=0
(ycoty=b, for 1=0) occurs at the position of the
interior bound state for E <0 and provides the dom
inant contribution to the b-pole term, whereas the
other states (E >0) provide the background. The
interior states do not couple to the two-body scat-
tering states on the energy shell. Thus, for E =p?
+ i€, the contribution of the b-pole term to T'(E)
vanishes, as does the b dependence of the Born
term.

The parameters f; and 7, are determined by fit-
ting the two-nucleon phase shifts. The /=0 phase
shift is given by*

5,(p) =arctan(pr,/f,) —p7, -

However, the parameters b; can be determined
only by examining some system with properties
that depend on the off-energy-shell properties of

]

(2.10)

(B 7,18,d,0 = [(p;ITis(E

<p;lTis.T(E 4q52)[.b(>‘

pi 1’; o
y=ro(a®+3q 2)"2,
where D is given in (2.8). Dy depends on the BC

parameters fg and b for /=0 singlet states and
D, on the parameters f, and b, for triplet states.

|
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the two-nucleon interaction, such as the three-
nucleon system or nuclear matter.

III. TRITON WAVE FUNCTION
A. Integral Equations for Spectator Functions

The three-nucleon wave function ¥ for the J=3
2 bound state at energy E = -a? is written as
the sum of three components ¢;,

3
E)22¥;, (8.1)
i=1

where Gy(E) is the Green’s function for three free
particles. The ¥; are required to satisfy the Fad-
deev equations® 1°

,=T,Gy(E) 2%, i,7=1,2,3. (3.2)
i*i

T, is the two-nucleon T matrix for particles j and
k.

¥; is completely antisymmetric and is written in
terms of the =4 isospin functions of mixed sym-
metry, £/ and £”, as

;2-1/2[1/);/&/ —- lp:gu] ,

where ¥; and ¢ are space-spin functions of mixed
symmetry. Furthermore ¥; and ¥} can be ex-
pressed in terms of a space- and spin-dependent
operator £, acting on the S=3 spin functions of
mixed symmetry, x’ and x”,

() ==(%).

The net result is'® 2
P =272 x5 - X8, 8.3)

We consider the equations for ¢; restricted to
s-wave two-nucleon interactions without tensor
forces. In the three-particle center-of-mass sys-
tem ©; is explicitly a function of the variables p;,
the relative momentum of particles j and 2, and
d;, the momentum of particle i relative to the cen-
ter of mass of j and k. The T matrix T; is a sum
of singlet (S) and triplet (7) s-wave T matrices,
as in (2.9), multiplied by two-particle spin and
isospin projection operators P%({) and P%1(?),

- %qf)l P IPYE)PLG) + (P} T (E = 39,2 p) PLGE)PS ()] (27)%6%(q; — §)),

dJ T(P"VO)DS T()’)J (piro)

(3.4)

T

Because each T matrix is separable of rank two,
Q; contains two spectator functions, H,(qg;) and
H,(q;) for each state, that form a column vector
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H(g,;). Thus
=Q;sP%+ 9, Py,
-1 ' Hxs.r(qi)>
Qs r piro(é]o(Pi7+),Pir_3o (1’:7’_))<H2&T(qi)
=(p170) NP7 H s 2(q;) . (3.5)

To complete the expression for ¥ in (3.1) we need
the expression
G,”(E)=~[a? +p 2+ %q{"] ’

Fredholm integral equations for H(g) and H,(q)
are obtained by inserting (3.3), (3.4), and (3.5)
into (3.2). The coupled equations are:

i=1,2,3.

Hs(q)=—%rost(y)f q'%dq'Ky(q,9')Hs(q’)
o
—%rosDT(y)f q'%dq'K,q,9")H(q"),
0
Hr(@)= = 37505 [ 4"da'Ko(a,0)H (@)
0

~rDy) [ a7dq'Kola, a0
° (3.6)

The kernel K,(g,q’) is a matrix of functions inte-
grated over the cosine of the angle between § and

a,

Kla, )= s [ as 2B g, ) ;‘;;’),
(3.7)
where
R™Y4,§)=0?+q*+q"*+§ 7',
pi=lar+zdl, pi=l2q +dl,
§-4'=qq'z. (3.8)

In addition, Dg and D, are the y-dependent parts
of the two-body 7T matrices evaluated off the en-
ergy shell at y=7,(a®+3¢%Y2. Expressed in terms
of the dimensionless variables g7, and q¢'7,, Eqs.
(3.6) do not depend explicitly on »,. Thus the
boundary radius 7, is a scaling factor both for the
q dependence of the spectator functions and the en-
ergy eigenvalue (ar,)%.

For purposes of numerical calculation we drop
the distinction between singlet and triplet interac-
tion (S=T) in (3.6). The number of equations
drops from four to two, and there is just a single
set of boundary parameters, b and f:

H@)=-27D0) [ a7da'K,la,0H@"),
o

with

D(y)=<fl ;—11) f}-y(—ffz —1f>

ycoty b -1

-ycoty—b(—l b"1>' 3.9)
This approximation eliminates the spin dependence
of the operator ©; in (3.3) and is equivalent to con-
sidering spinless nucleons. As a result the spa-
tial wave function is completely symmetric and
there is no admixture of the S’ state of mixed sym-
metry. The three-nucleon wave function (3.1) un-
der these circumstances is as follows:

w=co<E)izp.-<pi,q )

E

=1

H<q>=<Z:§ZD’

P2=%§1+%§1=§3+%%,
iSa: —%ql"'%ﬁl: "Q2 - %63 )
qz=%q1—§1, qa=ﬁ1+%ql-

N
P,TOJ (Pi'ro)H(qi) ’

(3.10)

B. Triton Form Factor

When no distinction is made between the singlet
and triplet two-nucleon forces, the spatial distri-
butions of the like and odd nucleons in the triton,
as defined by Schiff, are the same.'® In that
event the triton charge form factor, assuming
additive contributions from each nucleon, is given
by the expression

FH (@) =[2F",(@®) + F., @) F(@?), (3.11)

where F7%, and F%, are the neutron and proton
form factors and F(¢?) is the body form factor of
the triton.

F(g?) is written in terms of the triton wave func-
tion (3.10) expressed as a function of a single set
of momentum variables; for example, §, and p,.
Specifically,

Pl =iy 4P 4086, 6,4 3DV G, 8- o,
where (¥|¥) is the normalization

C¥9) = [ a%,a%,% 6,8) W B3,
giving F(0)=1,

C. Average Kinetic and Potential Energy

Since the two-body BC wave function »(r) is dis-
continuous at 7,,° care must be exercised in cal-
culating the expectation value of the two-body ki-
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netic energy operator —d?/drZ+1(I+1)/7% to avoid
introducing 6-function singularities from deriva-
tives at the discontinuity. The correct expression
for the two-body /=0 kinetic energy is

f dru('r)( du(’r) fd ()< dzu(r)>

and this can be written as a single integral from
0 to « provided that the definition of the kinetic
energy operator is altered to remove a 5( =0)
term that remains after differentiation and inte-
gration. The modified expression for the kinetic
energy is

d -

[&F -Ad(r - 'ro)]
d
X f— -

[ ar S(r -7y )A ]
where the modified kinetic energy operator is the
part of (3.13) in curly brackets with the operator
K defined as Au(r)=ulr,) —u@r_).

Transformed into momentum space for the cen-

ter-of-mass system of three nucleons the modi-
fied kinetic energy operator becomes

(0,8, K.E.|5;@) = (2m)%6°®, - 01)8°%(d, — ) (9,2 + 34,%)

(K.E.)=fowdru(r)

u@r), (3.13)

tcorrection, (3.14)
with
Correction =Z 4”, (& sinp 7o, pi7ocOSD7,)
T~ Pibivo
% 6(r=0) -1 A sinp v,
-1 0 /\pirocospir,/’
(3.15)

where A sinp v,=sinp;7, — sinp,;#_. The first term
is the usual sum of single-particle kinetic ener-
gies, whereas the second term is a sum of two-
particle operators, given here for s waves. When
the kinetic energy is calculated using the wave
function ¥(p,, ¢,) in (3.10) the two parts of the ki-
netic energy operator introduce terms proportion-
al to 6(r =0) that cancel, as in the two-nucleon
problem. The limit »,,»_—7, is taken only after
all integrations have been performed. Some inte-
grations involving A sinp;7, are just step-function
discontinuities and give nonzero contributions.

The net result for the kinetic energy, using the
wave function (3.10) and the operator (3.14), is
the expression

_3(@m)® 1
M?’oz (¥|¥) b-7)

o ) 2
XU; qquHf(q)—bffo qquHf(q)]—ﬁ; ,
(3.16)

(K.E.)=
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where (¥|¥) is the normalization as used in
(3.12). The average potential energy, obtained

from P.E.=E -K.E., is then
o 3@m)? 1
PE) == 2 Cul9) B -7)
X[ f qudq H?@q)=bf fo qudq sz(q)] .
(3.17)

An immediate consequence of (3.17) is that the po-
tential energy is positive definite for the simul-
taneous choice f>0 and b <0, Thus, there are no
three-nucleon bound states for this choice of the
parameters f and b:

>0, b<0: no three-nucleon bound state.
(3.18)

IV. RESULTS OF CALCULATION
A. Binding Energy and Wave Function

The coupled integral equations (3.9) were solved
as a function of the BC off-shell parameter b for
the binding energy 7#2a?/M and the spectator func-
tions H,(q) and H,(q) using f=0.11 and »,=0.95 F.
The phase shift obtained from (2.10) with these
values of f and 7, is an approximate fit to the
characteristics of both the singlet and triplet s-

—66.2

—45.9

—29.4

—16.5

—7.35

Binding Energy (MeV)

FIG. 1. a7, as a function of the boundary-condition pa-
rameter b. The left~hand scale shows the triton binding
energy (72/M)a? for a boundary radius 7, equal to 0.95
F.
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wave phase shifts, and these BC parameters have
been used previously in nuclear-matter calcula-
tions.>' f£=0.11 does not produce a two-nucleon
bound state (f <0 for an s-wave bound state) but
does give a virtual bound state at zero energy.

The region f <1 corresponds to an attractive inter-
action for small relative momenta, but for f>1
the interaction is repulsive at all momenta.

The solution of (3.9) was carried out by iteration
using 16-point Gauss quadratures for the angular
integrations in the kernel and 40-point Gauss quad-
ratures for the integrations over ¢’. The numeri-
cal calculations were performed on the IBM 360/
65 computer at the Massachusetts Institute of Tech-
nology Information Processing Center.

Eigenfunctions H, and H, and eigenvalues a7,
were found for b = f with « being a monotonically
increasing function of 5. Although a search was

h&/M)"' <pITip> (F)

04 08 1.2 1.6 20 24
p(Fh

FIG. 2. Diagonal element of off-energy-shell two-nu-
cleon T matrix (p|T@?=34¢%|p) as a function of p for
various values of ¢, the momentum of the spectator nu-
cleon. The boundary-condition parameters are b=0.537,
f=0.11, and 7(=0.95 F corresponding to @7;=0.43 and a
binding energy of 8.5 MeV.

made for solutions with f=0.11 and b <0, none
were found, verifying the conclusion of (3.18). A
plot of a7, vs b for b between 0.11 and 0.8 is
shown in Fig. 1. The value of a7, starts to in-
crease slowly with b but then rises rapidly be-
tween =0.4 and 0.6. For larger b the rise con-
tinues but at almost constant rate, with the slope
falling off gently to about 1.5 at 5=1and 1.1 at b
=10. For 7,=0.95 the graph of Fig. 1 includes
binding energies ranging from 0 to 60 MeV, more
than covering the region of physical interest.

The continued rise in a7, vs b for large b is due
to the influence of the b-pole term in D(y) (3.9).
This term becomes increasingly important as b
increases through 1 because the denominator
b —v coty can be made to vanish for some y, where-
as this cannot occur for b <1. As a result there is
a pronounced change in the character of the two-
body off-shell wave function and 7' matrix for ¢
<2 F~! when b passes through 1. The diagonal ele-
ment of the T matrix for b <1 is exemplified by
the plot of Fig. 2 for a»,=0.43, =0.537, ¢=0,1, 2
=0,1,2 F™', and 7,=0.95 F. (p|T|p) is attractive
and, in the range pr,=0 to 2, is sensitive to the
values of the boundary parameters b and f. For
large p7,, (p|T|p) continues in a manner similar
to that obtained for a hard-shell potential, off the
energy shell. For b>1, on the other hand, both
the depth and the width of the attractive region,
starting at small p, increase rapidly with b.

The corresponding situation for the off-shell
wave function is that for b <1 the interior wave
function (r <7,) is appreciable only near the bound-
ary v, whereas for b >1 the eigenvalues a7, are
such that the amplitude of the interior wave func-
tion grows rapidly with increasing . The grow-
ing attractiveness of 7 for b>1 is due simply to a
strong coupling with the interior region, into
which an increasing amount of wave function is fed
as b increases. It is apparently not sufficient, in
this problem, to represent the effect of the poten-
tial in 7 <7, by the boundary parameter b when b
>>1. This description is different from what is
encountered in a nuclear-matter calculation in
which the density is held fixed as b is increased.’®
For fixed density the two-body Bethe-Goldstone
wave function would go to zero at »,—¢€ as b be-
comes infinite producing a repulsive 7 matrix so
that the binding energy per nucleon at fixed den-
sity does not continue to rise with increasing b.

The experimental triton binding energy of 8.5
MeV corresponds to a7,=0.43 for »,=0.95 F. We
study the eigenfunctions of the three-nucleon sys-
tem at this energy (5=0.537) and at the two neigh-
boring solutions »=0.50, a7,=0.29 (3.86 MeV)
and b=0.60, a7,=0.65 (19.4 MeV). This is just
the region over which a7, varies most rapidly
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with 5. The spectator functions H,(¢g) and H,(g),

the solutions of (3.9), are shown in Fig. 3 for
these three values of . The functions are normal-
ized to H,(0)=1. It is seen that H, is always ap-
preciably larger in magnitude than H, for small

g, a result which is traceable to the fact that for
the boundary parameters considered the matrix
D(y) is approximately ("} _1) at ¢ =0.

For ¢>5 F~! the spectator functions H, and H,
execute oscillations about zero damped as approxi-
mately ¢~2 and with a period of about 47/7, char-
acteristic of the kernel K(q, q’) (3.7) for ¢’ fixed
and g— . The behavior of the spectator functions
for large g is essentially independent of » and f
and arises from a two-body hard-shell interaction.
This is seen from the two-body phase shift (2.10)
which goes into the hard-core phase shift plus 7/2
as p becomes infinite.

or-

-0.05

-0.2

-0.25
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The b dependence of the spectator functions for
q<3 F' is quite apparent. Clearly H, drops off
more slowly for 5=0.60 than for 5=0.50 meaning,
as might be expected, that the amount of moder-
ately large-q component in the wave function in-
creases relative to the small-g component with
increasing b and @. The details of the g depen-
dence of H, and H, are important in the determina-
tion of the triton form factors and average kinetic
energy. The values of the kinetic energy for the
three values of b, calculated according to (3.16),
are given in Table I. At the experimental binding
energy, a7,=0.43, the average kinetic energy of
69 MeV is more than twice the value obtained by
Brayshaw and Buck using local square-well poten-
tials,’” and indicates that there is too much high-g
component in the spectator functions. This prob-
lem is discussed further in Sec. IV B in relation

1.0

0.9

0.8

0.7

0.6

0.3

0.2

0.1 [~

q(Fh

FIG. 3. The spectator functions Hy(g) and H,(q) for several values of b. The functions for each value of b are normal-
ized to Hy(0)=1. The triton binding energies are, respectively, 3.86, 8.5, and 19.4 MeV for b equal to 0.50, 0.537, and

0.6, taking 7,=0.95 F.
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TABLE 1. The triton eigenvalue a7, for f=0.11 and
several values of the boundary-condition parameter b.
The binding energy and the average kinetic energy are
evaluated for the boundary radius 7,=0.95 F.

Average kinetic

Binding energy energy
(7,=0.95 F) (7,=0.95 F)
b ar, (MeV) (MeV)
0.50 0.29 3.86 39.1
0.537 0.43 8.50 69.0
0.60 0.65 19.4 99.3

to the triton form factors.

B. Charge Form Factor and Radius

The body form factor F(q?) was calculated ac-
cording to (3.12), and the triton charge form fac-
tor F (¢?) according to (3.11) using FZ =0 and the
proton form factor F%, from the three-pole fit of
Janssens ef al.'® The integrations were performed
to an accuracy of about 5%. The resultant Fc*{,a(qz)
is plotted in Fig. 4 and Table II contains values
computed for ¢*>1 F™2 and $=0.5, 0.537, and 0.6,
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FIG. 4. Triton charge form factor F!gh (¢%) for
several values of b, and 7;=0.95 F.
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as well as the experimental values of the H® and
He® charge form factors.!® If one excludes Cou-
lomb and meson exchange effects, then the several
percent of S’ state needed to explain the difference
between the H® and the He® charge form factors
must come from the spin dependence of the two-
nucleon interaction. No distinction is made here
between the singlet and triplet forces, and so
some sort of average of the two experimental
charge form factors should be used for compari-
son. In either case the disagreement is large for
q®>1F"2 At ¢®=1 F~2 and b between 0.5 and
0.537 there is approximate agreement with exper-
iment. But none of the calculated form factors
drop off as fast as the experimental form factor
for ¢>>1 F~2, This slow decrease of the form fac-
tors clearly indicates that the spectator functions
H, and H, contain relatively too much high-g com-
ponent.

The body radius a was determined by fitting
polynomial curves to F(g¢?) for small ¢® and taking
their slope as ¢?~ 0. From (3.11) the triton
charge radius is given by a 4?(H%) =a®+ 2a 42(n)
+ay4Z(p), where ay(n) and a 4(p) are the neutron
and proton charge radii. Table II contains the
values of a and a (H®) calculated using a 4(p)=0.8
F and a 42(n) = -0.126 F2, The experimental values
are 1.70 F for a,(H®)'° and 1.88 F for a,(He®).?
The charge radii calculated for He?® differ from the
triton radii only in the amount of a4 (). As should
be expected the radius decreases with . The -
charge radius at the experimental triton binding
energy for 7,=0.95 is larger than the experimen-
tal radius, but the experimental value does lie be-
tween the values of a(H®) calculated for b=0.537
and b=0.6.

The fact that agreement with experiment occurs
at larger b for the charge radius than for the form
factor at ¢*=1 F~2 is indicative of the large curva-
ture that has been obtained in F'! as seen in Fig.
4. This curvature implies that the charge distribu-
tion has a long tail, not unlike the experimental

TABLE II. The triton charge form factor F?: (@?) for
f=0.11 and 7,=0.95 F, calculated for several values of
b. The first three columns are computed values of the
form factor, and the last two columns are the experi-
mental charge form factors for the triton and helium-3
(Ref. 19).

q° 5=0.50 5=0.537 5=0.60 .
(F72) a7=0.29 ar)=0.43 a7,=0.65 FY (exp.) Ff¢"(exp.)

1.0 0.601 0.707 0.763 0.622 0.567
2.0 0.458 0.569 0.631 0.387 0.329
3.0 0.360 0.467 0.529 0.267 0.209
4.0 0.296 0.390 0.449 0.175 0.1326
5.0 0.240 0.329 0.384 0.118 0.0813
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TABLE III. The body radius a of the triton, and the
charge radius ay, (H3) for several values of b (f=0.11,
79=0.95 F.) For comparison the experimental charge
radii of H® and He® are (Refs. 19 and 21) ag, (H%)=1.70 F
and a g, (He®)=1.88 F.

a Ay (Hs)
b (F) (F)
0.50 2.45 2.53
0.537 1.84 1.95
0.60 1.45 1.58

result recently obtained by McCarthy et al.?! for
the charge form factor of He?®,

The g dependence of the form factor can be most
easily adjusted by increasing the BC boundary
radius, but this cannot be done without altering
the fit to the two-body data. Fortunately, when
the tensor force is included in the two-body BC in-
teraction, the boundary parameter has the value
7,=1.2-1.3 F% In the present calculation with 7,
=0.95 F the spectator function H, for a7,=0.43
(8.5 MeV) drops to half its peak (¢=0) value at
q~0.8 F~! (Fig. 3). This may be compared with
the substantially more rapid decrease in the spec-
tator functions obtained by Gupta, Bhakar, and
Mitra'* using separable central and tensor poten-
tials, where the drop to half peak (¢=0) value oc-
curs at g=~0.44 F!,

V. DISCUSSION AND CONCLUSION

The results obtained here for the triton binding
energy, wave function, charge form factor, and
charge radius show a pronounced dependence on
the off-energy-shell boundary parameter b, the
logarithmic derivative of the two-nucleon wave
function inside the boundary radius »,. Using an
average singlet and triplet two-body interaction
with boundary radius 7,=0.95 F, the values of b
of physical interest are found to be in the range
from b equals 0.5 to 0.6. The predictions are not
entirely consistent with experiment and, in par-

e
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ticular, the charge form factor at the experi-
mental binding energy falls off too slowly as a
function of ¢%. This property of the form factor
can be traced to the presence of relatively too
much large-g component in the spectator functions
H,(q) and H,(q).

The inclusion of a tensor force in the BC inter-
action could significantly alter the results obtained
here and their quantitative dependence on the in-
terior boundary condition. Calculations for the
three-nucleon problem* and for nuclear matter
(Haftel and Tabakin') indicate that a tensor force
should decrease the equilibrium density and the
magnitude of the binding energy for a system of
more than two nucleons. Thus a BC interaction
described in terms of the boundary conditions f,
for singlet states and the 2 X 2 matrix f for triplet
states plus a single interior boundary condition b
should result in a triton with a larger radius and
a smaller binding energy than obtained here for
the same value of b, necessitating an increase in
b to fit the data. Such an interaction would give
some S’ state in the triton wave function and would
make reasonable the calculation of the doublet
scattering length, which is particularly sensitive
to off-shell effects,?*?° ag well as, hopefully, im-
proving the fit to the form factors. Once the in-
terior boundary condition is also altered to include
the tensor force in terms of a parameter b, for the
singlet state and a 2 X 2 matrix for the triplet
states, the expectation is that the presence of
three more adjustable parameters should provide
substantial leeway for fitting the triton and helium-
3 properties.
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The general theory of multiple scattering of pions from nuclei is expressed in a way which
does not require the use of a series expansion. In an on-shell approximation this theory may
be reduced to the solution of a set of A4 coupled integral equations. As a demonstration of the
method the equations are specialized to the case of the deuteron and solved to give compari-
son with the experimental data. The deuteron tensor T, is shown to be sensitive to the per-

centage of D state for deuterons scattered at 0°.

I. INTRODUCTION

In the energy region of 0-500-MeV pion kinetic
energy there exists no completely acceptable the-
ory of pion-nucleus scattering. The high-energy
eikonal approximation due to Glauber®? has been
successful in explaining high-energy scattering
data at small angles. In spite of a number of at-
tempts to increase its range of validity,? it is
doubtful if this basic approach would be of value
for large angles in this energy range.

The Watson multiple-scattering series has been
used with some success for pion-deuteron scatter-
ing by evaluating the double-scattering term in
various approximations.? However, it is difficult
to go beyond the second term and, furthermore,
for large nuclei and near a resonance it is not cer-
tain that the series even converges.

Optical-model calculations® have been the most
successful in this region, but their application is
limited to large-A nuclei. Their use near a reso-
nance also has questionable validity.

For these reasons the present paper attempts to
develop a theory with the following aims:

(i) There should be no small-angle or forward-
scattering approximations, as these are not appro-
priate for this energy regime.

(ii) There should be no truncation of the multiple-
scattering series to avoid questions of conver-
gence near a resonance.

(iii) There should be only on-shell information re-
quired (at least in the first-order theory) to make
the calculation as simple as possible.

In order to develop such a theory we shall use
the form of multiple-scattering theory used some
years ago by Foldy and Brueckner® and more re-
cently by Seki.” This method expresses the multi-
ple-scattering amplitude from one of the nucleons
as the simple-scattering amplitude plus a term
which looks very much like a double-scattering
amplitude. The difference between this second
term and an actual double-scattering term is that
one of the simple amplitudes has been replaced by
the multiple-scattering amplitude. Thus, one has
implicit equations for the multiple-scattering am-
plitudes. With the aid of some approximations
these equations can be brought into a solvable form.

These general equations are developed in Sec. II
and it will be seen that they may be written as cou-
pled integral equations over angular variables. In
Sec. III the equations are specialized to the case of
the deuteron and solved in double scattering at high
energies to compare with Glauber theory. Here
also in Sec. III the case of m-deuteron scattering
just below the (3, 3) resonance is calculated and
compared with experiment.

II. THEORY

Let us consider the scattering from A fixed nu-



