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The boundary-condition model of the two-nucleon interaction due to Feshbach and Lomon is
used without an external potential tail to determine the ground-state properties of the three-
nucleon system for the purpose of studying the off-energy-shell properties of the two-body
T matrix. Calculations are performed using an average singlet-triplet s-wave interaction
giving a completely symmetric triton wave function. The T matrix is separable and depends
on three energy-independent parameters -the boundary radius rp and the boundary condition
f at r, + ~ which are determined from the two-nucleon phase shifts, and the boundary condi-
tion b at rp -E which is specifically an off-.shell parameter that does not appear in the on-
shell T matrix. Withf =0.11 and rp=0 95 F the Faddeev equations are solved for the triton
energy eigenvalues and spectator functions for several values of b. It is found that the bind-
ing energy varies from 3.9 to 19.4 MeV for b between 0.5 and 0.6, with a value of 8.5 MeV at
r=0.537. The average kinetic energy and charge form factor are determined as a function of
b, and qualitative agreement of the charge radius with experiment is obtained for b = 0.5-0.6.
The charge form factor, compared with experiment, does not drop off rapidly enough with
q, indicating the presence of relatively too much large q component in the spectator func-
tions. The changes to be expected from the inclusion of tensor coupling in the boundary
parameters are discussed.

I. INTRODUCTION

A. Boundary Condition Model

The off-energy-shell behavior of the two-nucleon
T matrix is important in the determination of the
properties of systems of more than two nucleons.
In recent years calculations for nuclear matter'
and the three-body problem' have become testing
grounds for the comparison of two-nucleon poten-
tiaIs that give essentially the same on-shell T ma-
trix (the scattering phase shifts) but have differ-
ent off-shell properties. This difference is exhib-
ited in the behavior of the off-shell two-nucleon
wave function at short distances and comes mainly
from the differing properties of the potentials at
short distances.

One way of describing the interaction at very
short distances is by a boundary condition (BC).
The BC model of Feshbach and Lomons gives a
high-precision fit to the two-nucleon scattering
data. The effect of the two-nucleon interaction in
the region of two-particle separation r &r„where
r, is about one half the Compton wavelength of a
pion, is represented by an energy-independent log-
arithmic-derivative BC at rp on each partial wave
of the two-nucleon wave function. The potential in
the exterior region r &rp consists of a combination
of IocaI potentials that account for one- and two-
pion exchange and for the exchange of p, co, and g
mesons. Even with the exterior potentiaI set equal
to zero the BC alone gives an approximate fit to
the two-. nucleon data, provided that the radius rp
is set equal to about one pion Compton wavelength

so that the BC can substitute for some of the poten-
tial tail. ~

For determining the two-nucleon wave function
off the energy shell the BC model must be augment-
ed by some additional assumptions about the poten-
tial in the core region r &r,. On the energy shell
the solutions to the Lippmann-Schwinger equation
have the property of vanishing in r &r, regardless
of what assumptions are made about the potential
in this interior region. These are solutions of the
Schrodinger equation confined to the interior re-
gion but they never couple to the exterior solu-
tions and so do not affect the description of two-
body scattering. Off the energy shell, however,
the solution of the Kippmann-Schwinger equation
does not vanish in r &r, but depends on the poten-
tial there. The on-shell description in terms of a
BC f, on the lth partial wave at r, +e (e-0) must
be supplemented by a second energy-independent
BC b, at rp E In terms of the wave function
u, (r)/r the off-shell BC's are

ra[du, (r)/dr]=f, u, (r), r =ra+a;

ro[du, (r)/dr] = b,u, (r), r =ro —e .

The BC's for the triplet states coupled by the ten-
sor force are expressed in terms of 2~2 symmet-
ric matrices f and 6 for each value of total angular
momentum. A potential could be added in r &r,
but it is assumed that for the energy range impor-
tant in nuclei b alone is sufficient to describe the
off-shell effects of the interior region.
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B. Description of Problem

In this paper we apply the BC interaction with-
out an external potential to the three-nucleon
bound state considering just an l = 0 two-body in-
teraction that is an average of the singlet and trip-
let forces. The boundary parameters are r„ f,
and b T.he parameters f and r, are obtained from
two-body data, but b must be obtained through a
several- or many-body calculation. Thus we ex-
amine the triton binding energy and charge form
factor as a function of the boundary parameter b

in order to determine the range of b that best fits
experiment. %'e consider the Faddeev equation'
in terms of the two-body T matrices and follow
methods that have been developed for separable
potentials. 7' This study is preliminary. A more
complete description, without the potential tail,
requires the use of four interior boundary param-
eters for the singlet s state and the coupled s and
d states, and ultimately an external potential must
be included in order to get a true picture of the
sensitivity of the three-body system to the interi-
or boundary parameters.

II. TWO-BODY T MATRIX

The two-nucleon interaction is introduced into the Faddeev equations through the off-energy-shell two-
nucleon scattering matrix T(E). The BC T matrix may be obtained in a variety of ways, either by direct
application of the boundary conditions 5, and f, of (I) at r, —e and r, + e to the off-shell Schrodinger wave
function or by solution of the integral equation T= V+ VG, (E)T using an effective potential V. ' In configura-
tion space the effective potential for a single partial wave, neglecting tensor coupling in triplet states, is

V(r, r')=—,[f,5, (r r, )5, (r-' r, )+r-5, (r r, )5-'(r'-r, )

+r'5 '(r-r, )5, (r' —r, )+rr'5, '5 '(r —r, )5 '(r'-r, )]

, (5, (r —r, ), r5 '(r r,-))—
0

(2. I)

5„(r- ro) is a 5 function peaked at r, = r, + e,
whereas 5 (r r, ) is pea-ked at r, —e and 5 '(r —r, )

is its derivative. The momentum-space matrix
element of this potential for the lth partial wave is

function G, (E),

2 oo

g, (E) =
J dp J, (pro)GO(E)J, t(pro)

FVp p

(2.5)

(p'IVI p) =~td"d"' ' V(. )
-'

.pf y p
/

,J, (p'r, )cJ,(pr, ),4w

mP'Prp r (2.2)

where g, is the Riccati-Bessel function of order l
and Qf f is its derivative. The matrices 4, and c
are given by

M is the nucleon mass.
The solution of the integral equation for T with

the potential (2.2) yields the result

(p'lT(E)lp) =~, &, '(p'r, )[c ' g, (E)] 'Jg-(pr, )
p

J, (p'ro)c[I g, (E)c] 'J, (pr-o)
h~ 4m

(2.4)

for the lth partial wave. The second form of
(p'lTl p) in (2.4) is more general because c ' does
not exist if 5, =f, . I is the unit matrix and g, is a
matrix derived from the free two-particle Green's

E &0, y=~,v'-E.

Then, in terms of the parameter y,

9, =-r '~, (r)&, (r),

S, ' = -~, '(r) st, (r),
S,"= -r~, '(r) &, '(r).

(2.5)

(2.7)

The function f, (y)/y is the modified spherical Bes-
sel function of the first kind and vX, (y)/2y is the
modified spherical Bessel function of the third
kind. 9 For l = 0, vo (y) = sinhy and Xo (y) = e

The evaluation of T(E) in (2.4) using (2.5) and

(2.7) results in the following expression for the

where G, (E) =(E-P') '.
The dependence of T on the energy variable E is

contained in g, (E), which is an analytic function of
E in the complex E plane cut along the real axis
from zero to infinity. We concentrate on values of
E along the negative real axis, since this is the
range of importance in the three-body bound-state
problem. Thus we consider g, under the condi-
tions
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lth partial wave:

b, (p) = arctan(pr, /f, ) —pr. . (2.10)

However, the parameters b, can be determined
only by examining some system with properties
that depend on the off-energy-shell properties of

&p'IT(E)I p& =M, J, '(P ',)

1 -b
b 2 J«(Pro)

l l 2

= (f«'/M)(4«//P 'Pr««) J, (P 'r««)D(y) J,(pr2),

(2.8)
where D(y) is the expression in square brackets
and

I'« = -yet«'(y)/sf«(y), T« =y 'S«(y)/«««'(y). (2.8)

In particular, 12= y and Z2=tanhy/y.
It is apparent from (2.8) that the two-body ma-

trix T(E), for E real and negative, is the sum of
a Born term, (4v/P'Pr, )J,tcJ, and two pole terms
The first pole term has a pole at f, =-I", and cor-
responds to a two-particle bound state of the ex-
terior wave function for the lth partial wave —the
deuteron for l =0. Neither the position nor the
residue of this pole depends on b, so that the prop-
erties of the deuteron are indeed independent of
b, The .second pole term (the b-pole) is the con-
tribution coming from the off-energy-shell cou-
pling of the exterior state to the complete set of
solutions of the Schrodinger equation in the inte-
rior r &~o with logarithmic derivative b at ro. The
pole in y, given by the solution of b, ' —Z, =0
(ycoty=b, for l=0) occurs at the position of the
interior bound state for E &0 and provides the dom-
inant contribution to the b-pole term, whereas the
other states (E&0) provide the background. The
interior states do not couple to the two-body scat-
tering states on the energy shelI. Thus, for E =pm

+is, the contribution of the b-pole term to T(E)
vanishes, as does the 5 dependence of the Born
term.

The parameters f, and r, are determined by fit-
ting the two-nucleon phase shifts. The l = 0 phase
shift is given by

the two-nucleon interaction, such as the three-
nuc1eon system or nuclear matter.

III. TRITON WAVE FUNCTION

A. Integral Equations for Spectator Functions

The three-nucleon wave function 4 for the J=2,
I= 2 bound state at energy E= -e' is written as
the sum of three components P;,

~=G.(E) Z«);, (3.1)

where G, (E) is the Green's function for three free
particles. The g,. are required to satisfy the Fad-
deev equations' "

g, = T,G,(E) Q «j«« i,j = 1, 2, 3. (3 2)

The net result is"'2

P =2 "n [ "~'- 'g"] (3.3)

We consider the equations for «)I, restricted to
s-wave two-nucleon interactions without tensor
forces. In the three-particle center-of-mass sys-
tem 0, is explicitly a function of the variables p, ,
the relative momentum of particles j and k, and

g, , the momentum of particle i relative to the cen-
ter of mass of j and k. The T matrix T,. is a sum
of singlet (S) and triplet (T) s-wave T matrices,
as in (2.9), multiplied by two-particle spin and
isospin projection operators P", '(i) and P'„'(i),

T, is the two-nucleon T matrix for particles j and
k.

«j«, is completely antisymmetric and is written in
terms of the I=

& isospin functions of mixed sym-
metry, $' and (", as

g =2 /2[/ "(' —P'$ "]
where P,' and ««/," are space-spin functions of mixed
symmetry. Furthermore «j«;'and «)," can be ex-
pressed in terms of a space- and spin-dependent
operator 0, acting on the S =

& spin functions of
mixed symmetry, X' and y",

&p«q,'IT;Ip«4;&=[&P«IT;s(E —~q )IP«&P'(i)P', (i)+(P«IT;r(E ——.q )IP«&P'. (i)P', (i)](2««)2b'(q —q')

(p«IT«»(E —lq«2)I p«& =, J2 "(p«r, )D2 r(y) J,(p r,),
P CP3 +O

(«22+ 2q 2)1/2 (3 4)

where D is given in (2.8). Ds depends on the BC
parameters fs and bs for l=0 singlet states and
D~ on the parameters f~ and b~ for triplet states.

Because each T matrix is separable of rank two,
0, contains two spectator functions, P, (q, ) and
P2(q, ) for each state, that form a column vector
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H(q, ). Thus with

ft;g, r=p 00(P;r, ),P(r 8.'(P, r )}
p,.r0 ' ' ' ' e2s,~,'q;') y coty b -1

ycoty- b -1 b ' (3 9)

=(p, r,)-'Z,. t(p, r, )H„(q,). . (3.5)

Hz(q) = =,'r, 'D~(y) q "dq'K, (q, q')H, (q')
0

,r, 'Dr(y) q—"dq'K,(q, q')Hr(q'),
0

To complete the expression for q in (3.1) we need
the expression

G, '(E)=-[ n' +p,
' +-,'

q, '], i=1,2, 3.
Fredholm integral equations for Hz(q) and Hr(q)

are obtained by inserting (3.3), (3.4), and (3.5)
into (3.2}. The coupled equations are:

This approximation eliminates the spin dependence
of the operator Q; in (3.3) and is equivalent to con-
sidering spinless nucleons. As a result the spa-
tial wave function is completely symmetric and
there is no admixture of the S' state of mixed sym-
metry. The three-nucleon wave function (3.1) un-
der these circumstances is as follows:

S

+ =G.(&) E 0;(p;, q;)
j=l

= G, (Z)g Z, '(p,.r, )H(q, ),
1Pf 0

«( ) («,(s))

Hr(q) = -—,r, ' D(z)yq "dq'K, (q, q')Hz(q')
0

3~ 1 ~ ~ l~
P =~/ +2P =q +2q

i4= --'&x+-'&i = -&2--'&s

42 2ql Pl) 48 Pl &41'

(3.10)

The kernel K, (q, q') is a matrix of functions inte-
grated over the cosine of the angle between g and
~fq, (,)

1
t

'd J (po,'r, ) R( ~,), (p,'r, )
Koq, q =

zJ z pr q p(r0 1 . 1 0 2 0
(3.7)

where

R '(g, q') = nm+q'+q'z+ g g'

p,'= le'+-'al, p.'= I-'q'+4l,

q ft'=qq'z. (3 6)

H(q) = 2r, 'D(y) q "-dq'K (q, q')H(q'),
0

In addition, D~ and D~ are the y-dependent parts
of the two-body T matrices evaluated off the en-
ergy shell at y=ro(n'+ ,'q')"' E—xpres.sed in terms
of the dimensionless variables qr0 and q'r0, Eqs.
(3.6) do not depend explicitly on r,. Thus the
boundary radius r, is a scaling factor both for the

q dependence of the spectator functions and the en-
ergy eigenvalue (nr, )'.

For purposes of numerical calculation we drop
the distinction between singlet and triplet interac-
tion (S=T) in (3.6). The number of equations
drops from four to two, and there is just a single
set of boundary parameters, b and f:

B. Triton Form Factor

When no distinction is made between the singlet
and triplet two-nucleon forces, the spatial distri-
butions of the like and odd nucleons in the triton,
as defined by Schiff, are the same. "' In that
event the triton charge form factor, assuming
additive contributions from each nucleon, is given
by the expression

F.~(q') = [2F".,(q')+F'. &(q')] F (q'), (3.11)

F(q ) ( )J dP)d qp (Pz qx+ sq)@(Pg qg «4),
1

(3.12)

where (4'l4) is the normalization

(@l+)=JI pd,
'

dpqai, q, ) t@(p,g,),
giving F(0) = 1.

C. Average Kinetic and Potential Energy

Since the two-body BC wave function u(r} is dis-
continuous at r„' care must be exercised in cal-
cul.ating the expectation value of the two-body ki-

where I'",
h and I'~

h are the neutron and proton
form factors and F(q') is the body form factor of
the triton.

F(q') is written in terms of the triton wave func-
tion (3.10) expressed as a function of a single set
of momentum variables; for example, q, and P,.
Specifically,
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netic energy operator d-2/dr2+ l(l+ 1)/r2 to avoid
introducing 5-function singularities from deriva-
tives at the discontinuity. The correct expression
for the two-body E = 0 kinetic energy is

de@ 'Y 2 + 4xQ 'Y

and this can be written as a single integral from
0 to ~ provided that the definition of the kinetic
energy operator is altered to remove a 5(r =0)
term that remains after differentiation and inte-
gration. The modified expression for the kinetic
energy ls

(3.13)

where (4 I4) is the normalization as used in

(3.12). The average potential energy, obtained
from P.E. =E —K.E,, is then

3(2v)' 1

m~ ' (+I') (5-f )

oo OO

q'dq H, '(q) —bf q'dq H, '(q)
0 0

(3.1V)

An immediate consequence of (3.17) is that the po-
tential energy is positive definite for the simul-
taneous choice f&0 and 5 &0. Thus, there are no
three-nucleon bound states for this choice of the
parameters f and b:

f & 0, 5 &0: no three-nucleon bound state.
(3.18)

with

+ cori'ection (3.14)

4mCorrection =, (6 sinp, r„pp o c. osp, ro)
P t~ i+0

where the modified kinetic energy operator is the
part of (3.13) in curly brackets with the operator
A defined as Au(r)=u(r, )-M(~ ).

Transformed into momentum space for the cen-
ter-of-mass system of three nucleons the modi-
fied kinetic energy operator becomes

&P,C, IK E. IP,'ql) = (2v)'5'(0, —P,')5'(4, —4,')(P,'+-'q, ')

IV. RESULTS OF CALCULATION

A. Binding Energy and V4ve Function

The coupled integral equations (3.9) were solved
as a function of the BC off-shell parameter b for
the binding energy h'n'/M and the spectator func-
tions H~(q) and H2(q) using f = 0.11 and 1'o = 0.95 F.
The phase shift obtained from (2.10) with these
values of f and r, is an approximate fit to the
characteristics of both the singlet and triplet s-

I.2—

5 ~=0 -j. 4 sinp,'r,

(3.15)
where b, sinPp, =sinP, .r, —sinP, .x . The first term
is the usual sum of single-particle kinetic ener-
gies, whereas the second term is a sum of two-
particle operators, given here for s waves. %'hen

the kinetic energy is calculated using the wave
function 4(p„q,) in (3.10) the two parts of the ki-
netic energy operator introduce terms proportion-
al to 5(r =0) that cancel, as in the two-nucleon
problem. The limit r„~ -ro is taken only after
all integrations have been performed. Some inte-
gl atlons lnvolvlng 4 sinpp'0 are fust step-function
discontinuities and give nonzero contributions.

The net result for the kinetic energy, using the
wave function (3.10) and the operator (3.14), is
the expression

I.O—

0,8—

0,7—

0.2—

Q. I—

—45.9

—29.4

—I6.5

—
I I.5

—7.55 Ltj

1

—4 I4—
CQ

3(2v)' 1

~r,2 (eIe) (b-f)
h2ea

q'dq H, '(q) —bf qmdq H~'(q)
() 0

(3.15)

I I I I I I I

.I .2 .5 .4 .5 .6 .7 .8 .9
b

FIG. 1. &so as a function of the boundary-condition pa-
rameter b. The left-hand scale shorvs the triton binding
energy (k2/M)0. for a boundary radius ro equal to 0.95
F.
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TABLE I. The triton eigenvalue pro for f= 0.11 and
several values of the boundary-condition parameter b.
The binding energy and the average kinetic energy are
evaluated for the boundary radius re—-0.95 F.

Binding energy
(F0=0.95 F)

(MeV)

Average kinetic
energy

{t'0=0.95 F)
(MeV)

0.50 0.29
0.587 0.48
0.60 0.65

8.86
8.50

19.4

89.1
69.0
99.8

to the triton form factors.

1.0—

0.9

0.8

0.6

h.

0.5
LL

b = 0.60

B. Charge Form Factor and Radius

The body form factor E(q') was calculated ac-
cording to (3.12), and the triton charge form fac-
tor E",„(q') according to (3.11)using E,"h =0 and the
proton form factor I'~h from the three-pole fit of
Sanssens et a/. " The integrations were performed
to an accuracy of about Sl/~. The resultant E,"h (q')
is plotted in Fig. 4 and Table II contains values
computed for q'~1 F ' and 5=0.5, 0.537, and 0.6,

as well as the experimental values of the H' and
He' charge form factors. " If one excludes Cou-
lomb and meson exchange effects, then the several
percent of 8' state needed to explain the difference
between the 8' and the He' charge form factors
must come from the spin dependence of the two-
nucleon interaction. No distinction is made here
between the. singlet and triplet forces, and so
some sort of average of the two experimental
charge form factors should be used for compari-
son. In either ease the disagreement is large for
q2 & l F ~. At q2= ] F 2 and Q between 0.5 and
0.537 there is approximate agreement with exper-
iment. But none of the calculated form factors
drop off as fast as the experimental form factor
for q2& 1 F 2. This slow decrease of the form fac-
tors clearly indicates that the spectator functions
H, and 8, contain relatively too much high-q com-
ponent, .

The body radius e was determined by fitting
polynomial curves to E(q') for small q' and taking
their slope as q' 0. From (3.11) the triton
charge radius is given by a,&'(H') = a'+ 2a,&'(n)
+a,h'()0), where a,„(n) and a,h(P) are the neutron
and proton charge radii. TaMe III contains the
values of a and a,b(H') calculated using a,z(p) = 0.8
F and a,„'(n) = -0.126 F'. The experimental values
are 1.VO F for a,„(H')" and 1.88 F for n,h(He'). "
The charge radii calculated for He3 differ from the
triton radii only in the amount of a,h(n). As should
be expected the x'adius decreases with b. The
charge radius at the experimental triton binding
enexgy fox f'O=0. 95 is larger than the experimen-
tal radius, but the experimental value does lie be-
tween the values of a,h(H ) calculated for b = 0.637
and b =0.6.

The fact that agreement with experiment occurs
at larger b for the charge radius than for the form
factor at q'= 1 F ' is indicative of the large curva-
ture that has been, obtained in EH,„as seen in Fig.
4. This curvature implies that the charge distx'ibu-
tion has a long tail, not unlike the experimental

0.2—

b = 0.537

b= 0.50

TABLE II. The triton charge form factor F~& (q ) for
f=0.11 and ~0=0.95 F, calculated for several values of
b. The first three columns are computed values of the
form factor, and the last two columns are the experi-
mental charge form factors for the triton and helium-8
(Hef. 19).

0. 1 q2 b =0.50 b =0.587 b =0.60
(F ) nro ——0.29 ng& ——0.45 r n= 0. 50F5,~(ezp. }Fg; (ezp. )

I

4

(q) (F )

FIG. 4. Triton charge form factor +,h (q ) forH3 2

several values of b, and F0=0.95 F.

1.0
2.0
8.0
4.0
5.0

0.601
0.458
0.860
0.296
0.240

0.707
0.569
0.467
0.890
0.829

0.768
0.681
0.529
0.449
0.884

0.622
0.887
0.267
0.175
0.118

0.567
0.829
0.209
0.1826
O.0S18
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TABI E III. The body radius a of the triton, and the
charge radius a,& (H ) for several values of b {f= 0.11,
ro ——0.95 F.) For comparison the experimental charge
radii of H and He are (Refs. 19 and 21) a~h(H ) =-1.70 F
and ach(He ) =1.88 F.

a,~ (H'}
(F)

0.50
0.537
0.60

2.45
1.84
1.45

2.53
1.95
1.58

V. DISCUSSION AND CONCLUSION

The results obtained here for the triton binding
energy, wave function, charge form factor, and
charge radius show a pronounced dependence on
the off-energy-shell boundary parameter b, the
logarithmic derivative of the two-nucleon wave
function inside the boundary radius r, . Using an
average singlet and triplet two-body interaction
with boundary radius r, =0.95 F, the values of b
of physical interest are found to be in the range
from b equals 0.5 to 0.6. The predictions are not
entirely consistent with experiment and, in par-

result recently obtained by McCarthy et a/. ' for
the charge form factor of He'.

The q dependence of the form factor can be most
easily adjusted by increasing the BC boundary
radius, but this cannot be done without altering
the fit to the two-body data. Fortunately, when
the tensor force is included in the two-body BC in-
teraction, the boundary parameter has the value
x, = 1.2-1.3 F~. In the present calculation with vp
=0.95 F the spectator function H, for arp 0 43
(8.5 MeV) drops to half its peak (q=0) value at
q= 0.8 F ' (Fig. 3). This may be compared with
the substantially more rapid decrease in the spec-
tator functions obtained by Gupta, Bhakar, and
Mitra" using separable central and tensor poten-
tials, where the drop to half peak (q=0) value oc-
curs at q=0.44 F '.

ticular, the charge form factor at the experi-
mental binding energy falls off too slowly as a
function of q'. This property of the form factor
can be traced to the presence of relatively too
much large-q component in the spectator functions
H, (q) and H, (q).

The inclusion of a tensor force in the BC inter-
action coul.d significantly alter the results obtained
here and their quantitative dependence on the in-
terior boundary condition. Calculations for the
three-nucleon problem" and for nuclear matter
(Haftel and Tabakin') indicate that a tensor force
should decrease the equilibrium density and the
magnitude of the binding energy for a system of
more than two nucleons. Thus a BC interaction
described in terms of the boundary conditions f,
for singlet states and the 2x 2 matrix f for triplet
states plus a single interior boundary condition b

should result in a triton with a larger radius and
a smaller binding energy than obtained here for
the same value of b, necessitating an increase in
b to fit the data. Such an interaction would give
some S' state in the triton wave function and would
make reasonable the calculation of the doublet
scattering length, which is particularly sensitive
to off-shell effects, "'"as well as, hopefully, im-
proving the fit to the form factors. Once the in-
terior boundary condition is also altered to include
the tensor force in terms of a parameter b, for the
singlet state and a 2 x 2 matrix for the triplet
states, the expectation is that the presence of
three more adjustable parameters should provide
substantial leeway for fitting the triton and helium-
3 properties.
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The general theory of multiple scattering of pions from nuclei is expressed in a way which
does not require the use of a series expansion. In an on-shell approximation this theory may
be reduced to the solution of a set of A coupled integral equations. As a demonstration of the
method the equations are specialized to the case of the deuteron and solved to give compari-
son with the experimental data. The deuteron tensor T20 is shown to be sensitive to the per-
centage of D state for deuterons scattered at 0'.

I. INTRODUCTION

In the energy region of 0-500-MeV pion kinetic
energy there exists no completely acceptable the-
ory of pion-nucleus scattering. The high-energy
eikonal approximation due to Glauber" has been
successful in explaining high-energy scattering
data at small angles. In spite of a number of at-
tempts to increase its range of validity, ' it is
doubtful if this basic approach would be of value
for large angles in this energy range.

The Watson multiple-scattering series has been
used with some success for pion-deuteron scatter-
ing by evaluating the double-scattering term in
various approximations. ' However, it is difficult
to go beyond the second term and, furthermore,
for large nuclei and near a resonance it is not cer-
tain that the series even converges.

Optical-model calculations' have been the most
successful in this region, but their application is
limited to large-& nuclei. Their use near a reso-
nance also has questionable validity.

For these reasons the present paper attempts to
develop a theory with the following aims:
(i) There should be no small-angle or forward-
scattering approximations, as these are not appro-
priate for this energy regime.
(ii) There should be no truncation of the multiple-
scattering series to avoid questions of conver-
gence near a resonance.

(iii) There should be only on-shell information re-
quired (at least in the first-order theory) to make
the calculation as simple as possible.

In order to develop such a theory we shall use
the form of multiple-scattering theory used some
years ago by Foldy and Brueckner' and more re-
cently by Seki. ' This method expresses the multi-
ple-scattering amplitude from one of the nucleons
as the simple-scattering amplitude plus a term
which looks very much like a double-scattering
amplitude. The difference between this second
term and an actual double-scattering term is that
one of the simple amplitudes has been replaced by
the multiple-scattering amplitude. Thus, one has
implicit equations for the multiple-scattering am-
plitudes. With the aid of some approximations
these equations can be brought into a solvable form.

These general equations are developed in Sec. II
and it will be seen that they may be written as cou-
pled integral equations over angular variables. In
Sec. III the equations are specialized to the case of
the deuteron and solved in double scattering at high
energies to compare with Glauber theory. Here
also in Sec. III the case of n-deuteron scattering
just below the (3, 3) resonance is calculated and
compared with experiment.

H. THEORY

Let us consider the scattering from 4 fixed nu-


