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Regge poles describing shape resonances ("quasimolecular states") are found to play a
prominent role in many optical-model scattering amplitudes and appear to be directly re-
lated to the Gruhn-Wall "dip" often observed in the reflection coefficient g(l). The Blair
smooth-cutoff model is generalized to include such a Regge pole and used to fit angular dis-
tributions for elastic 60+ ~60 and e+ 60 scattering, in the 20-30-MeV (c.m. ) energy range.
It also appears that the smooth-cutoff (strong-absorption) model itself can be interpreted as
the result of many overlapping inelastic Regge resonances.

I. INTRODUCTION

A long-standing problem in elastic o-nucleus
scattering at energies well above the Coulomb bar-
rier is the strong rise of the angular distributions
at backward angles. Although both the optical
model with strong absorption and the smooth-cut-
off model' reproduce the diffractionlike angular
distribution in the forward hemisphere, neither
has so far been very successful in simultaneously
describing the strong, oscillatory backscattering.
Bryant and Jarmie' have noted that the- shape of
this backward-angle scattering is strongly remini-
scent of the glory effect, which is a grazing-ray
phenomenon, ' and indeed Gruhn and Vfall4 found
that a, narrow dip superimposed on the smooth-cut-
off model at an l value near l =kR aided materially

in raising the backward-angle scattering. More
significantly, Cowley and Heymann' have recently
shown that adding a Regge pole at l =kA to the
smooth-cutoff model permits an impressive fit to
their elastic e+' 0 cross sections over the full
angular range.

A direct-channel Regge pole is simply a conven-
ient means of describing resonances in several ad-
jacent l values simultaneously; the fact that the
data seem to call for such resonances near l =OR
implies considerable transparency of the interac™
tion at the nuclear surface, in spite of its strong
absorption near the center. This is reminiscent
of the interaction responsible for heavy-ion scat-
tering, for a, growing body of opinion suggests
that it, too, is strongly absorptive at small im-
pact parameters but highly transparent at large
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ones. This interpretation is supported by the find-
ing of the Erlangen group' that their ' N+ "C data
could be fit with a smooth-cutoff model only by
the inclusion of a "dip" at surface l values, in the
Gruhn-Wall fashion. Of these various modifica-
tions of the smooth-cutoff model, the best-founded
is that employing one or more Regge poles, since
these poles affect both the amplitude and the phase
of the 8 matrix elements in an appropriately cor-
related fashion.

Our purpose is, first, to explain how this is
accomplished by examining single-particle Regge
poles, such as those which occur naturally in any
optical-model calculation, and second to suggest
a slight modification of the Regge representation
used by Cowley and Heymann. This alternate
form (a product rather than a sum) has the double
advantage of introducing the Gruhn-Wall dip in an
easily-controlled manner, and of being manifestly
unitary. Finally we show that a careful examina-
tion of the strong absorption described by optical
potentials suggests that it can be interpreted as
due entirely to overlapping Regge resonances, i.e.,
that diffraction can be viewed as a resonance phe-
nomenon.

II. PRODUCT REGGE REPRESENTATION

version, can be written in either of the equivalent
forms

B(f) =B(f)
I —Lo —ip(l)

(4a)

D(l)
l —L, —iI'(l)/2 (4b)

D(&) =B/[I ""-""] (5a)

i'(I) =I"/[I+e&'-'& "],
in which D and I"play the role of "reduced widths. "
The s(l) andP(l) of Eq. (4a) obviously have the
same exponential dependence as Eci. (5), with the
reducedP (pole) and s (zero) parameters given by

p =-,'r (5)

(5b)

and

From (4b) it is clear that the extra factor de-
scribes a resonance in l, centered at L, with total
/ width I'." In analogy to the energy-dependent
widths of the usual Breit-Wigner approximation,
D and I" are themselves slowly / dependent; as
explained below, they must vanish exponentially
as l-~. It is reasonable that they should do so
at the same rate as [B(l) —1], so we shall adopt
for them the convenient forms

The customary smooth-cutoff representation,
for the l dependence of the "nuclear" diagonal S
matrix elements in the entrance channel of inter-
est, is generally taken to have the form'

8 =[1+e ' ei~ " ] '=-B(l)
1

I,O

0.8—
Ecm=2

0.8

0.4

in terms of which the scattering amplitude, includ-
ing Coulomb effects, is given by

f(8) =fo(8)+ p(2&+1)e"'t(S, —l)P, (cos8).1

(2)

Here fo(8) is the point-Coulomb amplitude,

0.6—
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Im(g)
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l2 14 l6 Re(g)

and

e"'& = F(I+I +i')/F(f +1 —iq),

ri =ZZ'e'/@v.

If we call

g, =- Is, 1

the "reflection coefficient, " then the reflection co-
efficient given by Eq. (1) has the usual smooth S-
shaped rise to unity as a function of l, centered at
L, with width ~.

The modification we wish to suggest employs
this B(l) as a "background. " It is multiplied by a
single Regge-pole factor (i.e., a Breit-Wigner ap-
proximation in l) and the result, in its simplest

FIG. 1. A partial-wave analysis provided by the Regge-
pole-plus-smooth-cutoff model of Eq. (4) . The parame-
ter values of the model are given in Table I, and were
obtained by fitting the model to an angular distribution
generated by the optical potential of Eqs. (9a) and (9b),
which has been used to fit ' 0+ ~0 elastic scattering.
The plot in the upper right-hand corner is the first quad-
rant of the Argand diagram, on which the complex S-ma-
trix elements from the optical potential are indicated by
open circles and those of the model by solid dots.
(Where the two coincide, the dot is within the circle. )
The curve is drawn through the dots and proceeds from
the l =14 dot near the origin to the l =22 dot near (1, 0);
the l =19 position is indicated along the curve. The left-
hand plot shows q(l) = (S(l) ~

vs l with the same conven-
tions, and the lower right-hand plot shows the positions
of the complex Lp+@ and Lp+iz (the approximate pole
and zero positions predicted by the model) in the com-
plex l plane.
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FIG. 2. Angular-distribution fit corresponding to Fig.
1. The dots are the "data" generated by the optical po-
tential, and the solid curve is the best six-parameter fit
to it with the model of Eq. (4). The oscillatory rise of
the cross section at backward angles (the glory effect)
is entirely due to the influence of the Regge pole.

The modified smooth-cutoff model given by Eq.
(4) thus contains six real parameters: L, A, and
e for the background and I.„I, and D for the
Regge resonance. Since IB~ -1, the unitarity con-
dition will certainly be satisfied if 0~ ~z ~-P, or
equivalently if 0 B- I'. The significance of z(/)
and P(/), incidentally, can best be appreciated
from the fact that if their l dependence is suffi-
ciently slow, S(/) will have a, pole (Regge pole) at
/=Lo+ip(L, ), and a zero at /=La+iz(LO); this in-
deed appears to be the case for the scattering sys-
tems considered so far. The pole must always be
in the upper half of the l plane, and the zero is in
the lower half if D& 2F.

Although the explanation of the physical signifi-
cance of Eq. (4) will be postponed to a later sec-
tion, its practical effects can be seen in the re-
flection coefficients of Fig. I, in which a Regge
zero at a complex l near l =17 has produced a
sharp dip in the curve, and a consequent effective
steepening of its rise toward 1. The correspond-
ing angular distribution, Fig. 2, exhibits the char-
acteristic backward-angle glory oscillations,
which are seen to vanish entirely if the pole-zero
factor is removed from the model.

The physical significance of these effects will be-
come somewhat clearer in the following sections,
which investigate some of the Regge poles that oc-
cur in optical-potential scattering amplitudes.

III. REGGE POLES AND ZEROS IN OPTICAL-MODEL
CALCULATIONS

A. Poles and Spectroscopy

A Regge pole describes a sequence of energy lev-
els which are distinguished by different values of
the angular momentum quantum number J, but are
related by a common value of a second quantum
number. Examples from nuclear physics are (1) a
rotational band of states (related by the intrinsic

angular momentum If), and (2) a Regge trajectory
for a potential well, i.e., all the states of the well
which have the same value of the radial quantum
number n. These single-particle states are the
ones which can occur in optical calculations, and
indeed a survey of many such calculations shows
that all nuclear optical potentials except those cor-
responding to extremely strong absorption have
scattering amplitudes which exhibit prominent
Regge poles. These poles can often be most clear-
ly seen as resonance peaks in the l dependence of
the transmission coefficient T(/, E) =1 —~S(/, E) ~'

at fixed E. A typical example is shown in the in-
sert of Fig. 3, which exhibits six such l reso-
nances labeled by their radial quantum numbers n.

Several years ago similar l oscillations in the
reflection coefficients for e-nucleus scattering
were noted by Austern, ' who interpreted them as
the result of an interference between waves re-
flected from the "inner" and "outer" parts of the
centrifugal potential in the neighborhood of the bar-
rier. The point we wish to add is simply that the
"destructive" interferences, those which produce
minima in tI(/), correspond to single-particle reso-
nances.

These resonances seen in the l dependence of the
scattering amplitude are of course the same as
those seen in its E dependence. The relation be-
tween the two is perhaps best understood by noting
that the radial Schrodinger equation for a spheri-
cally symmetric potential can be solved, subject
to the usual r =0 boundary condition, for arbitrary
real or complex E and l, thus defining the 8-ma-
trix elements S,(E) =—S(/, E) throughout the com-
plex E and l planes. As a function of these two
variables it has a pole associated with each bound
or resonant state of the potential, the pole occur-
ring at the appropriate physical (/, E) combination
in the case of a bound state, and near it in the
case of a resonance.

Passing near such a pole along either the real l
axis or the real E axis can produce a maximum in
the transmission coefficient. " This is illustrated
clearly in Fig. 3, '~ which shows a number of reso-
nance maxima as a function of E for fixed l, to-
gether with an orthogonal "slice" at 16 MeV show-
ing the same resonances as a function of l for
fixed E.

These resonances occur at the energies E
which of course increase both with increasing n
(radial energy) and with increasing / (rotational
energy). Thus, e.g. , the 2h level occurs for this
potential at 12.8 MeV, while the 2i level appears
at 14 MeV. The successive reappearances of the
n =2 state for higher and higher l values are called
"Regge recurrences, " for n =2, and this entire
sequence of l values, for fixed n and increasing
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E, describes the n =2 Regge trajectory of the po-
tential.

This figure includes the n =0, 1, 2, 3, 4, and 5
trajectories and illustrates the important fact that
each appears to "end" at a maximum l value, at
which the resonance becomes so broad it merges
into the background. This is because these are
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FIG. 3. Optical-potential transmission coefficients vs
E~~. , for l =0 to 17, showing resonance maxima which
are labeled by their radial quantum numbers. The po-
tential is that of Eqs. (9a) and (91), with %'0= 0.5 MeV,
82=6.9, g2=0.49. The locus of maxima for a fixed n

gives a Chew-Frautschi plot for the corresponding
H,egge pole. The same data are plotted vs l in the insert
for E =16 MeV, showing how the five Begge poles pres-
ent cause peaks in T as a function of g. The potential
curves show -V(r)+ Vc,go~ ++i(l+ 1)2pr for several
l values, indicating how resonances rise out of the po-
tential "pocket" as l increases and the pocket fills in.

potential resonances, due entirely to the centri-
fugal (plus Coulomb) barrier, the height of which
increases with /, so that each higher-/ recurrence
of a resonance along a Regge trajectory is a reso-
nance behind a higher potential barrier. Both the
barrier height and the resonance energy increase
with increasing l, however, and the resonance en-
ergy necessarily moves up faster than the barrier";
consequently at some E the resonance will rise
above the barrier, broaden, and vanish into the-
background. As Fig. 3 indicates, this final disap-
pearance generally seems to occur for this poten-
tial only after the resonance has risen several
MeV above the top of the corresponding barrier.

For a given I, the higher-n states of course lie
higher in energy than the Iow-n ones (cf. n =0 and
1 for / =12), and so rise above the barrier first
as E increases; in Fig. 3, e.g., this happens at l
=1 and E = 20 MeV for the n =5 state, but not until
/=20 and E =23 MeV for the n=2 state.

The levels indicated in the 16 MeV insert in Fig.
3 (5s, 4d, Sg, etc. ) are just the levels of this po-
tential which are (within the leeway allowed by
their widths) degenerate at 16 MeV. Since they all
have the same energy but are caused by potential
barriers which decrease with decreasing E, the
lower-/ (higher-n) states will always have broader
widths, both inE and in /, than the higher-/ ones.
Since their / spacings also decrease with decreas-
ing l, the low-E states exhibit a much higher de-
gree of overlap (in /) than do the high-/ ones. It
is clearly just this increased overlap which caus-
es T(/, E) to rise to a larger average value (indi-
cating stronger absorption) at low / than at high /,
a significant point to which we shall return below.

The energy at which the "last" (n =0) resonance
rises above its barrier is a very important one,
for it is generally just a few MeV above the energy
at which the increase in / fills in the "resonance
pocket" behind the barrier altogether. Obviously
resonances cannot occur substantially above this
energy~ which we shall call @f~ III. @fly (II ls thus
a fundamental characteristic of the potential, mark-
ing the division between its resonance and nonreso-
nance energy regions. E ~;q;„ for the potential of
Fig. 3 is about 17 MeV.

8. Regge Zeros and Strong Absorption

In a T(E) curve like those shown in Fig. 3, a
resonant E or l is normally marked by that point,
on the curve at which T(/, E) reaches a maximum.
This is a point at which the reflection coefficient
g(/, E) reaches a minimum, and this minimum,
just as in Fig. 1, will be determined by a nearby
zero of S(/, E): Although a resonance is normally
associated with a Regge pole, the reflection coeffi-
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cient is more strongly affected, at an inelastic
resonance, by the associated Regge zero.

The importance of this zero is made even clear-
er by the observation that along every Regge tra-
jectory shown in Fig. 3, there is one (l, E) point
at which T(f, E) rises exactly to T =1. Since this
can only happen if a "dip" in xi(f) reaches xi=0, it
can alternately be described as an (I, E) point at
which a zero of S(f,E) occurs for real I and E
(though in general not for an integral I value). It
follows from Eg. (4) that this can happen only if

1 p (S)

The energy and E at which this occurs will be
determined largely by the depth of the imaginary
part of the optical potential. As E and l increase
along a Regge trajectory the resonance rises
above its barrier and increases its elastic width
(proportional to D) until eventually D = I'/2, and T

rises to unity. For lower values of l and E along
the trajectory, D & 1"/2 and the resonance is pre-
dominantly inelastic, while for higher values, &
& I /2 Rnd xt is predomxnantly 81Rstlc. Fox' the
present potential the crossover is seen to occur
for resonance energies which are actually some-
what above the corresponding barrier energy; for
imaginary potentials deeper than 0.5 MeV, it will
occur at higher energies still, where the reso-
nances become extremely broad. "

The relationship between Regge zeros and strong
absorption can be seen in Fig. 4, which displays
the reflection coefficients, transmission, coeffi-
cients, and Argand diagrams of a set of S-matrix
elements, all as a function of / for constant E, for"0potentials with imaginary well depths of l, 2,
3, and 5 MeV. The radial quantum numbers of the
resonances are again included, labeling peaks in
the transmission coefficients and the correspond-
ing dips in the reflection coefficients.

The multiple loops in the Argand diagram are
best understood by first considering the Argand
diagram of Flg. 5, on which Im8(f) is plotted vs
RSS(l) for the case of an isolated Regge pole with
no background, i.e., Eg. (4) with B(I)—= 1. In this
case the complex number S travels around a "reso-
nance circle" (beginning and ending at +1) as I in-
creases from below L, to above Lp The c11cle
is traversed in the clockwise or decreasing-phase
direction, corresponding to the fact that an elastic
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PIG. 4. An indication of how overlapping Regge reso-
nances can result in strong absorption. AD curves are
calculated with the optical potential of Fig. 3, with S' =1,
2, 3, or 5 MeV. The left and right graphs are of q(l)
and 1'(l) =1—f. q(&)l, and the center one shows the cor-
responding Argand diagrams. The radial quantum num-
bers indicate the positions of the resonances, and the po-
sition of 8 (12) is indicated by (12) on the Argand plots.
The shapes of the n =0 and n =1 resonances in T (l) are
suggested for W =1 MeV; it is their strong overlap for
8'-5 that produces the smooth cutoff of T (l) and q(l) in
that strong absorption limit.
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FIG. 5. q(l), Argand diagram, pole and zero positions,
and angular distribution for a single (modified) Regge
pole at 22 MeV for the 0+ ~Q system (without Coulomb
or symmetrization effects). The dashed curve is for 4
=20 fi.e., the 4 of Eq. (5)], and the solid curve for~
=1.3, the best-fit value used in Fig. 6.
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phase shift 5(l) decreases by v as I increases past
a Regge pole. ' This behavior, opposite to what oc-
curs as a function of E, is due to the fact that the
Regge pole lies above the real axis in the complex
l plane, while the energy pole lies below it in the
E plane. This also explains the unconventional
signs which occur in Eq. (4b).

The size of the resonance circle is directly re-
lated to the zero position. If the resonance is
elastic, the resonance circle is the unit circle;
the unitarity condition S(l)S*(I)—= I then requires
that any pole at I.,+ f I'/2 be accompanied by a zero
at the complex-conjugate position L, —il'/2 If.
the Regge resonance is inelastic (as it will be, e.g. ,
if the optical potential is complex), its zero is
closer to the real l axis than is the pole. The reso-
nance circle then has a radius p = I'„/I' =

~ J3(L,) ~ D/
I', and will encircle the origin if D & I'/2, and will
not encircle the origin if D & I'/2. According to
Eq. (7) the zero of S(l) will lie in the lower half
plane in the first case (resonance predominantly
elastic, as the high-energy end of a Regge trajec-
tory), and in the upper half plane, near the pole,
in the second case (resonance predominantly in-
elastic, as at the low-energy end of a Regge tra-
jectory). In the intermediate case, D = I'/2, the
zero occurs for real l, and consequently the Ar-
gand-diagram S(I) curve passes directly through
the origin.

Returning to the Argand diagram for 8' =1 MeV
in Fig. 4, we see that it contains a number of reso-
nance circles, which are a bit difficult to disen-
tangle because their resonances are overlapping
in l, as the transmission-coefficient graph shows.
The n =2 and n =3 circles are fairly simple and
are seen to correspond to predominantly elastic
resonances, since they encircle the origin. The
n =1 circle does, as well, but only a little more
than half of it is present because the wings of this
resonance are overlapped by the n =0 and n = 2

resonances. Similarly, only a. small fraction of
the n =0 circle is visible, for it is seriously over-
lapped on the low-l side by the n =1 resonance,
which causes a small loop at about l =12 to be in-
serted between the two.

If TV is increased to 2 MeV, the resonances be-
come more inelastic and now both the n =0 and n
=I states have D & I'/2, with "circles" which fall
short of the origin. In addition, all resonances
are broadened and overlap more; only the very
tops of the n =2, 3, 4, and 5 peaks are distinguish-
able in the transmission-coefficient curve, and

only the high-l sides of the n =0 and n =1 states.
Correspondingly only the high-l sides of their res-
onance circles occur in the Argand diagram.

With W =3 MeV almost all resonance circles
have become disengaged from the origin and only

a small segment of each one is visible between its
overlapping neighbors. More importantly, the
low-l peaks overlap so strongly in the transmis-
sion-coefficient curve that below I =7, T(l) is al-
most identically unity. In the same way, the over-
lapping "inverted peaks" in the reflection-coeffi-
cient curve hold q(l) down to very small values for
l & 7: OverlaPPing inelastic Begge resonances Pro-
duce strong absorPtion.

Finally, when 8" =5 MeV the overlap is complete,
and t)(l) exhibits the usual smooth rise characteris-
tic of strong absorption. Similarly, in the Argand
diagram even the loops separating the segments
of the contributing resonance circles have become
invisibly small, and these segments appear to
join smoothly to produce the nearly real S(I) curve
customarily associated with strong absorption. It
is in this sense that it appears legitimate to re-
gard the strong-absorption limit, with its diffrac-
tive angular distributions, as an overlapping-in-
elastic-resonance phenomenon, with the shoulder
of the t)(l) curve built up of the tails of many over-
lapping states.

Although this interpretation might at first sight
seem to be at variance with the picture of diffrac-
tion as a "prompt" process, it is not. Low-l
Regge poles in a traditional flat-bottomed optical
potential are spaced two units apart in l, so they
will overlap only when their l widths are greater
than about 2. A simple estimate of the energy-
widths of the corresponding states, based on the
Regge equation of Ref. 15, indicates that resonanc-
es this broad have lifetimes comparable with the
free-particle transit time across the nucleus. Con-
sequently the strong absorption given by their over-
lap does, in fact, describe a prompt process.

IV. APPLICATIONS AND EXTENSIONS
OF THE MODEL

A. True and Modified Regge Poles

The angular distribution produced by a single
Regge pole in S(I) is proportional to ~P~(-cosB) ~',
where L =L, +iI"/2 is the complex pole position.
If I «L„ this oscillates at backward angles very
much like ~P~ (cosB) ~

(with its zeros filled in),
0

but at 8 =0 it diverges logarithmically for any non-
integral L.

This physically unacceptable behavior is related
to the divergence of the partial-wave expansion of
P~(-cosB) at 8 =0 which occurs because a one-
pole S(l) approaches unity for large I only very
slowly, as l ', whereas for any interaction with
an exponential tail in r, such as the Woods-Saxon
potential, (S —I) must vanish exponentially in l as
I-~. The I-dependent widths introduced in Eq. (5)
ensure this exponential behavior and remove the
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0 =0 divergence, "much in the manner of the
Khuri- Jones representation. '

It is difficult to compute a true Regge-pole angu-
lar distribution using Eq. (4) with B=-1 and n =~,
because of the large number of partial waves
which contribute, but a reasonable approximation
can be achieved by using a large but finite b.. Fig-
ure 5 shows the result for d =20, using the A for
22-MeV (c.m. ) "0-"0scattering; it is compared
with the more realistic 6 =1.3 angular distribution,
which rises less steeply at small angles, as ex-

pected. Both exhibit the characteristic glory-type
oscillations near 180'.

B. Heavy-Ion Scattering

Although it seems likely that heavy-ion angular
distributions will exhibit Regge-pole effects, these
effects may be difficult to identify because they
appear most distinctively at backward angles,
where they can be obscur ed by competition from
zero-Q transfer reactions. " Only collisions be-
tween identical nuclei are free of this ambiguity,
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but in this case the backward-angle details are ob-
scured by the symmetry of the angular distribution
about 90'. Still another concern is the occurrence
of compound-nucleus structure in some heavy-ion
excitation functions, which cannot be described by
Regge poles if they are, as we suspect, of the
single-cluster type.

As a means of avoiding these difficulties until
more detailed data become available, we have
chosen to apply the cutoff-plus-pole model not
directly to experimental angular distributions, but
to angular distributions computed from an optical
potential which has itself been used to fit experi-
mental heavy-ion data. This not only ensures that
compound-nucleus effects have been averaged
out, but also permits a verification that any fits
achieved are not spurious, since the resulting S,'s
can be compared directly with those of the origin-
al optical potential.

The potential we have to generate these synthetic
data is one of those used by Maher, Siemssen,
and Sachs to fit elastic 60+ 0 cross sections. e'

It is a volume-absorption potential, -V(r) —iW(r),
with

P'(r) = V [I +e&"-"i&~&a]-& (ea)

W(r) =W, (E)[1+8 " + '2] ', (Qb)

V0 =17 MeV, 8, =6.8 fm, a, =0.49 fm,

W(Z) =(-17.2+1 86E, ~ ).MeV,

R =4.17 fm, am =0.805 fm.

TABLE I. Model parameters corresponding to the
fits shown in Fig. 6.

Ecm.
tMeV) Ip

18
22
24
26
28
30
32

232 016 128 125 0804 114
5.64 0.60 15.5 14.7 1.31 0.775
5 04 1 99 16 3 16 3 1 32 0 700
6.04 2.76 17.2 17.3 1.40 0.722
7.02 3.54 18.1 18.1 1.62 0.526
8 30 4 17 18 9 19 0 1 62 0 733
9 12 5 69 19 7 19 7 1 96 0 251

It differs from the original 17-MeV potential' in
having much stronger absorption at small radii
for E, &10 MeV. Although the scattering ampli-
tude must, of course, be symmetrized to fit the
"0+"0data, we have used it without symmetriza-
tion in order to see the details of the large-angle
scattering.

Figure 6 shows a sequence of fits to these syn-
thetic data, obtained with the S(l) parametrization
of Eq. (4} by searching the angular distributions

with the multiparameter search code GASIMP pro-
vided by the University of wisconsin Computing
Center. The resulting model parameters are list-
ed in Table I. Such a search is in essence a par-
tial-wave analysis within the constraints of the
model; the degree of success achieved in finding
the correct S-matrix elements (or complex phase
shifts) is indicated in the diagrams on the right of
this figure. The one-pole-plus cutoff model is
seen to provide a very adequate representation of
the scattering amplitude above 18 MeV.

The influence of the pole-zero factor shows up
as a "Gruhn-Wa11 dip" in 7l(l), or equivalently as
a half circle in the Argand diagram, which is ter-
minated on the low-I end by a loop [corresponding
to the q(I) dip] where the B(I) factor becomes very
small. For comparison, the dashed curves on the
22- and 32-MeV diagrams indicate the "background-
only" results, obtained by removing the pole-zero
factor from Eq. (4); these results, of course, ex-
hibit no dip.

The physical significance of the angular-distribu-
tion fits is best seen in Fig. 7, which displays the
angular distributions that would result in each
case by using (a) the smooth-cutoff background
only, S(l) =B(l) (including the Coulomb amplitude
and Coulomb phases o,), and (b) the pole-zero fac-
tor only [B(l)-=1], with no Coulomb effects.

At 18 MeV the (poor quality) fit follows the pat-
tern found by Cowley and Heymann' in the o.'+"0
case. The diffuseness parameter 6 of the back-
ground is sufficiently small that the smooth-cutoff
model by itself provides normal diffraction min-
ima. The pole contribution is very small (the zero
nearly coincides with the pole as Fig. 6 shows},
but it suffices to shift the positions of the foreward
minima and to raise the backward cross section
by an order of magnitude. .

In all other cases, on the other hand, the search
procedure resulted in a b. sufficiently large (1.8
or greater) that the smooth-cutoff model alone
produced no angular maxima or minima except at
cross-section values below 10 b, where they
are too small to contribute significantly. In all
these cases the background-only pole-only cross
sections intersect at angles varying from 20 to
60'. The forward-hemisphere "diffraction" oscil-
lations in the model cross section occur at imme-
diately subsequent angles and appear to result
from an "interference" between these two contribu-
tions. " The 1&0' cross section, on the other hand,
is entirely due to the Regge pole, being typically
10 times larger than the 180' background-only
cross section. Thus it appears correct to identify
the backward-angle oscillations in these cross sec-
tions with the glory effect,"and the forward-an-
gle oscillations with background-resonance inter-
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FIG. 7. Pole-plus-background decomposition of angu-
lar-distribution fits of Fig. 6. The solid curve is a re-
peat of the best-fit model curve from Fig. 6. The dash-
dot curve (background only) is the angular distribution
given by these same model parameters (including Cou-
lomb effects) if the pole-zero factor of Eq. (4) is re-
moved, and the dashed curve is the angular distribu-
tion given by the pole-zero factor alone (without Cou-
lomb effects).

ference. Diffraction in the traditional (nonreso-
nant) sense seems to play no significant role.

The forward-hemisphere interference oscilla-
tions generally exhibit a deepest minimum, which
occurs where the destructive interference between
the resonant and background contributions is
strongest. Because the background amplitude falls

off with angle much more steeply than does the
resonant one, the position of this deepest minimum
can easily be moved to more forward angles simp-
ly by increasing D, the "strength" of the pole
term, or by decreasing the strength of the back-
ground term. Both of these changes occur simul-
taneously as the energy is increased (the impor-
tance of the "background" decreasing as the Cou-
lomb scattering decreases), and indeed the deep-
est forward minimum moves from 80' at 22 MeV
to 50' at 32 MeV. Incidentally, because the angu-
lar distribution is so dominated by a single pole
in this region, the angular spacing between suc-
cessive minima is determined by the Lp of the
pole as 180'j(L, +1).

A particularly fascinating feature of these angu-
lar distributions (which vanishes from sight if
they are symmetrized) is the "smooth section"
near the middle angles, which begins to appear
near 125' at 26 MeV, and has broadened to cover
the region between 90 and 140' by 32 MeV. Its
physical significance is not yet clear, but the over-
whelming importance of the Regge pole in the 32-
MeV Argand diagram shows it to be a one-Regge-
pole phenomenon. " It is found to occur in all opti-
cal calculations which utilize the real part of this
potential, with or without Coulomb effects and
with or without absorption. In all cases it com-
mences about 10 MeV above E q;»;„(which can be
changed drastically by cha, nging the Coulomb po-
tential or the surface thickness a, ) and continues
"expanding" up to at least E, ~ =70 MeV. ' What-
ever its physical meaning, this "smooth section"
may prove to be the most easily recognized signa-
ture of a one-Regge-pole-plus-background partial-
wave decomposition.

The energy dependence of the model parameters,
and especially of the q(l) curve, is of considerable
physical significance, and can be directly related
to Figs. 3 and 4. Extrapolation from Fig. 3 shows
that the Regge pole being "followed" in the 20-30
MeV energy range is the "last" or n =0 one, which
occurs at the highest l values. Its pole and zero
positions are not far from (L, +iP) and (L, +ia),
and the trajectories followed by these numbers in
the complex I plane as the energy increases are
indicated at the right of Fig. 6.2' At higher ener-
gies they will recede vertically from the real axis
and "turn back" to the left, corresponding to the
broadening and vanishing of this highest-energy
resonance into the background, as in Fig. 3. It
is only because this occurs at lower energies for
all the higher-n resonances that the n =0 reso-
nance occurs in isolation above 22 MeV and per-
mits a one-pole model to work there. It is clear
from the dip in the "data" q(l) curve at 18 MeV
that the n =1 resonance also exerts a substantial
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FIG. 9. Spurious fit to the 32-MeV synthetic data of
Fig. 6. The model parameters are I'=-4.30, D~=0.580,
D2=-1.01, Lp=20.1, L=22.0, 6=1.48, Q =1.36. (D& and

D2 are defined in Sec. IV C.) The negative I' causes the
Argand-diagram resonance circle (for l & 22) to curve
"backwards. "

Regarding the occurrence of spurious fits to
angular distributions, they appear to be rather un-

likely if the model is capable of providing a suffi-
ciently good fit. Nonunitary fits [i.e. , fits which
have g(t) &1 over some f range] complicated the
location of the (poor but unitary) 18-MeV fit, and
an excellent but nonunitary fit to the 20-MeV data
evidently had such a deep X' minimum that the
search routine was incapable of locating an accept-
able unitary one. At all higher energies any rea-
sonable starting parameters enabled the routine
to find what was apparently the correct fit immed-
iately. The smoothness of the energy dependence
of the best-fit parameters is the best empirical
test of their consistency, and Fig. 8 shows that,
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FIG. 8. Energy dependence of the model parameters
of Table I. The value of each parameter is indicated by
the appropriate symbol; where I- and Lp come at the
same point, only Lp is plotted. No Gt was obtained at
20 MeV.

FIG. 10. Two-pole fit to the 18-MeV synthetic data of
Fig. 6. The model parameters are I'=2.39 D& =0.0454,
D2=0.127, Lp=12.7, L =11.8, ~=0.611, n =1.24; for the
second pole, I'=0.164, D =0.177, Lp=10.1.
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except for the 22-MeV case, the energy depen-
dence is not only smooth but nearly linear. Inci-
dentally, it is worth noting from the plot of I., vs
E, ~ that the n =0 state moves up two units in l
approximately every 4 MeV in this energy range,
a point of some interest because the spacing be-
tween maxima in the "0+' 0 excitation function
at 90' is not far from 4 MeV. '

A slip of the keypunch did turn up one particular-
ly interesting spurious but unitary fit, however.
A mis-punched card started out a 32-MeV search
with a negative total width, and the routine located

TABLE II. Model parameters corresponding to the
++~60 fits shown in Fig. 11.

E~m.
(MeV)' I D) D2 Lo L

20.3 2.86 3.63 1.13 6.45 6.48 0.868 -0.0683
23.0 0.800 1.00 1.00 7.54 8.22 1.00 0.246

the very acceptable fit shown in Fig. 9. Although
untenable as a Regge fit because of its negative
width (corresponding to a state which grows rather
than decays in time), it is unitary and perfectly
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reasonable outside this model. It is particularly
interesting in the heavy-ion context because its
Argand diagram is very similar to ones which re-
sult from the E-dependent absorption model of the
Florida State group. ' Although we have not pur-
sued the matter further, this could suggest that
at least some heavy-ion angular distributions can
be fit equally well with both models. If so, pre-
sumably the smoothness of the energy dependences
of the parameters is the only criterion which
could be used to decide between them.

C. Extensions of the Model

The model can, if desired, be extended to cover
a wider ra.nge of physical situations. The follow-
ing seem to be the most physical ways of adding
further parameters:

P) Mo~c poles. Additional pole-zero factors of
the same form as that in Eq. (5) can be added at
will and should extend the usefulness of the model
to lower energies. For instance, a rnueh better
fit to the 18-MeV synthetic angular distribution
was achieved with two poles, and is shown in Fig.
10. It is somewhat suspect, however, in that its
fit to the 8 matrix elements does not seem to be
better than that achieved with one pole.

(2) Phase of the resonance teem, ox complex D.
As in the customary Breit-signer approximation
in energy, if the resonance is superimposed on a,

nonelastic background [~B(lo) ~
& I], it can carry

an additional phase, which is equivalent to making
D complex, D =D, +iD2. This moves the zero posi-
tion to I., +fz =I.,+D, + t(P -D,), which shifts its
real part relative to that of the pole I.o by +2j for
single-cluster Regge poles D, is most likely to be
positive, putting the zero to the right of the pole.

(8) Better background phase. There is no funda-
mental reason for introducing the background
phase through the e' factor of Eq. (5), and if it
proves inadequate, a more physically motivated
I dependence for this phase should be employed.

D. n+' 0 Scattering

It is not our intention to investigate e-particle
scattering in any detail, but in oxder to provide
some estimate of the applicability of the present
model to this process, we have attempted to fit
two angular distributions for elastic ++~80 scat-
tering. The data most readily available to us
were those of Bergman and Hobbie, '6 in the labo-
ratory energy range 19-23 MeV.

We were unable to obtain unitary fits with the
six-parameter model of Eq. (5). The difficulty
was very similar to that encountered by Cowley
and Heyma, nn' in their analysis of the same pro-
cess at 25-32 MeV: The search routine insisted

on adding a "Gruhn-Wall spike, " rather than a dip,
to q(l), corresponding to a rapid resonant excur-
sion of S(l) outside the unit circle. Consequently
we extended the model to seven parameters (as in
the Cowley-Heymann form) by allowing D to be
complex. Because this puts the pole at one E and
the zero at another, it adds both a spike (at the
pole) and a dip (at the zero). It was then possible
to find broad, rather flat-bottomed X2 minima
which were either within or very near the unitary
region of the parameter space, and so locate the
unitary fits shown in Fig. 11; the model parame-
ters are given in Table II. Although comparable
in quality to the Cowley-Heymann fits, and sub-
stantially better than smooth-cutoffs fits, they are
not as convincing as the above fits to the heavy-
ion optical-potential cross sections. This is not
entirely surprising at energies this low, for the
Bexgman-Hobbie excitation functions show con-
siderable compound-nucleus structure, which one
would not expect the present model to fit any bet-
ter than the smooth-cutoff model would. 2' Substan-
tially better fits should be obtainable at higher en-
ergies. Analyzing the fits into pole-plus-back-
ground contributions shows them, again, to be
very dependent on interference between the two.

V. CONCLUSION

Regge poles are found to provide a very conven-
ient means of understanding the partial-wave de-
composition of optical-potential amplitudes in the
resonant energy range. Even if the potential is so
absorptive that lt exhibits no vlslble l esonanees,
the smooth-cutoff behavior of its scattering ampli-
tude is understandable in terms of many overlap-
ping inelastic Regge resonances. In the special
case that the potential is strongly absoxptive near
its center but fairly transparent near its edge it
may support nonoverlapping resonances only for /

values near I =PA and so be describable in terms
of a single Regge pole there, together with strong
absorption at smaller E's.

This distinctly appears to be the ease for an op-
tical potential used by the Yale-Argonne group'0
to describe ' 0+"0 scattering, and a brief exam-
ination of some elastic o. +"0 data lends support
to the suggestion of Cowley and Heymann' that a
one-pole model may be applicable to this system
as mell.

Although we have employed optical (i.e., pure
single-particle) resonances as a convenient nucle-
ar example of direct-channel Regge poles, this
should not be taken to imply that the Regge param-
etrization is restricted to optical resonances, nor
that optical resonances are the only possible mani-
festation of Regge effects in nuclear reactions.
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Resonances which are predominantly but not total-
ly single particle are, in fact, far more likely to
occur." Being narrower (because of their closed-
channel components) they cannot be described by
an optical potential but should be quite adequately
described by the parametrization suggested here. ~e

Perhaps the most distinctive characteristic of
a single-pole-plus-background angular distribution
(visible only if the full angular range is available}
is its "two-slope" character. Averaging through
the angular oscillations, it falls steeply at for-
ward angles where the background-plus-Coulomb
effect is dominant, and switches to a lower slope
at backward angles where the Regge pole or glory
effect dominates. Deep diffractionlike minima
typically occur at the break in the slope, often
separated from the backward-angle oscillations
by a characteristic "smooth section, " as shown
in Fig. 6.
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